nmod_poly.h – univariate polynomials over integers mod n (word-size n)¶
The nmod_poly_t data type represents elements of
\(\mathbb{Z}/n\mathbb{Z}[x]\) for a fixed modulus \(n\). The nmod_poly
module provides routines for memory management, basic arithmetic and
some higher level functions such as GCD, etc.
Each coefficient of an nmod_poly_t is of type ulong
and represents an integer reduced modulo the fixed modulus \(n\).
Unless otherwise specified, all functions in this section permit aliasing between their input arguments and between their input and output arguments.
The nmod_poly_t type is a typedef for an array of length 1 of
nmod_poly_struct’s. This permits passing parameters of type
nmod_poly_t by reference.
In reality one never deals directly with the struct and simply
deals with objects of type nmod_poly_t. For simplicity we will
think of an nmod_poly_t as a struct, though in practice to
access fields of this struct, one needs to dereference first,
e.g.to access the length field of an nmod_poly_t called
poly1 one writes poly1->length.
An nmod_poly_t is said to be normalised if either length
is zero, or if the leading coefficient of the polynomial is non-zero.
All nmod_poly functions expect their inputs to be normalised and
for all coefficients to be reduced modulo \(n\) and unless otherwise
specified they produce output that is normalised with coefficients
reduced modulo \(n\).
It is recommended that users do not access the fields of an
nmod_poly_t or its coefficient data directly, but make use of
the functions designed for this purpose, detailed below.
Functions in nmod_poly do all the memory management for the user.
One does not need to specify the maximum length in advance before
using a polynomial object. FLINT reallocates space automatically as
the computation proceeds, if more space is required.
Simple example¶
The following example computes the square of the polynomial \(5x^3 + 6\) in \(\mathbb{Z}/7\mathbb{Z}[x]\).
#include "nmod_poly.h"
int main()
{
nmod_poly_t x, y;
nmod_poly_init(x, 7);
nmod_poly_init(y, 7);
nmod_poly_set_coeff_ui(x, 3, 5);
nmod_poly_set_coeff_ui(x, 0, 6);
nmod_poly_mul(y, x, x);
nmod_poly_print(x); flint_printf("\n");
nmod_poly_print(y); flint_printf("\n");
nmod_poly_clear(x);
nmod_poly_clear(y);
}
The output is:
4 7 6 0 0 5
7 7 1 0 0 4 0 0 4
Types, macros and constants¶
-
type nmod_poly_struct¶
-
type nmod_poly_t¶
Memory management¶
-
void nmod_poly_init(nmod_poly_t poly, ulong n)¶
Initialises
poly. It will have coefficients modulo \(n\).
-
void nmod_poly_init_preinv(nmod_poly_t poly, ulong n, ulong ninv)¶
Initialises
poly. It will have coefficients modulo \(n\). The caller supplies a precomputed inverse limb generated byn_preinvert_limb().
-
void nmod_poly_init_mod(nmod_poly_t poly, const nmod_t mod)¶
Initialises
polyusing an already initialised modulusmod.
-
void nmod_poly_init2(nmod_poly_t poly, ulong n, slong alloc)¶
Initialises
poly. It will have coefficients modulo \(n\). Up toalloccoefficients may be stored inpoly.
-
void nmod_poly_init2_preinv(nmod_poly_t poly, ulong n, ulong ninv, slong alloc)¶
Initialises
poly. It will have coefficients modulo \(n\). The caller supplies a precomputed inverse limb generated byn_preinvert_limb(). Up toalloccoefficients may be stored inpoly.
-
void nmod_poly_realloc(nmod_poly_t poly, slong alloc)¶
Reallocates
polyto the given length. If the current length is less thanalloc, the polynomial is truncated and normalised. Ifallocis zero, the polynomial is cleared.
-
void nmod_poly_clear(nmod_poly_t poly)¶
Clears the polynomial and releases any memory it used. The polynomial cannot be used again until it is initialised.
-
void nmod_poly_fit_length(nmod_poly_t poly, slong alloc)¶
Ensures
polyhas space for at leastalloccoefficients. This function only ever grows the allocated space, so no data loss can occur.
-
void _nmod_poly_normalise(nmod_poly_t poly)¶
Internal function for normalising a polynomial so that the top coefficient, if there is one at all, is not zero.
Polynomial properties¶
-
slong nmod_poly_length(const nmod_poly_t poly)¶
Returns the length of the polynomial
poly. The zero polynomial has length zero.
-
slong nmod_poly_degree(const nmod_poly_t poly)¶
Returns the degree of the polynomial
poly. The zero polynomial is deemed to have degree \(-1\).
-
ulong nmod_poly_modulus(const nmod_poly_t poly)¶
Returns the modulus of the polynomial
poly. This will be a positive integer.
-
flint_bitcnt_t nmod_poly_max_bits(const nmod_poly_t poly)¶
Returns the maximum number of bits of any coefficient of
poly.
-
int nmod_poly_is_unit(const nmod_poly_t poly)¶
Returns \(1\) if the polynomial is a nonzero constant (in the case of prime modulus, this is equivalent to being a unit), otherwise \(0\).
-
int nmod_poly_is_monic(const nmod_poly_t poly)¶
Returns \(1\) if the polynomial is monic, i.e. nonzero with leading coefficient \(1\), otherwise \(0\).
Assignment and basic manipulation¶
-
void nmod_poly_set(nmod_poly_t a, const nmod_poly_t b)¶
Sets
ato a copy ofb.
-
void nmod_poly_swap(nmod_poly_t poly1, nmod_poly_t poly2)¶
Efficiently swaps
poly1andpoly2by swapping pointers internally.
-
void nmod_poly_zero(nmod_poly_t res)¶
Sets
resto the zero polynomial.
-
void nmod_poly_truncate(nmod_poly_t poly, slong len)¶
Truncates
polyto the given length and normalises it. Iflenis greater than the current length ofpoly, then nothing happens.
-
void nmod_poly_set_trunc(nmod_poly_t res, const nmod_poly_t poly, slong len)¶
Notionally truncate
polyto lengthlenand setresto the result. The result is normalised.
-
void _nmod_poly_reverse(nn_ptr output, nn_srcptr input, slong len, slong m)¶
Sets
outputto the reverse ofinput, which is of lengthlen, but thinking of it as a polynomial of lengthm, notionally zero-padded if necessary. The lengthmmust be non-negative, but there are no other restrictions. The polynomialoutputmust have space formcoefficients. Supports aliasing ofoutputandinput, but the behaviour is undefined in case of partial overlap.
-
void nmod_poly_reverse(nmod_poly_t output, const nmod_poly_t input, slong m)¶
Sets
outputto the reverse ofinput, thinking of it as a polynomial of lengthm, notionally zero-padded if necessary). The lengthmmust be non-negative, but there are no other restrictions. The output polynomial will be set to lengthmand then normalised.
Randomization¶
-
void nmod_poly_randtest(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random polynomial with length up to
len.
-
void nmod_poly_randtest_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random irreducible polynomial with length up to
len.
-
void nmod_poly_randtest_monic(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random monic polynomial with length
len.
-
void nmod_poly_randtest_monic_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random monic irreducible polynomial with length
len.
-
void nmod_poly_randtest_monic_primitive(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random monic irreducible primitive polynomial with length
len.
-
void nmod_poly_randtest_trinomial(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random monic trinomial of length
len.
-
int nmod_poly_randtest_trinomial_irreducible(nmod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)¶
Attempts to set
polyto a monic irreducible trinomial of lengthlen. It will generate up tomax_attemptstrinomials in attempt to find an irreducible one. Ifmax_attemptsis0, then it will keep generating trinomials until an irreducible one is found. Returns \(1\) if one is found and \(0\) otherwise.
-
void nmod_poly_randtest_pentomial(nmod_poly_t poly, flint_rand_t state, slong len)¶
Generates a random monic pentomial of length
len.
-
int nmod_poly_randtest_pentomial_irreducible(nmod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)¶
Attempts to set
polyto a monic irreducible pentomial of lengthlen. It will generate up tomax_attemptspentomials in attempt to find an irreducible one. Ifmax_attemptsis0, then it will keep generating pentomials until an irreducible one is found. Returns \(1\) if one is found and \(0\) otherwise.
-
void nmod_poly_randtest_sparse_irreducible(nmod_poly_t poly, flint_rand_t state, slong len)¶
Attempts to set
polyto a sparse, monic irreducible polynomial with lengthlen. It attempts to find an irreducible trinomial. If that does not succeed, it attempts to find a irreducible pentomial. If that fails, thenpolyis just set to a random monic irreducible polynomial.
Getting and setting coefficients¶
-
ulong nmod_poly_get_coeff_ui(const nmod_poly_t poly, slong j)¶
Returns the coefficient of
polyat indexj, where coefficients are numbered with zero being the constant coefficient, and returns it as anulong. Ifjrefers to a coefficient beyond the end ofpoly, zero is returned.
-
void nmod_poly_set_coeff_ui(nmod_poly_t poly, slong j, ulong c)¶
Sets the coefficient of
polyat indexj, where coefficients are numbered with zero being the constant coefficient, to the valuecreduced modulo the modulus ofpoly. Ifjrefers to a coefficient beyond the current end ofpoly, the polynomial is first resized, with intervening coefficients being set to zero.
Input and output¶
-
char *nmod_poly_get_str(const nmod_poly_t poly)¶
Writes
polyto a string representation. The format is as described fornmod_poly_print(). The string must be freed by the user when finished. For this it is sufficient to callflint_free().
-
char *nmod_poly_get_str_pretty(const nmod_poly_t poly, const char *x)¶
Writes
polyto a pretty string representation. The format is as described fornmod_poly_print_pretty(). The string must be freed by the user when finished. For this it is sufficient to callflint_free().It is assumed that the top coefficient is non-zero.
-
int nmod_poly_set_str(nmod_poly_t poly, const char *s)¶
Reads
polyfrom a strings. The format is as described fornmod_poly_print(). If a polynomial in the correct format is read, a positive value is returned, otherwise a non-positive value is returned.
-
int nmod_poly_print(const nmod_poly_t a)¶
Prints the polynomial to
stdout. The length is printed, followed by a space, then the modulus. If the length is zero this is all that is printed, otherwise two spaces followed by a space separated list of coefficients is printed, beginning with the constant coefficient.In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
int nmod_poly_print_pretty(const nmod_poly_t a, const char *x)¶
Prints the polynomial to
stdoutusing the stringxto represent the indeterminate.It is assumed that the top coefficient is non-zero.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
int nmod_poly_fread(FILE *f, nmod_poly_t poly)¶
Reads
polyfrom the file streamf. If this is a file that has just been written, the file should be closed then opened again. The format is as described fornmod_poly_print(). If a polynomial in the correct format is read, a positive value is returned, otherwise a non-positive value is returned.
-
int nmod_poly_fprint(FILE *f, const nmod_poly_t poly)¶
Writes a polynomial to the file stream
f. If this is a file then the file should be closed and reopened before being read. The format is as described fornmod_poly_print(). If the polynomial is written correctly, a positive value is returned, otherwise a non-positive value is returned.In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
int nmod_poly_fprint_pretty(FILE *f, const nmod_poly_t poly, const char *x)¶
Writes a polynomial to the file stream
f. If this is a file then the file should be closed and reopened before being read. The format is as described fornmod_poly_print_pretty(). If the polynomial is written correctly, a positive value is returned, otherwise a non-positive value is returned.It is assumed that the top coefficient is non-zero.
In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
int nmod_poly_read(nmod_poly_t poly)¶
Read
polyfromstdin. The format is as described fornmod_poly_print(). If a polynomial in the correct format is read, a positive value is returned, otherwise a non-positive value is returned.
Comparison¶
-
int nmod_poly_equal(const nmod_poly_t a, const nmod_poly_t b)¶
Returns \(1\) if the polynomials are equal, otherwise \(0\).
-
int nmod_poly_equal_nmod(const nmod_poly_t poly, ulong cst)¶
Returns \(1\) if the polynomial
polyis constant, equal tocst, otherwise \(0\).cstis assumed to be already reduced, i.e. less than the modulus ofpoly.
-
int nmod_poly_equal_ui(const nmod_poly_t poly, ulong cst)¶
Returns \(1\) if the polynomial
polyis constant and equal tocstup to reduction modulo the modulus ofpoly, otherwise returns \(0\).
-
int nmod_poly_equal_trunc(const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)¶
Notionally truncate
poly1andpoly2to length \(n\) and return \(1\) if the truncations are equal, otherwise return \(0\).
-
int nmod_poly_is_zero(const nmod_poly_t poly)¶
Returns \(1\) if the polynomial
polyis the zero polynomial, otherwise returns \(0\).
-
int nmod_poly_is_one(const nmod_poly_t poly)¶
Returns \(1\) if the polynomial
polyis the constant polynomial 1, otherwise returns \(0\).
-
int nmod_poly_is_gen(const nmod_poly_t poly)¶
Returns \(1\) if the polynomial is the generating indeterminate (i.e. has degree \(1\), constant coefficient \(0\), and leading coefficient \(1\)), otherwise returns \(0\).
Shifting¶
-
void _nmod_poly_shift_left(nn_ptr res, nn_srcptr poly, slong len, slong k)¶
Sets
(res, len + k)to(poly, len)shifted left bykcoefficients. Assumes thatreshas space forlen + kcoefficients.
-
void nmod_poly_shift_left(nmod_poly_t res, const nmod_poly_t poly, slong k)¶
Sets
restopolyshifted left bykcoefficients, i.e. multiplied by \(x^k\).
-
void _nmod_poly_shift_right(nn_ptr res, nn_srcptr poly, slong len, slong k)¶
Sets
(res, len - k)to(poly, len)shifted left bykcoefficients. It is assumed thatk <= lenand thatreshas space for at leastlen - kcoefficients.
-
void nmod_poly_shift_right(nmod_poly_t res, const nmod_poly_t poly, slong k)¶
Sets
restopolyshifted right bykcoefficients, i.e. divide by \(x^k\) and throw away the remainder. Ifkis greater than or equal to the length ofpoly, the result is the zero polynomial.
Addition and subtraction¶
-
void _nmod_poly_add(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Sets
resto the sum of(poly1, len1)and(poly2, len2). There are no restrictions on the lengths.
-
void nmod_poly_add(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Sets
resto the sum ofpoly1andpoly2.
-
void nmod_poly_add_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)¶
Notionally truncate
poly1andpoly2to length \(n\) and setresto the sum.
-
void _nmod_poly_sub(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Sets
resto the difference of(poly1, len1)and(poly2, len2). There are no restrictions on the lengths.
-
void nmod_poly_sub(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Sets
resto the difference ofpoly1andpoly2.
-
void nmod_poly_sub_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)¶
Notionally truncate
poly1andpoly2to length \(n\) and setresto the difference.
-
void nmod_poly_neg(nmod_poly_t res, const nmod_poly_t poly)¶
Sets
resto the negation ofpoly.
Scalar multiplication and division¶
-
void nmod_poly_scalar_mul_nmod(nmod_poly_t res, const nmod_poly_t poly, ulong c)¶
Sets
restopolymultiplied by \(c\). The element \(c\) is assumed to be less than the modulus ofpoly.
-
void nmod_poly_scalar_addmul_nmod(nmod_poly_t res, const nmod_poly_t poly, ulong c)¶
Adds
polymultiplied by \(c\) tores. The element \(c\) is assumed to be less than the modulus ofpoly.
-
void _nmod_poly_make_monic(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)¶
Requires that
resandpolyhave length at leastlen, withlen > 0, and thatpoly[len-1]is invertible modulomod.n. Setsres[i]to the modular product of \(c\) andpoly[i]for \(i\) from \(0\) tolen-1, where \(c\) is the inverse ofpoly[len-1].
-
void nmod_poly_make_monic(nmod_poly_t res, const nmod_poly_t poly)¶
Sets
resto be the scalar multiple ofpolywith leading coefficient one. Ifpolyis zero, an exception is raised.
Bit packing and unpacking¶
-
void _nmod_poly_bit_pack(nn_ptr res, nn_srcptr poly, slong len, flint_bitcnt_t bits)¶
Packs
lencoefficients ofpolyinto fields of the given number of bits in the large integerres, i.e. evaluatespolyat2^bitsand store the result inres. Assumeslen > 0andbits > 0. Also assumes that no coefficient ofpolyis bigger thanbits/2bits. We also assumebits < 3 * FLINT_BITS.
-
void _nmod_poly_bit_unpack(nn_ptr res, slong len, nn_srcptr mpn, ulong bits, nmod_t mod)¶
Unpacks
lencoefficients stored in the big integermpnin bit fields of the given number of bits, reduces them modulo the given modulus, then stores them in the polynomialres. We assumelen > 0and3 * FLINT_BITS > bits > 0. There are no restrictions on the size of the actual coefficients as stored within the bitfields.
-
void nmod_poly_bit_pack(fmpz_t f, const nmod_poly_t poly, flint_bitcnt_t bit_size)¶
Packs
polyinto bitfields of sizebit_size, writing the result tof.
-
void nmod_poly_bit_unpack(nmod_poly_t poly, const fmpz_t f, flint_bitcnt_t bit_size)¶
Unpacks the polynomial from fields of size
bit_sizeas represented by the integerf.
-
void _nmod_poly_KS2_pack1(nn_ptr res, nn_srcptr op, slong n, slong s, ulong b, ulong k, slong r)¶
Same as
_nmod_poly_KS2_pack, but requiresb <= FLINT_BITS.
-
void _nmod_poly_KS2_pack(nn_ptr res, nn_srcptr op, slong n, slong s, ulong b, ulong k, slong r)¶
Bit packing routine used by KS2 and KS4 multiplication.
-
void _nmod_poly_KS2_unpack1(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)¶
Same as
_nmod_poly_KS2_unpack, but requiresb <= FLINT_BITS(i.e. writes one word per coefficient).
-
void _nmod_poly_KS2_unpack2(nn_ptr res, nn_srcptr op, slong n, ulong b, ulong k)¶
Same as
_nmod_poly_KS2_unpack, but requiresFLINT_BITS < b <= 2 * FLINT_BITS(i.e. writes two words per coefficient).
KS2/KS4 Reduction¶
-
void _nmod_poly_KS2_reduce(nn_ptr res, slong s, nn_srcptr op, slong n, ulong w, nmod_t mod)¶
Reduction code used by KS2 and KS4 multiplication.
-
void _nmod_poly_KS2_recover_reduce1(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)¶
Same as
_nmod_poly_KS2_recover_reduce, but requires0 < 2 * b <= FLINT_BITS.
-
void _nmod_poly_KS2_recover_reduce2(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)¶
Same as
_nmod_poly_KS2_recover_reduce, but requiresFLINT_BITS < 2 * b < 2*FLINT_BITS.
-
void _nmod_poly_KS2_recover_reduce2b(nn_ptr res, slong s, nn_srcptr op1, nn_srcptr op2, slong n, ulong b, nmod_t mod)¶
Same as
_nmod_poly_KS2_recover_reduce, but requiresb == FLINT_BITS.
Multiplication¶
-
void _nmod_poly_mul_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Sets
(res, len1 + len2 - 1)to the product of(poly1, len1)and(poly2, len2). Assumeslen1 >= len2 > 0. Aliasing of inputs and output is not permitted.
-
void nmod_poly_mul_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Sets
resto the product ofpoly1andpoly2.
-
void _nmod_poly_mullow_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong trunc, nmod_t mod)¶
Sets
resto the lowertrunccoefficients of the product of(poly1, len1)and(poly2, len2). Assumes thatlen1 >= len2 > 0andtrunc > 0. Aliasing of inputs and output is not permitted.
-
void nmod_poly_mullow_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong trunc)¶
Sets
resto the lowertrunccoefficients of the product ofpoly1andpoly2.
-
void _nmod_poly_mulhigh_classical(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong start, nmod_t mod)¶
Computes the product of
(poly1, len1)and(poly2, len2)and writes the coefficients fromstartonwards into the high coefficients ofres, the remaining coefficients being arbitrary but reduced. Assumes thatlen1 >= len2 > 0. Aliasing of inputs and output is not permitted.
-
void nmod_poly_mulhigh_classical(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong start)¶
Computes the product of
poly1andpoly2and writes the coefficients fromstartonwards into the high coefficients ofres, the remaining coefficients being arbitrary but reduced.
-
void _nmod_poly_mul_KS(nn_ptr out, nn_srcptr in1, slong len1, nn_srcptr in2, slong len2, flint_bitcnt_t bits, nmod_t mod)¶
Sets
resto the product ofin1andin2assuming the output coefficients are at most the given number of bits wide. Ifbitsis set to \(0\) an appropriate value is computed automatically. Assumes thatlen1 >= len2 > 0.
-
void nmod_poly_mul_KS(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, flint_bitcnt_t bits)¶
Sets
resto the product ofpoly1andpoly2assuming the output coefficients are at most the given number of bits wide. Ifbitsis set to \(0\) an appropriate value is computed automatically.
-
void _nmod_poly_mul_KS2(nn_ptr res, nn_srcptr op1, slong n1, nn_srcptr op2, slong n2, nmod_t mod)¶
Sets
resto the product ofop1andop2. Assumes thatlen1 >= len2 > 0.
-
void nmod_poly_mul_KS2(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Sets
resto the product ofpoly1andpoly2.
-
void _nmod_poly_mul_KS4(nn_ptr res, nn_srcptr op1, slong n1, nn_srcptr op2, slong n2, nmod_t mod)¶
Sets
resto the product ofop1andop2. Assumes thatlen1 >= len2 > 0.
-
void nmod_poly_mul_KS4(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Sets
resto the product ofpoly1andpoly2.
-
void _nmod_poly_mullow_KS(nn_ptr out, nn_srcptr in1, slong len1, nn_srcptr in2, slong len2, flint_bitcnt_t bits, slong n, nmod_t mod)¶
Sets
outto the low \(n\) coefficients ofin1of lengthlen1timesin2of lengthlen2. The output must have space forncoefficients. We assume thatlen1 >= len2 > 0and that0 < n <= len1 + len2 - 1.
-
void nmod_poly_mullow_KS(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, flint_bitcnt_t bits, slong n)¶
Set
resto the low \(n\) coefficients ofin1of lengthlen1timesin2of lengthlen2.
-
void _nmod_poly_mul(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Sets
resto the product ofpoly1of lengthlen1andpoly2of lengthlen2. Assumeslen1 >= len2 > 0. No aliasing is permitted between the inputs and the output.
-
void nmod_poly_mul(nmod_poly_t res, const nmod_poly_t poly, const nmod_poly_t poly2)¶
Sets
resto the product ofpoly1andpoly2.
-
void _nmod_poly_mullow(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)¶
Sets
resto the firstncoefficients of the product ofpoly1of lengthlen1andpoly2of lengthlen2. It is assumed that0 < n <= len1 + len2 - 1and thatlen1 >= len2 > 0. No aliasing of inputs and output is permitted.
-
void nmod_poly_mullow(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong trunc)¶
Sets
resto the firsttrunccoefficients of the product ofpoly1andpoly2.
-
void _nmod_poly_mulhigh(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)¶
Sets all but the low \(n\) coefficients of
resto the corresponding coefficients of the product ofpoly1of lengthlen1andpoly2of lengthlen2, the other coefficients being arbitrary. It is assumed thatlen1 >= len2 > 0and that0 < n <= len1 + len2 - 1. Aliasing of inputs and output is not permitted.
-
void nmod_poly_mulhigh(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)¶
Sets all but the low \(n\) coefficients of
resto the corresponding coefficients of the product ofpoly1andpoly2, the remaining coefficients being arbitrary.
-
void _nmod_poly_mulmod(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nn_srcptr f, slong lenf, nmod_t mod)¶
Sets
resto the remainder of the product ofpoly1andpoly2upon polynomial division byf.It is required that
len1 + len2 - lenf > 0, which is equivalent to requiring that the result will actually be reduced. Otherwise, simply use_nmod_poly_mulinstead.Aliasing of
fandresis not permitted.
-
void nmod_poly_mulmod(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t f)¶
Sets
resto the remainder of the product ofpoly1andpoly2upon polynomial division byf.
-
void _nmod_poly_mulmod_preinv(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)¶
Sets
resto the remainder of the product ofpoly1andpoly2upon polynomial division byf.It is required that
finvis the inverse of the reverse offmodx^lenf. It is required thatlen1 + len2 - lenf > 0, which is equivalent to requiring that the result will actually be reduced. It is required thatlen1 < lenfandlen2 < lenf. Otherwise, simply use_nmod_poly_mulinstead.Aliasing of
`reswith any of the inputs is not permitted.
-
void nmod_poly_mulmod_preinv(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, const nmod_poly_t f, const nmod_poly_t finv)¶
Sets
resto the remainder of the product ofpoly1andpoly2upon polynomial division byf.finvis the inverse of the reverse off. It is required thatpoly1andpoly2are reduced modulof.
Powering¶
-
void _nmod_poly_pow_binexp(nn_ptr res, nn_srcptr poly, slong len, ulong e, nmod_t mod)¶
Raises
polyof lengthlento the powereand setsresto the result. We require thatreshas enough space for(len - 1)*e + 1coefficients. Assumes thatlen > 0,e > 1. Aliasing is not permitted. Uses the binary exponentiation method.
-
void nmod_poly_pow_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e)¶
Raises
polyto the powereand setsresto the result. Uses the binary exponentiation method.
-
void _nmod_poly_pow(nn_ptr res, nn_srcptr poly, slong len, ulong e, nmod_t mod)¶
Raises
polyof lengthlento the powereand setsresto the result. We require thatreshas enough space for(len - 1)*e + 1coefficients. Assumes thatlen > 0,e > 1. Aliasing is not permitted.
-
void nmod_poly_pow(nmod_poly_t res, const nmod_poly_t poly, ulong e)¶
Raises
polyto the powereand setsresto the result.
-
void _nmod_poly_pow_trunc_binexp(nn_ptr res, nn_srcptr poly, ulong e, slong trunc, nmod_t mod)¶
Sets
resto the lowtrunccoefficients ofpoly(assumed to be zero padded if necessary to lengthtrunc) to the powere. This is equivalent to doing a powering followed by a truncation. We require thatreshas enough space fortrunccoefficients, thattrunc > 0and thate > 1. Aliasing is not permitted. Uses the binary exponentiation method.
-
void nmod_poly_pow_trunc_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e, slong trunc)¶
Sets
resto the lowtrunccoefficients ofpolyto the powere. This is equivalent to doing a powering followed by a truncation. Uses the binary exponentiation method.
-
void _nmod_poly_pow_trunc(nn_ptr res, nn_srcptr poly, ulong e, slong trunc, nmod_t mod)¶
Sets
resto the lowtrunccoefficients ofpoly(assumed to be zero padded if necessary to lengthtrunc) to the powere. This is equivalent to doing a powering followed by a truncation. We require thatreshas enough space fortrunccoefficients, thattrunc > 0and thate > 1. Aliasing is not permitted.
-
void nmod_poly_pow_trunc(nmod_poly_t res, const nmod_poly_t poly, ulong e, slong trunc)¶
Sets
resto the lowtrunccoefficients ofpolyto the powere. This is equivalent to doing a powering followed by a truncation.
-
void _nmod_poly_powmod_ui_binexp(nn_ptr res, nn_srcptr poly, ulong e, nn_srcptr f, slong lenf, nmod_t mod)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree > 0.We require
lenf > 1. It is assumed thatpolyis already reduced modulofand zero-padded as necessary to have length exactlylenf - 1. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_ui_binexp(nmod_poly_t res, const nmod_poly_t poly, ulong e, const nmod_poly_t f)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree >= 0.
-
void _nmod_poly_powmod_fmpz_binexp(nn_ptr res, nn_srcptr poly, fmpz_t e, nn_srcptr f, slong lenf, nmod_t mod)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree > 0.We require
lenf > 1. It is assumed thatpolyis already reduced modulofand zero-padded as necessary to have length exactlylenf - 1. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_fmpz_binexp(nmod_poly_t res, const nmod_poly_t poly, fmpz_t e, const nmod_poly_t f)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree >= 0.
-
void _nmod_poly_powmod_ui_binexp_preinv(nn_ptr res, nn_srcptr poly, ulong e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree > 0. We requirefinvto be the inverse of the reverse off.We require
lenf > 1. It is assumed thatpolyis already reduced modulofand zero-padded as necessary to have length exactlylenf - 1. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_ui_binexp_preinv(nmod_poly_t res, const nmod_poly_t poly, ulong e, const nmod_poly_t f, const nmod_poly_t finv)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree >= 0. We requirefinvto be the inverse of the reverse off.
-
void _nmod_poly_powmod_fmpz_binexp_preinv(nn_ptr res, nn_srcptr poly, fmpz_t e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree > 0. We requirefinvto be the inverse of the reverse off.We require
lenf > 1. It is assumed thatpolyis already reduced modulofand zero-padded as necessary to have length exactlylenf - 1. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_fmpz_binexp_preinv(nmod_poly_t res, const nmod_poly_t poly, fmpz_t e, const nmod_poly_t f, const nmod_poly_t finv)¶
Sets
restopolyraised to the poweremodulof, using binary exponentiation. We requiree >= 0. We requirefinvto be the inverse of the reverse off.
-
void _nmod_poly_powmod_x_ui_preinv(nn_ptr res, ulong e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)¶
Sets
restoxraised to the poweremodulof, using sliding window exponentiation. We requiree > 0. We requirefinvto be the inverse of the reverse off.We require
lenf > 2. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_x_ui_preinv(nmod_poly_t res, ulong e, const nmod_poly_t f, const nmod_poly_t finv)¶
Sets
restoxraised to the poweremodulof, using sliding window exponentiation. We requiree >= 0. We requirefinvto be the inverse of the reverse off.
-
void _nmod_poly_powmod_x_fmpz_preinv(nn_ptr res, fmpz_t e, nn_srcptr f, slong lenf, nn_srcptr finv, slong lenfinv, nmod_t mod)¶
Sets
restoxraised to the poweremodulof, using sliding window exponentiation. We requiree > 0. We requirefinvto be the inverse of the reverse off.We require
lenf > 2. The outputresmust have room forlenf - 1coefficients.
-
void nmod_poly_powmod_x_fmpz_preinv(nmod_poly_t res, fmpz_t e, const nmod_poly_t f, const nmod_poly_t finv)¶
Sets
restoxraised to the poweremodulof, using sliding window exponentiation. We requiree >= 0. We requirefinvto be the inverse of the reverse off.
-
void _nmod_poly_powers_mod_preinv_naive(nn_ptr *res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod)¶
Compute
f^0, f^1, ..., f^(n-1) mod g, whereghas lengthglenandfis reduced modgand has lengthflen(possibly zero spaced). Assumesresis an array ofnarrays each with space for at leastglen - 1coefficients and thatflen > 0. We require thatginvof lengthginvlenis set to the power series inverse of the reverse ofg.
-
void nmod_poly_powers_mod_naive(nmod_poly_struct *res, const nmod_poly_t f, slong n, const nmod_poly_t g)¶
Set the entries of the array
restof^0, f^1, ..., f^(n-1) mod g. No aliasing is permitted between the entries ofresand either of the inputs.
-
void _nmod_poly_powers_mod_preinv_threaded_pool(nn_ptr *res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod, thread_pool_handle *threads, slong num_threads)¶
Compute
f^0, f^1, ..., f^(n-1) mod g, whereghas lengthglenandfis reduced modgand has lengthflen(possibly zero spaced). Assumesresis an array ofnarrays each with space for at leastglen - 1coefficients and thatflen > 0. We require thatginvof lengthginvlenis set to the power series inverse of the reverse ofg.
-
void _nmod_poly_powers_mod_preinv_threaded(nn_ptr *res, nn_srcptr f, slong flen, slong n, nn_srcptr g, slong glen, nn_srcptr ginv, slong ginvlen, const nmod_t mod)¶
Compute
f^0, f^1, ..., f^(n-1) mod g, whereghas lengthglenandfis reduced modgand has lengthflen(possibly zero spaced). Assumesresis an array ofnarrays each with space for at leastglen - 1coefficients and thatflen > 0. We require thatginvof lengthginvlenis set to the power series inverse of the reverse ofg.
-
void nmod_poly_powers_mod_bsgs(nmod_poly_struct *res, const nmod_poly_t f, slong n, const nmod_poly_t g)¶
Set the entries of the array
restof^0, f^1, ..., f^(n-1) mod g. No aliasing is permitted between the entries ofresand either of the inputs.
Division¶
-
void _nmod_poly_divrem_basecase(nn_ptr Q, nn_ptr R, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)¶
Finds \(Q\) and \(R\) such that \(A = B Q + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\). If \(\operatorname{len}(B) = 0\) an exception is raised. We require that
Wis temporary space ofNMOD_DIVREM_BC_ITCH(A_len, B_len, mod)coefficients.
-
void nmod_poly_divrem_basecase(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)¶
Finds \(Q\) and \(R\) such that \(A = B Q + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\). If \(\operatorname{len}(B) = 0\) an exception is raised.
-
void _nmod_poly_divrem(nn_ptr Q, nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R)\) less than
lenB, whereAis of lengthlenAandBis of lengthlenB. We require thatQhave space forlenA - lenB + 1coefficients.
-
void nmod_poly_divrem(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)¶
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\).
-
void _nmod_poly_div(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Notionally computes polynomials \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R)\) less than
lenB, whereAis of lengthlenAandBis of lengthlenB, but returns onlyQ. We require thatQhave space forlenA - lenB + 1coefficients.
-
void nmod_poly_div(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the quotient \(Q\) on polynomial division of \(A\) and \(B\).
-
void _nmod_poly_rem(nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes the remainder \(R\) on polynomial division of \(A\) by \(B\).
-
void nmod_poly_rem(nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the remainder \(R\) on polynomial division of \(A\) by \(B\).
-
void _nmod_poly_divexact(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
-
void nmod_poly_divexact(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the quotient \(Q\) of \(A\) and \(B\) assuming that the division is exact.
-
void _nmod_poly_inv_series_basecase(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)¶
Given
Qof lengthQlenwhose leading coefficient is invertible modulo the given modulus, finds a polynomialQinvof lengthnsuch that the topncoefficients of the productQ * Qinvis \(x^{n - 1}\). Requires thatn > 0. This function can be viewed as inverting a power series.
-
void nmod_poly_inv_series_basecase(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)¶
Given
Qof length at leastnfindQinvof lengthnsuch that the topncoefficients of the productQ * Qinvis \(x^{n - 1}\). An exception is raised ifn = 0or if the length ofQis less thann. The leading coefficient ofQmust be invertible modulo the modulus ofQ. This function can be viewed as inverting a power series.
-
void _nmod_poly_inv_series_newton(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)¶
Given
Qof lengthQlenwhose constant coefficient is invertible modulo the given modulus, find a polynomialQinvof lengthnsuch thatQ * Qinvis1modulo \(x^n\). Requiresn > 0. This function can be viewed as inverting a power series via Newton iteration.
-
void nmod_poly_inv_series_newton(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)¶
Given
QfindQinvsuch thatQ * Qinvis1modulo \(x^n\). The constant coefficient ofQmust be invertible modulo the modulus ofQ. An exception is raised if this is not the case or ifn = 0. This function can be viewed as inverting a power series via Newton iteration.
-
void _nmod_poly_inv_series(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)¶
Given
Qof lengthQlennwhose constant coefficient is invertible modulo the given modulus, find a polynomialQinvof lengthnsuch thatQ * Qinvis1modulo \(x^n\). Requiresn > 0. This function can be viewed as inverting a power series.
-
void nmod_poly_inv_series(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)¶
Given
QfindQinvsuch thatQ * Qinvis1modulo \(x^n\). The constant coefficient ofQmust be invertible modulo the modulus ofQ. An exception is raised if this is not the case or ifn = 0. This function can be viewed as inverting a power series.
-
void _nmod_poly_div_series_basecase(nn_ptr Q, nn_srcptr A, slong Alen, nn_srcptr B, slong Blen, slong n, nmod_t mod)¶
Given polynomials
AandBof lengthAlenandBlen, finds the polynomialQof lengthnsuch thatQ * B = Amodulo \(x^n\). We assumen > 0and that the constant coefficient ofBis invertible modulo the given modulus. The polynomialQmust have space forncoefficients.
-
void nmod_poly_div_series_basecase(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, slong n)¶
Given polynomials
AandBconsidered modulon, finds the polynomialQof length at mostnsuch thatQ * B = Amodulo \(x^n\). We assumen > 0and that the constant coefficient ofBis invertible modulo the modulus. An exception is raised ifn == 0or the constant coefficient ofBis zero.
-
void _nmod_poly_div_series(nn_ptr Q, nn_srcptr A, slong Alen, nn_srcptr B, slong Blen, slong n, nmod_t mod)¶
Given polynomials
AandBof lengthAlenandBlen, finds the polynomialQof lengthnsuch thatQ * B = Amodulo \(x^n\). We assumen > 0and that the constant coefficient ofBis invertible modulo the given modulus. The polynomialQmust have space forncoefficients.
-
void nmod_poly_div_series(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, slong n)¶
Given polynomials
AandBconsidered modulon, finds the polynomialQof length at mostnsuch thatQ * B = Amodulo \(x^n\). We assumen > 0and that the constant coefficient ofBis invertible modulo the modulus. An exception is raised ifn == 0or the constant coefficient ofBis zero.
-
void _nmod_poly_div_newton_n_preinv(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nn_srcptr Binv, slong lenBinv, nmod_t mod)¶
Notionally computes polynomials \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R)\) less than
lenB, whereAis of lengthlenAandBis of lengthlenB, but return only \(Q\).We require that \(Q\) have space for
lenA - lenB + 1coefficients and assume that the leading coefficient of \(B\) is a unit. Furthermore, we assume that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\).The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.
-
void nmod_poly_div_newton_n_preinv(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t Binv)¶
Notionally computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\), but returns only \(Q\).
We assume that the leading coefficient of \(B\) is a unit and that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\).
It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.
The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.
-
void _nmod_poly_divrem_newton_n_preinv(nn_ptr Q, nn_ptr R, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nn_srcptr Binv, slong lenBinv, nmod_t mod)¶
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R)\) less than
lenB, where \(A\) is of lengthlenAand \(B\) is of lengthlenB. We require that \(Q\) have space forlenA - lenB + 1coefficients. Furthermore, we assume that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\). The algorithm used is to calldiv_newton_n_preinv()and then multiply out and compute the remainder.
-
void nmod_poly_divrem_newton_n_preinv(nmod_poly_t Q, nmod_poly_t R, const nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t Binv)¶
Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\operatorname{len}(R) < \operatorname{len}(B)\). We assume \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\operatorname{len}(B)}\).
It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.
The algorithm used is to call
div_newton_n()and then multiply out and compute the remainder.
-
ulong _nmod_poly_div_root(nn_ptr Q, nn_srcptr A, slong len, ulong c, nmod_t mod)¶
Sets
(Q, len-1)to the quotient of(A, len)on division by \((x - c)\), and returns the remainder, equal to the value of \(A\) evaluated at \(c\). \(A\) and \(Q\) are allowed to be the same, but may not overlap partially in any other way.
-
ulong nmod_poly_div_root(nmod_poly_t Q, const nmod_poly_t A, ulong c)¶
Sets \(Q\) to the quotient of \(A\) on division by \((x - c)\), and returns the remainder, equal to the value of \(A\) evaluated at \(c\).
Divisibility testing¶
-
int _nmod_poly_divides_classical(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Returns \(1\) if \((B, lenB)\) divides \((A, lenA)\) and sets \((Q, lenA - lenB + 1)\) to the quotient. Otherwise, returns \(0\) and sets \((Q, lenA - lenB + 1)\) to zero. We require that \(lenA >= lenB > 0\).
-
int nmod_poly_divides_classical(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)¶
Returns \(1\) if \(B\) divides \(A\) and sets \(Q\) to the quotient. Otherwise returns \(0\) and sets \(Q\) to zero.
-
int _nmod_poly_divides(nn_ptr Q, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Returns \(1\) if \((B, lenB)\) divides \((A, lenA)\) and sets \((Q, lenA - lenB + 1)\) to the quotient. Otherwise, returns \(0\) and sets \((Q, lenA - lenB + 1)\) to zero. We require that \(lenA >= lenB > 0\).
-
int nmod_poly_divides(nmod_poly_t Q, const nmod_poly_t A, const nmod_poly_t B)¶
Returns \(1\) if \(B\) divides \(A\) and sets \(Q\) to the quotient. Otherwise returns \(0\) and sets \(Q\) to zero.
-
ulong nmod_poly_remove(nmod_poly_t f, const nmod_poly_t p)¶
Removes the highest possible power of
pfromfand returns the exponent.
Derivative and integral¶
-
void _nmod_poly_derivative(nn_ptr x_prime, nn_srcptr x, slong len, nmod_t mod)¶
Sets the first
len - 1coefficients ofx_primeto the derivative ofxwhich is assumed to be of lengthlen. It is assumed thatlen > 0.
-
void nmod_poly_derivative(nmod_poly_t x_prime, const nmod_poly_t x)¶
Sets
x_primeto the derivative ofx.
-
void _nmod_poly_integral(nn_ptr x_int, nn_srcptr x, slong len, nmod_t mod)¶
Set the first
lencoefficients ofx_intto the integral ofxwhich is assumed to be of lengthlen - 1. The constant term ofx_intis set to zero. It is assumed thatlen > 0. The result is only well-defined if the modulus is a prime number strictly larger than the degree ofx. Supports aliasing between the two polynomials.
-
void nmod_poly_integral(nmod_poly_t x_int, const nmod_poly_t x)¶
Set
x_intto the indefinite integral ofxwith constant term zero. The result is only well-defined if the modulus is a prime number strictly larger than the degree ofx.
Evaluation¶
-
ulong _nmod_poly_evaluate_nmod_precomp(nn_srcptr poly, slong len, ulong c, ulong c_precomp, nmod_t mod)¶
Evaluates
polyat the valuecand reduces modulo the given modulus ofpoly. The valuecshould be reduced modulo the modulus, and the modulus must be less than \(2^{\mathtt{FLINT\_BITS} - 1}\). The algorithm used is Horner’s method, with multiplications done vian_mulmod_shoup()using the precomputedc_precompobtained vian_mulmod_precomp_shoup().
-
ulong _nmod_poly_evaluate_nmod_precomp_lazy(nn_srcptr poly, slong len, ulong c, ulong c_precomp, nmod_t mod)¶
Evaluates
polyat the valuecand reduces modulo the given modulus ofpoly. The valuecshould be reduced modulo the modulus, and the modulus \(n\) must satisfy \(3n-2 < 2^{\mathtt{FLINT\_BITS}}\) (this is \(n \le 6148914691236517205\) for 64 bits, and \(n \le 1431655765\) for 32 bits). The algorithm used is Horner’s method, with multiplications done as inn_mulmod_shoup()using the precomputedc_precompobtained vian_mulmod_precomp_shoup(). Reductions modulo the modulus are delayed to the very end of the computation.
-
ulong _nmod_poly_evaluate_nmod(nn_srcptr poly, slong len, ulong c, nmod_t mod)¶
Evaluates
polyat the valuecand reduces modulo the given modulus ofpoly. The valuecshould be reduced modulo the modulus. The algorithm used is Horner’s method, with multiplications done vianmod_mul().
-
ulong nmod_poly_evaluate_nmod(const nmod_poly_t poly, ulong c)¶
Evaluates
polyat the valuecand reduces modulo the modulus ofpoly. The valuecshould be reduced modulo the modulus. The algorithm used is Horner’s method, with multiplications and additions done differently depending on the moduluspoly->modand on the degree (calls one of_nmod_poly_evaluate_nmod(),_nmod_poly_evaluate_nmod_precomp(),_nmod_poly_evaluate_nmod_precomp_lazy()).
-
void nmod_poly_evaluate_mat_horner(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)¶
Evaluates
polywith matrix as an argument at the valuecand stores the result indest. The dimension and modulus ofdestis assumed to be same as that ofc.destandcmay be aliased. Horner’s Method is used to compute the result.
-
void nmod_poly_evaluate_mat_paterson_stockmeyer(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)¶
Evaluates
polywith matrix as an argument at the valuecand stores the result indest. The dimension and modulus ofdestis assumed to be same as that ofc.destandcmay be aliased. Paterson-Stockmeyer algorithm is used to compute the result. The algorithm is described in [Paterson1973].
-
void nmod_poly_evaluate_mat(nmod_mat_t dest, const nmod_poly_t poly, const nmod_mat_t c)¶
Evaluates
polywith matrix as an argument at the valuecand stores the result indest. The dimension and modulus ofdestis assumed to be same as that ofc.destandcmay be aliased. This function automatically switches between Horner’s method and the Paterson-Stockmeyer algorithm.
Multipoint evaluation¶
-
void _nmod_poly_evaluate_nmod_vec_iter(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)¶
Evaluates (
coeffs,len) at thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.Uses Horner’s method iteratively.
-
void nmod_poly_evaluate_nmod_vec_iter(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)¶
Evaluates
polyat thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.Uses Horner’s method iteratively.
-
void _nmod_poly_evaluate_nmod_vec_fast_precomp(nn_ptr vs, nn_srcptr poly, slong plen, const nn_ptr *tree, slong len, nmod_t mod)¶
Evaluates (
poly,plen) at thelenvalues given by the precomputed subproduct treetree.
-
void _nmod_poly_evaluate_nmod_vec_fast(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)¶
Evaluates (
coeffs,len) at thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.Uses fast multipoint evaluation, building a temporary subproduct tree.
-
void nmod_poly_evaluate_nmod_vec_fast(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)¶
Evaluates
polyat thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.Uses fast multipoint evaluation, building a temporary subproduct tree.
-
void _nmod_poly_evaluate_nmod_vec(nn_ptr ys, nn_srcptr poly, slong len, nn_srcptr xs, slong n, nmod_t mod)¶
Evaluates (
poly,len) at thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.
-
void nmod_poly_evaluate_nmod_vec(nn_ptr ys, const nmod_poly_t poly, nn_srcptr xs, slong n)¶
Evaluates
polyat thenvalues given in the vectorxs, writing the output values toys. The values inxsshould be reduced modulo the modulus.
Interpolation¶
-
void _nmod_poly_interpolate_nmod_vec(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)¶
Sets
polyto the unique polynomial of length at mostnthat interpolates thengiven evaluation pointsxsand valuesys. If the interpolating polynomial is shorter than lengthn, the leading coefficients are set to zero.The values in
xsandysshould be reduced modulo the modulus, and allxsmust be distinct. Aliasing betweenpolyandxsorysis not allowed.
-
void nmod_poly_interpolate_nmod_vec(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)¶
Sets
polyto the unique polynomial of lengthnthat interpolates thengiven evaluation pointsxsand valuesys. The values inxsandysshould be reduced modulo the modulus, and allxsmust be distinct.
-
void _nmod_poly_interpolation_weights(nn_ptr w, const nn_ptr *tree, slong len, nmod_t mod)¶
Sets
wto the barycentric interpolation weights for fast Lagrange interpolation with respect to a given subproduct tree.
-
void _nmod_poly_interpolate_nmod_vec_fast_precomp(nn_ptr poly, nn_srcptr ys, const nn_ptr *tree, nn_srcptr weights, slong len, nmod_t mod)¶
Performs interpolation using the fast Lagrange interpolation algorithm, generating a temporary subproduct tree.
The function values are given as
ys. The function takes a precomputed subproduct treetreeand barycentric interpolation weightsweightscorresponding to the roots.
-
void _nmod_poly_interpolate_nmod_vec_fast(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)¶
Performs interpolation using the fast Lagrange interpolation algorithm, generating a temporary subproduct tree.
-
void nmod_poly_interpolate_nmod_vec_fast(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)¶
Performs interpolation using the fast Lagrange interpolation algorithm, generating a temporary subproduct tree.
-
void _nmod_poly_interpolate_nmod_vec_newton(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)¶
Forms the interpolating polynomial in the Newton basis using the method of divided differences and then converts it to monomial form.
-
void nmod_poly_interpolate_nmod_vec_newton(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)¶
Forms the interpolating polynomial in the Newton basis using the method of divided differences and then converts it to monomial form.
-
void _nmod_poly_interpolate_nmod_vec_barycentric(nn_ptr poly, nn_srcptr xs, nn_srcptr ys, slong n, nmod_t mod)¶
Forms the interpolating polynomial using a naive implementation of the barycentric form of Lagrange interpolation.
-
void nmod_poly_interpolate_nmod_vec_barycentric(nmod_poly_t poly, nn_srcptr xs, nn_srcptr ys, slong n)¶
Forms the interpolating polynomial using a naive implementation of the barycentric form of Lagrange interpolation.
Composition¶
-
void _nmod_poly_compose_horner(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Composes
poly1of lengthlen1withpoly2of lengthlen2and setsresto the result, i.e. evaluatespoly1atpoly2. The algorithm used is Horner’s algorithm. We require thatreshave space for(len1 - 1)*(len2 - 1) + 1coefficients. It is assumed thatlen1 > 0andlen2 > 0.
-
void nmod_poly_compose_horner(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Composes
poly1withpoly2and setsresto the result, i.e. evaluatespoly1atpoly2. The algorithm used is Horner’s algorithm.
-
void _nmod_poly_compose_divconquer(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Composes
poly1of lengthlen1withpoly2of lengthlen2and setsresto the result, i.e. evaluatespoly1atpoly2. The algorithm used is the divide and conquer algorithm. We require thatreshave space for(len1 - 1)*(len2 - 1) + 1coefficients. It is assumed thatlen1 > 0andlen2 > 0.
-
void nmod_poly_compose_divconquer(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Composes
poly1withpoly2and setsresto the result, i.e. evaluatespoly1atpoly2. The algorithm used is the divide and conquer algorithm.
-
void _nmod_poly_compose(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Composes
poly1of lengthlen1withpoly2of lengthlen2and setsresto the result, i.e. evaluatespoly1atpoly2. We require thatreshave space for(len1 - 1)*(len2 - 1) + 1coefficients. It is assumed thatlen1 > 0andlen2 > 0.
-
void nmod_poly_compose(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2)¶
Composes
poly1withpoly2and setsresto the result, that is, evaluatespoly1atpoly2.
Taylor shift¶
-
void _nmod_poly_taylor_shift_horner(nn_ptr poly, ulong c, slong len, nmod_t mod)¶
Performs the Taylor shift composing
polyby \(x+c\) in-place. Uses an efficient version Horner’s rule.
-
void nmod_poly_taylor_shift_horner(nmod_poly_t g, const nmod_poly_t f, ulong c)¶
Performs the Taylor shift composing
fby \(x+c\).
-
void _nmod_poly_taylor_shift_convolution(nn_ptr poly, ulong c, slong len, nmod_t mod)¶
Performs the Taylor shift composing
polyby \(x+c\) in-place. Writes the composition as a single convolution with cost \(O(M(n))\). We require that the modulus is a prime at least as large as the length.
-
void nmod_poly_taylor_shift_convolution(nmod_poly_t g, const nmod_poly_t f, ulong c)¶
Performs the Taylor shift composing
fby \(x+c\). Writes the composition as a single convolution with cost \(O(M(n))\). We require that the modulus is a prime at least as large as the length.
-
void _nmod_poly_taylor_shift(nn_ptr poly, ulong c, slong len, nmod_t mod)¶
Performs the Taylor shift composing
polyby \(x+c\) in-place. We require that the modulus is a prime.
-
void nmod_poly_taylor_shift(nmod_poly_t g, const nmod_poly_t f, ulong c)¶
Performs the Taylor shift composing
fby \(x+c\). We require that the modulus is a prime.
Modular composition¶
-
void _nmod_poly_compose_mod_horner(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). The output is not allowed to be aliased with any of the inputs.The algorithm used is Horner’s rule.
-
void nmod_poly_compose_mod_horner(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero. The algorithm used is Horner’s rule.
-
void _nmod_poly_compose_mod_brent_kung(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). We also require that the length of \(f\) is less than the length of \(h\). The output is not allowed to be aliased with any of the inputs.The algorithm used is the Brent-Kung matrix algorithm.
-
void nmod_poly_compose_mod_brent_kung(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). The algorithm used is the Brent-Kung matrix algorithm.
-
void _nmod_poly_compose_mod_brent_kung_preinv(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). We also require that the length of \(f\) is less than the length of \(h\). Furthermore, we requirehinvto be the inverse of the reverse ofh. The output is not allowed to be aliased with any of the inputs.The algorithm used is the Brent-Kung matrix algorithm.
-
void nmod_poly_compose_mod_brent_kung_preinv(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h, const nmod_poly_t hinv)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). Furthermore, we requirehinvto be the inverse of the reverse ofh. The algorithm used is the Brent-Kung matrix algorithm.
-
void _nmod_poly_mod_matrix_rows_evaluate(nn_ptr res, const nmod_mat_t A, nn_srcptr h, slong n, nn_srcptr poly3, slong len3, nn_srcptr poly3inv, slong len3inv, nmod_t mod)¶
Set
resto the polynomial \(\sum_{i=0}^{d-1} A_i h^i\) modulopoly3where \(A_i\) denotes the \(i\)-th row of the \(d \times n\) matrixAandresandhhave lengthn. The length ofpoly3must be equal ton + 1.
-
void _nmod_poly_reduce_matrix_mod_poly(nmod_mat_t A, const nmod_mat_t B, const nmod_poly_t f)¶
Sets the ith row of
Ato the reduction of the ith row of \(B\) modulo \(f\) for \(i=1,\ldots,\sqrt{\deg(f)}\). We require \(B\) to be at least a \(\sqrt{\deg(f)}\times \deg(f)\) matrix and \(f\) to be nonzero.
-
void _nmod_poly_precompute_matrix_worker(void *arg_ptr)¶
Worker function version of
_nmod_poly_precompute_matrix. Input/output is stored innmod_poly_matrix_precompute_arg_t.
-
void _nmod_poly_precompute_matrix(nmod_mat_t A, nn_srcptr f, nn_srcptr g, slong leng, nn_srcptr ginv, slong lenginv, nmod_t mod)¶
Sets the ith row of
Ato \(f^i\) modulo \(g\) for \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We requireginvto be the inverse of the reverse ofgand \(g\) to be nonzero.fhas to be reduced modulogand of length one less thanleng(possibly with zero padding).
-
void nmod_poly_precompute_matrix(nmod_mat_t A, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t ginv)¶
Sets the ith row of
Ato \(f^i\) modulo \(g\) for \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We requireginvto be the inverse of the reverse ofg.
-
void _nmod_poly_compose_mod_brent_kung_precomp_preinv_worker(void *arg_ptr)¶
Worker function version of
_nmod_poly_compose_mod_brent_kung_precomp_preinv. Input/output is stored innmod_poly_compose_mod_precomp_preinv_arg_t.
-
void _nmod_poly_compose_mod_brent_kung_precomp_preinv(nn_ptr res, nn_srcptr f, slong lenf, const nmod_mat_t A, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero. We require that the ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a \(\sqrt{\deg(h)}\times \deg(h)\) matrix. We also require that the length of \(f\) is less than the length of \(h\). Furthermore, we requirehinvto be the inverse of the reverse ofh. The output is not allowed to be aliased with any of the inputs.The algorithm used is the Brent-Kung matrix algorithm.
-
void nmod_poly_compose_mod_brent_kung_precomp_preinv(nmod_poly_t res, const nmod_poly_t f, const nmod_mat_t A, const nmod_poly_t h, const nmod_poly_t hinv)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that the ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a \(\sqrt{\deg(h)}\times \deg(h)\) matrix. We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). Furthermore, we requirehinvto be the inverse of the reverse ofh. This version of Brent-Kung modular composition is particularly useful if one has to perform several modular composition of the form \(f(g)\) modulo \(h\) for fixed \(g\) and \(h\).
-
void _nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct *res, const nmod_poly_struct *polys, slong len1, slong l, nn_srcptr g, slong leng, nn_srcptr h, slong lenh, nn_srcptr hinv, slong lenhinv, nmod_t mod)¶
Sets
resto the composition \(f_i(g)\) modulo \(h\) for \(1\leq i \leq l\), where \(f_i\) are the firstlelements ofpolys. We require that \(h\) is nonzero and that the length of \(g\) is less than the length of \(h\). We also require that the length of \(f_i\) is less than the length of \(h\). We requireresto have enough memory allocated to holdlnmod_poly_struct’s. The entries ofresneed to be initialised andlneeds to be less thanlen1Furthermore, we requirehinvto be the inverse of the reverse ofh. The output is not allowed to be aliased with any of the inputs.The algorithm used is the Brent-Kung matrix algorithm.
-
void nmod_poly_compose_mod_brent_kung_vec_preinv(nmod_poly_struct *res, const nmod_poly_struct *polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t h, const nmod_poly_t hinv)¶
Sets
resto the composition \(f_i(g)\) modulo \(h\) for \(1\leq i \leq n\) where \(f_i\) are the firstnelements ofpolys. We requireresto have enough memory allocated to holdnnmod_poly_struct. The entries ofresneed to be initialised andnneeds to be less thanlen1. We require that \(h\) is nonzero and that \(f_i\) and \(g\) have smaller degree than \(h\). Furthermore, we requirehinvto be the inverse of the reverse ofh. No aliasing ofresandpolysis allowed. The algorithm used is the Brent-Kung matrix algorithm.
-
void _nmod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(nmod_poly_struct *res, const nmod_poly_struct *polys, slong lenpolys, slong l, nn_srcptr g, slong glen, nn_srcptr poly, slong len, nn_srcptr polyinv, slong leninv, nmod_t mod, thread_pool_handle *threads, slong num_threads)¶
Multithreaded version of
_nmod_poly_compose_mod_brent_kung_vec_preinv(). Distributing the Horner evaluations acrossflint_get_num_threads()threads.
-
void nmod_poly_compose_mod_brent_kung_vec_preinv_threaded_pool(nmod_poly_struct *res, const nmod_poly_struct *polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv, thread_pool_handle *threads, slong num_threads)¶
Multithreaded version of
nmod_poly_compose_mod_brent_kung_vec_preinv(). Distributing the Horner evaluations acrossflint_get_num_threads()threads.
-
void nmod_poly_compose_mod_brent_kung_vec_preinv_threaded(nmod_poly_struct *res, const nmod_poly_struct *polys, slong len1, slong n, const nmod_poly_t g, const nmod_poly_t poly, const nmod_poly_t polyinv)¶
Multithreaded version of
nmod_poly_compose_mod_brent_kung_vec_preinv(). Distributing the Horner evaluations acrossflint_get_num_threads()threads.
-
void _nmod_poly_compose_mod(nn_ptr res, nn_srcptr f, slong lenf, nn_srcptr g, nn_srcptr h, slong lenh, nmod_t mod)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). The output is not allowed to be aliased with any of the inputs.
-
void nmod_poly_compose_mod(nmod_poly_t res, const nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)¶
Sets
resto the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero.
Greatest common divisor¶
-
slong _nmod_poly_gcd_euclidean(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes the GCD of \(A\) of length
lenAand \(B\) of lengthlenB, wherelenA >= lenB > 0. The length of the GCD \(G\) is returned by the function. No attempt is made to make the GCD monic. It is required that \(G\) have space forlenBcoefficients.
-
void nmod_poly_gcd_euclidean(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
-
slong _nmod_poly_hgcd(nn_ptr *M, slong *lenM, nn_ptr A, slong *lenA, nn_ptr B, slong *lenB, nn_srcptr a, slong lena, nn_srcptr b, slong lenb, nmod_t mod)¶
Computes the HGCD of \(a\) and \(b\), that is, a matrix \(M\), a sign \(\sigma\) and two polynomials \(A\) and \(B\) such that
\[(A,B)^t = M^{-1} (a,b)^t, \sigma = \det(M),\]and \(A\) and \(B\) are consecutive remainders in the Euclidean remainder sequence for the division of \(a\) by \(b\) satisfying deg(A) ge frac{deg(a)}{2} > deg(B). Furthermore, \(M\) will be the product of
[[q 1][1 0]]for the quotientsqgenerated by such a remainder sequence. Assumes that \(\operatorname{len}(a) > \operatorname{len}(b) > 0\), i.e. \(\deg(a) > `deg(b) > 1\).Assumes that \(A\) and \(B\) have space of size at least \(\operatorname{len}(a)\) and \(\operatorname{len}(b)\), respectively. On exit,
*lenAand*lenBwill contain the correct lengths of \(A\) and \(B\).Assumes that
M[0],M[1],M[2], andM[3]each point to a vector of size at least \(\operatorname{len}(a)\).
-
slong _nmod_poly_gcd_hgcd(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes the monic GCD of \(A\) and \(B\), assuming that \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\).
Assumes that \(G\) has space for \(\operatorname{len}(B)\) coefficients and returns the length of \(G\) on output.
-
void nmod_poly_gcd_hgcd(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the monic GCD of \(A\) and \(B\) using the HGCD algorithm.
As a special case, the GCD of two zero polynomials is defined to be the zero polynomial.
The time complexity of the algorithm is \(\mathcal{O}(n \log^2 n)\). For further details, see [ThullYap1990].
-
slong _nmod_poly_gcd(nn_ptr G, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes the GCD of \(A\) of length
lenAand \(B\) of lengthlenB, wherelenA >= lenB > 0. The length of the GCD \(G\) is returned by the function. No attempt is made to make the GCD monic. It is required that \(G\) have space forlenBcoefficients.
-
void nmod_poly_gcd(nmod_poly_t G, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
-
slong _nmod_poly_xgcd_euclidean(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)¶
Computes the GCD of \(A\) and \(B\) together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).
Assumes that \(\operatorname{len}(A) \geq \operatorname{len}(B) \geq 1\) and \((\operatorname{len}(A),\operatorname{len}(B)) \neq (1,1)\).
No attempt is made to make the GCD monic.
Requires that \(G\) have space for \(\operatorname{len}(B)\) coefficients. Writes \(\operatorname{len}(B)-1\) and \(\operatorname{len}(A)-1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\operatorname{len}(S) \leq \max(\operatorname{len}(B) - \operatorname{len}(G), 1)\) and \(\operatorname{len}(T) \leq \max(\operatorname{len}(A) - \operatorname{len}(G), 1)\).
No aliasing of input and output operands is permitted.
-
void nmod_poly_xgcd_euclidean(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
Polynomials
SandTare computed such thatS*A + T*B = G. The length ofSwill be at mostlenBand the length ofTwill be at mostlenA.
-
slong _nmod_poly_xgcd_hgcd(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong A_len, nn_srcptr B, slong B_len, nmod_t mod)¶
Computes the GCD of \(A\) and \(B\), where \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\), together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).
No attempt is made to make the GCD monic.
Requires that \(G\) have space for \(\operatorname{len}(B)\) coefficients. Writes \(\operatorname{len}(B) - 1\) and \(\operatorname{len}(A) - 1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\operatorname{len}(S) \leq \operatorname{len}(B) - \operatorname{len}(G)\) and \(\operatorname{len}(T) \leq \operatorname{len}(A) - \operatorname{len}(G)\).
Both \(S\) and \(T\) must have space for at least \(2\) coefficients.
No aliasing of input and output operands is permitted.
-
void nmod_poly_xgcd_hgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
Polynomials
SandTare computed such thatS*A + T*B = G. The length ofSwill be at mostlenBand the length ofTwill be at mostlenA.
-
slong _nmod_poly_xgcd(nn_ptr G, nn_ptr S, nn_ptr T, nn_srcptr A, slong lenA, nn_srcptr B, slong lenB, nmod_t mod)¶
Computes the GCD of \(A\) and \(B\), where \(\operatorname{len}(A) \geq \operatorname{len}(B) > 0\), together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).
No attempt is made to make the GCD monic.
Requires that \(G\) have space for \(\operatorname{len}(B)\) coefficients. Writes \(\operatorname{len}(B) - 1\) and \(\operatorname{len}(A) - 1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\operatorname{len}(S) \leq \operatorname{len}(B) - \operatorname{len}(G)\) and \(\operatorname{len}(T) \leq \operatorname{len}(A) - \operatorname{len}(G)\).
No aliasing of input and output operands is permitted.
-
void nmod_poly_xgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)¶
Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.
The polynomials
SandTare set such thatS*A + T*B = G. The length ofSwill be at mostlenBand the length ofTwill be at mostlenA.
-
ulong _nmod_poly_resultant_euclidean(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Returns the resultant of
(poly1, len1)and(poly2, len2)using the Euclidean algorithm.Assumes that
len1 >= len2 > 0.Assumes that the modulus is prime.
-
ulong nmod_poly_resultant_euclidean(const nmod_poly_t f, const nmod_poly_t g)¶
Computes the resultant of \(f\) and \(g\) using the Euclidean algorithm.
For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be
\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.
-
ulong _nmod_poly_resultant_hgcd(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Returns the resultant of
(poly1, len1)and(poly2, len2)using the half-gcd algorithm.This algorithm computes the half-gcd as per
_nmod_poly_gcd_hgcd()but additionally updates the resultant every time a division occurs. The half-gcd algorithm computes the GCD recursively. Given inputs \(a\) and \(b\) it letsm = len(a)/2and (recursively) performs all quotients in the Euclidean algorithm which do not require the low \(m\) coefficients of \(a\) and \(b\).This performs quotients in exactly the same order as the ordinary Euclidean algorithm except that the low \(m\) coefficients of the polynomials in the remainder sequence are not computed. A correction step after hgcd has been called computes these low \(m\) coefficients (by matrix multiplication by a transformation matrix also computed by hgcd).
This means that from the point of view of the resultant, all but the last quotient performed by a recursive call to hgcd is an ordinary quotient as per the usual Euclidean algorithm. However, the final quotient may give a remainder of less than \(m + 1\) coefficients, which won’t be corrected until the hgcd correction step is performed afterwards.
To compute the adjustments to the resultant coming from this corrected quotient, we save the relevant information in an
nmod_poly_res_tstruct at the time the quotient is performed so that when the correction step is performed later, the adjustments to the resultant can be computed at that time also.The only time an adjustment to the resultant is not required after a call to hgcd is if hgcd does nothing (the remainder may already have had less than \(m + 1\) coefficients when hgcd was called).
Assumes that
len1 >= len2 > 0.Assumes that the modulus is prime.
-
ulong nmod_poly_resultant_hgcd(const nmod_poly_t f, const nmod_poly_t g)¶
Computes the resultant of \(f\) and \(g\) using the half-gcd algorithm.
For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be
\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.
-
ulong _nmod_poly_resultant(nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, nmod_t mod)¶
Returns the resultant of
(poly1, len1)and(poly2, len2).Assumes that
len1 >= len2 > 0.Assumes that the modulus is prime.
-
ulong nmod_poly_resultant(const nmod_poly_t f, const nmod_poly_t g)¶
Computes the resultant of \(f\) and \(g\).
For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be
\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.
-
slong _nmod_poly_gcdinv(ulong *G, ulong *S, const ulong *A, slong lenA, const ulong *B, slong lenB, const nmod_t mod)¶
Computes
(G, lenA),(S, lenB-1)such that \(G \cong S A \pmod{B}\), returning the actual length of \(G\).Assumes that \(0 < \operatorname{len}(A) < \operatorname{len}(B)\).
-
void nmod_poly_gcdinv(nmod_poly_t G, nmod_poly_t S, const nmod_poly_t A, const nmod_poly_t B)¶
Computes polynomials \(G\) and \(S\), both reduced modulo \(B\), such that \(G \cong S A \pmod{B}\), where \(B\) is assumed to have \(\operatorname{len}(B) \geq 2\).
In the case that \(A = 0 \pmod{B}\), returns \(G = S = 0\).
-
int _nmod_poly_invmod(ulong *A, const ulong *B, slong lenB, const ulong *P, slong lenP, const nmod_t mod)¶
Attempts to set
(A, lenP-1)to the inverse of(B, lenB)modulo the polynomial(P, lenP). Returns \(1\) if(B, lenB)is invertible and \(0\) otherwise.Assumes that \(0 < \operatorname{len}(B) < \operatorname{len}(P)\), and hence also \(\operatorname{len}(P) \geq 2\), but supports zero-padding in
(B, lenB).Does not support aliasing.
Assumes that \(mod\) is a prime number.
-
int nmod_poly_invmod(nmod_poly_t A, const nmod_poly_t B, const nmod_poly_t P)¶
Attempts to set \(A\) to the inverse of \(B\) modulo \(P\) in the polynomial ring \((\mathbf{Z}/p\mathbf{Z})[X]\), where we assume that \(p\) is a prime number.
If \(\operatorname{len}(P) < 2\), raises an exception.
If the greatest common divisor of \(B\) and \(P\) is \(1\), returns \(1\) and sets \(A\) to the inverse of \(B\). Otherwise, returns \(0\) and the value of \(A\) on exit is undefined.
Discriminant¶
-
ulong _nmod_poly_discriminant(nn_srcptr poly, slong len, nmod_t mod)¶
Return the discriminant of
(poly, len). Assumeslen > 1.
-
ulong nmod_poly_discriminant(const nmod_poly_t f)¶
Return the discriminant of \(f\). We normalise the discriminant so that \(\operatorname{disc}(f) = (-1)^{n(n-1)/2} \operatorname{res}(f, f') / \operatorname{lc}(f)^{n - m - 2}\), where
n = len(f)andm = len(f'). Thus \(\operatorname{disc}(f) = \operatorname{lc}(f)^{2n - 2} \prod_{i < j} (r_i - r_j)^2\), where \(\operatorname{lc}(f)\) is the leading coefficient of \(f\) and \(r_i\) are the roots of \(f\).
Power series composition¶
-
void _nmod_poly_compose_series(nn_ptr res, nn_srcptr poly1, slong len1, nn_srcptr poly2, slong len2, slong n, nmod_t mod)¶
Sets
resto the composition ofpoly1andpoly2modulo \(x^n\), where the constant term ofpoly2is required to be zero.Assumes that
len1, len2, n > 0, thatlen1, len2 <= n, and that(len1-1) * (len2-1) + 1 <= n, and thatreshas space forncoefficients. Does not support aliasing between any of the inputs and the output.Wraps
_gr_poly_compose_series()which chooses automatically between various algorithms.
-
void nmod_poly_compose_series(nmod_poly_t res, const nmod_poly_t poly1, const nmod_poly_t poly2, slong n)¶
Sets
resto the composition ofpoly1andpoly2modulo \(x^n\), where the constant term ofpoly2is required to be zero.
Power series reversion¶
-
void _nmod_poly_revert_series(nn_ptr Qinv, nn_srcptr Q, slong Qlen, slong n, nmod_t mod)¶
-
void nmod_poly_revert_series(nmod_poly_t Qinv, const nmod_poly_t Q, slong n)¶
Sets
Qinvto the compositional inverse or reversion ofQas a power series, i.e. computes \(Q^{-1}\) such that \(Q(Q^{-1}(x)) = Q^{-1}(Q(x)) = x \bmod x^n\).It is required that \(Q_0 = 0\) and that \(Q_1\) as well as the integers \(1, 2, \ldots, n-1\) are invertible modulo the modulus.
Wraps
_gr_poly_revert_series()which chooses automatically between various algorithms.
Square roots¶
The series expansions for \(\sqrt{h}\) and \(1/\sqrt{h}\) are defined
by means of the generalised binomial theorem
h^r = (1+y)^r =
\sum_{k=0}^{\infty} {r \choose k} y^k.
It is assumed that \(h\) has constant term \(1\) and that the coefficients
\(2^{-k}\) exist in the coefficient ring (i.e. \(2\) must be invertible).
-
void _nmod_poly_invsqrt_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set the first \(n\) terms of \(g\) to the series expansion of \(1/\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant term 1. Aliasing is not permitted.
-
void nmod_poly_invsqrt_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g\) to the series expansion of \(1/\sqrt{h}\) to order \(O(x^n)\). It is assumed that \(h\) has constant term 1.
-
void _nmod_poly_sqrt_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set the first \(n\) terms of \(g\) to the series expansion of \(\sqrt{h}\). It is assumed that \(n > 0\), that \(h\) has constant term 1. Aliasing is not permitted.
-
void nmod_poly_sqrt_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g\) to the series expansion of \(\sqrt{h}\) to order \(O(x^n)\). It is assumed that \(h\) has constant term 1.
-
int _nmod_poly_sqrt(nn_ptr s, nn_srcptr p, slong n, nmod_t mod)¶
If
(p, n)is a perfect square, sets(s, n / 2 + 1)to a square root of \(p\) and returns 1. Otherwise returns 0.
-
int nmod_poly_sqrt(nmod_poly_t s, const nmod_poly_t p)¶
If \(p\) is a perfect square, sets \(s\) to a square root of \(p\) and returns 1. Otherwise returns 0.
Power sums¶
-
void _nmod_poly_power_sums_naive(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)¶
Compute the (truncated) power sums series of the polynomial
(poly,len)up to length \(n\) using Newton identities.
-
void nmod_poly_power_sums_naive(nmod_poly_t res, const nmod_poly_t poly, slong n)¶
Compute the (truncated) power sum series of the polynomial
polyup to length \(n\) using Newton identities.
-
void _nmod_poly_power_sums_schoenhage(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)¶
Compute the (truncated) power sums series of the polynomial
(poly,len)up to length \(n\) using a series expansion (a formula due to Schoenhage).
-
void nmod_poly_power_sums_schoenhage(nmod_poly_t res, const nmod_poly_t poly, slong n)¶
Compute the (truncated) power sums series of the polynomial
polyup to length \(n\) using a series expansion (a formula due to Schoenhage).
-
void _nmod_poly_power_sums(nn_ptr res, nn_srcptr poly, slong len, slong n, nmod_t mod)¶
Compute the (truncated) power sums series of the polynomial
(poly,len)up to length \(n\).
-
void nmod_poly_power_sums(nmod_poly_t res, const nmod_poly_t poly, slong n)¶
Compute the (truncated) power sums series of the polynomial
polyup to length \(n\).
-
void _nmod_poly_power_sums_to_poly_naive(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)¶
Compute the (monic) polynomial given by its power sums series
(poly,len)using Newton identities.
-
void nmod_poly_power_sums_to_poly_naive(nmod_poly_t res, const nmod_poly_t Q)¶
Compute the (monic) polynomial given by its power sums series
Qusing Newton identities.
-
void _nmod_poly_power_sums_to_poly_schoenhage(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)¶
Compute the (monic) polynomial given by its power sums series
(poly,len)using series expansion (a formula due to Schoenhage).
-
void nmod_poly_power_sums_to_poly_schoenhage(nmod_poly_t res, const nmod_poly_t Q)¶
Compute the (monic) polynomial given by its power sums series
Qusing series expansion (a formula due to Schoenhage).
-
void _nmod_poly_power_sums_to_poly(nn_ptr res, nn_srcptr poly, slong len, nmod_t mod)¶
Compute the (monic) polynomial given by its power sums series
(poly,len).
-
void nmod_poly_power_sums_to_poly(nmod_poly_t res, const nmod_poly_t Q)¶
Compute the (monic) polynomial given by its power sums series
Q.
Transcendental functions¶
The elementary transcendental functions of a formal power series \(h\) are defined as
\(\exp(h(x)) = \sum_{k=0}^{\infty} \frac{(h(x))^k}{k!}\)
\(\log(h(x)) = \int_0^x \frac{h'(t)}{h(t)} dt\)
\(\operatorname{atan}(h(x)) = \int_0^x\frac{h'(t)}{1+(h(t))^2} dt\)
\(\operatorname{atanh}(h(x)) = \int_0^x\frac{h'(t)}{1-(h(t))^2} dt\)
\(\operatorname{asin}(h(x)) = \int_0^x\frac{h'(t)}{\sqrt{1-(h(t))^2}} dt\)
\(\operatorname{asinh}(h(x)) = \int_0^x\frac{h'(t)}{\sqrt{1+(h(t))^2}} dt\)
The functions sin, cos, tan, etc. are defined using standard inverse or functional relations. The logarithm function assumes that \(h\) has constant term \(1\). All other functions assume that \(h\) has constant term \(0\). All functions assume that the coefficient \(1/k\) or \(1/k!\) exists for all indices \(k\). When computing to order \(O(x^n)\), the modulus \(p\) must therefore be a prime satisfying \(p \ge n\). Further, we always require that \(p > 2\) in order to be able to multiply by \(1/2\) for internal purposes. If the input does not satisfy all these conditions, results are undefined. Except where otherwise noted, functions are implemented with optimal (up to constants) complexity \(O(M(n))\), where \(M(n)\) is the cost of polynomial multiplication.
-
void _nmod_poly_log_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \log(h) + O(x^n)\). Assumes \(n > 0\) and
hlen > 0. Aliasing of \(g\) and \(h\) is allowed.
-
void nmod_poly_log_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \log(h) + O(x^n)\). The case \(h = 1+cx^r\) is automatically detected and handled efficiently.
-
void _nmod_poly_exp_series(nn_ptr f, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(f = \exp(h) + O(x^n)\) where
his a polynomial. Assume \(n > 0\). Aliasing of \(g\) and \(h\) is not allowed.Uses Newton iteration (an improved version of the algorithm in [HanZim2004]). For small \(n\), falls back to the basecase algorithm.
-
void _nmod_poly_exp_expinv_series(nn_ptr f, nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(f = \exp(h) + O(x^n)\) and \(g = \exp(-h) + O(x^n)\), more efficiently for large \(n\) than performing a separate inversion to obtain \(g\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing is not allowed.
Uses Newton iteration (the version given in [HanZim2004]). For small \(n\), falls back to the basecase algorithm.
-
void nmod_poly_exp_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \exp(h) + O(x^n)\). The case \(h = cx^r\) is automatically detected and handled efficiently. Otherwise this function automatically uses the basecase algorithm for small \(n\) and Newton iteration otherwise.
-
void _nmod_poly_atan_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \operatorname{atan}(h) + O(x^n)\). Assumes \(n > 0\). Aliasing of \(g\) and \(h\) is allowed.
-
void nmod_poly_atan_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{atan}(h) + O(x^n)\).
-
void _nmod_poly_atanh_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \operatorname{atanh}(h) + O(x^n)\). Assumes \(n > 0\). Aliasing of \(g\) and \(h\) is allowed.
-
void nmod_poly_atanh_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{atanh}(h) + O(x^n)\).
-
void _nmod_poly_asin_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \operatorname{asin}(h) + O(x^n)\). Assumes \(n > 0\). Aliasing of \(g\) and \(h\) is allowed.
-
void nmod_poly_asin_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{asin}(h) + O(x^n)\).
-
void _nmod_poly_asinh_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \operatorname{asinh}(h) + O(x^n)\). Assumes \(n > 0\). Aliasing of \(g\) and \(h\) is allowed.
-
void nmod_poly_asinh_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{asinh}(h) + O(x^n)\).
-
void _nmod_poly_sin_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)¶
Set \(g = \operatorname{sin}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing of \(g\) and \(h\) is allowed. The value is computed using the identity \(\sin(x) = 2 \tan(x/2)) / (1 + \tan^2(x/2)).\)
-
void nmod_poly_sin_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{sin}(h) + O(x^n)\).
-
void _nmod_poly_cos_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)¶
Set \(g = \operatorname{cos}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing of \(g\) and \(h\) is allowed. The value is computed using the identity \(\cos(x) = (1-\tan^2(x/2)) / (1 + \tan^2(x/2)).\)
-
void nmod_poly_cos_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{cos}(h) + O(x^n)\).
-
void _nmod_poly_tan_series(nn_ptr g, nn_srcptr h, slong hlen, slong n, nmod_t mod)¶
Set \(g = \operatorname{tan}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing of \(g\) and \(h\) is not allowed. Uses Newton iteration to invert the atan function.
-
void nmod_poly_tan_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{tan}(h) + O(x^n)\).
-
void _nmod_poly_sinh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)¶
Set \(g = \operatorname{sinh}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing of \(g\) and \(h\) is not allowed. Uses the identity \(\sinh(x) = (e^x - e^{-x})/2\).
-
void nmod_poly_sinh_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{sinh}(h) + O(x^n)\).
-
void _nmod_poly_cosh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)¶
Set \(g = \operatorname{cos}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Aliasing of \(g\) and \(h\) is not allowed. Uses the identity \(\cosh(x) = (e^x + e^{-x})/2\).
-
void nmod_poly_cosh_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{cosh}(h) + O(x^n)\).
-
void _nmod_poly_tanh_series(nn_ptr g, nn_srcptr h, slong n, nmod_t mod)¶
Set \(g = \operatorname{tanh}(h) + O(x^n)\). Assumes \(n > 0\) and that \(h\) is zero-padded as necessary to length \(n\). Uses the identity \(\tanh(x) = (e^{2x}-1)/(e^{2x}+1)\).
-
void nmod_poly_tanh_series(nmod_poly_t g, const nmod_poly_t h, slong n)¶
Set \(g = \operatorname{tanh}(h) + O(x^n)\).
Special polynomials¶
-
int _nmod_poly_conway(nn_ptr op, ulong prime, slong deg)¶
Sets
opto the coefficients to the Conway polynomial \(C_{p, d}\), where \(p\) isprimeand \(d\) isdeg. This is done by checking against Frank Lübeck’s database [Lüb2004], which has been compressed in FLINT. Returns \(1\) in case of success and returns \(0\) in case of failure.
-
ulong _nmod_poly_conway_rand(slong *degree, flint_rand_t state, int type)¶
Returns a pseudorandom prime and sets
degreethat when put into_nmod_poly_conway()will always succeed.Here,
typecan be the following values:0for which there is a bijection between the image of this function and the database of Conway polynomials,1returns a random prime found in the database and setsdegreeto some degree less than \(15\) along with some prime found in the database,2returns a random prime less than \(2^{10}\) and setsdegreeto some random degree found in the database,3returns a random prime less than \(2^{10}\) and setsdegreeto some random degree less than \(15\).
Products¶
-
void _nmod_poly_product_roots_nmod_vec(nn_ptr poly, nn_srcptr xs, slong n, nmod_t mod)¶
Sets
(poly, n + 1)to the monic polynomial which is the product of \((x - x_0)(x - x_1) \cdots (x - x_{n-1})\), the roots \(x_i\) being given byxs.Aliasing of the input and output is not allowed.
-
void nmod_poly_product_roots_nmod_vec(nmod_poly_t poly, nn_srcptr xs, slong n)¶
Sets
polyto the monic polynomial which is the product of \((x - x_0)(x - x_1) \cdots (x - x_{n-1})\), the roots \(x_i\) being given byxs.
-
int nmod_poly_find_distinct_nonzero_roots(ulong *roots, const nmod_poly_t A)¶
If
Ahas \(\deg(A)\) distinct nonzero roots in \(\mathbb{F}_p\), write these roots out toroots[0]toroots[deg(A) - 1]and return1. Otherwise, return0. It is assumed thatAis nonzero and that the modulus ofAis prime. This function uses Rabin’s probabilistic method via gcd’s with \((x + \delta)^{\frac{p-1}{2}} - 1\).
Subproduct trees¶
-
nn_ptr *_nmod_poly_tree_alloc(slong len)¶
Allocates space for a subproduct tree of the given length, having linear factors at the lowest level.
Entry \(i\) in the tree is a pointer to a single array of limbs, capable of storing \(\lfloor n / 2^i \rfloor\) subproducts of degree \(2^i\) adjacently, plus a trailing entry if \(n / 2^i\) is not an integer.
For example, a tree of length 7 built from monic linear factors has the following structure, where spaces have been inserted for illustrative purposes:
X1 X1 X1 X1 X1 X1 X1 XX1 XX1 XX1 X1 XXXX1 XX1 X1 XXXXXXX1
Inflation and deflation¶
-
void nmod_poly_inflate(nmod_poly_t result, const nmod_poly_t input, slong inflation)¶
Sets
resultto the inflated polynomial \(p(x^n)\) where \(p\) is given byinputand \(n\) is given bydeflation.
-
void nmod_poly_deflate(nmod_poly_t result, const nmod_poly_t input, slong deflation)¶
Sets
resultto the deflated polynomial \(p(x^{1/n})\) where \(p\) is given byinputand \(n\) is given bydeflation. Requires \(n > 0\).
-
slong nmod_poly_deflation(const nmod_poly_t input)¶
Returns the largest integer by which
inputcan be deflated. As special cases, returns 0 ifinputis the zero polynomial and 1 ofinputis a constant polynomial.
Chinese Remaindering¶
In all of these functions the moduli (mod.n) of all of the
nmod_poly’s involved is assumed to match and be prime.
-
void nmod_poly_multi_crt_init(nmod_poly_multi_crt_t CRT)¶
Initialize
CRTfor Chinese remaindering.
-
int nmod_poly_multi_crt_precompute(nmod_poly_multi_crt_t CRT, const nmod_poly_struct *moduli, slong len)¶
-
int nmod_poly_multi_crt_precompute_p(nmod_poly_multi_crt_t CRT, const nmod_poly_struct *const *moduli, slong len)¶
Configure
CRTfor repeated Chinese remaindering ofmoduli. The number of moduli,len, should be positive. A return of0indicates that the compilation failed and future calls tonmod_poly_multi_crt_precomp()will leave the output undefined. A return of1indicates that the compilation was successful, which occurs if and only if either (1)len == 1andmodulus + 0is nonzero, or (2) all of the moduli have positive degree and are pairwise relatively prime.
-
void nmod_poly_multi_crt_precomp(nmod_poly_t output, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct *values)¶
-
void nmod_poly_multi_crt_precomp_p(nmod_poly_t output, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct *const *values)¶
Set
outputto the polynomial of lowest possible degree that is congruent tovalues + imodulo themoduli + iinnmod_poly_multi_crt_precompute(). The inputsvalues + 0, ..., values + len - 1wherelenwas used innmod_poly_multi_crt_precompute()are expected to be valid and have modulus matching the modulus of the moduli used innmod_poly_multi_crt_precompute().
-
int nmod_poly_multi_crt(nmod_poly_t output, const nmod_poly_struct *moduli, const nmod_poly_struct *values, slong len)¶
Perform the same operation as
nmod_poly_multi_crt_precomp()while internally constructing and destroying the precomputed data. All of the remarks innmod_poly_multi_crt_precompute()apply.
-
void nmod_poly_multi_crt_clear(nmod_poly_multi_crt_t CRT)¶
Free all space used by
CRT.
-
slong _nmod_poly_multi_crt_local_size(const nmod_poly_multi_crt_t CRT)¶
Return the required length of the output for
_nmod_poly_multi_crt_run().
-
void _nmod_poly_multi_crt_run(nmod_poly_struct *outputs, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct *inputs)¶
-
void _nmod_poly_multi_crt_run_p(nmod_poly_struct *outputs, const nmod_poly_multi_crt_t CRT, const nmod_poly_struct *const *inputs)¶
Perform the same operation as
nmod_poly_multi_crt_precomp()using supplied temporary space. The actual output is placed inoutputs + 0, andoutputsshould contain space for all temporaries and should be at least as long as_nmod_poly_multi_crt_local_size(CRT). Of course the moduli of these temporaries should match the modulus of the inputs.
Berlekamp-Massey Algorithm¶
The nmod_berlekamp_massey_t manages an unlimited stream of points \(a_1, a_2, \dots.\) At any point in time, after, say, \(n\) points have been added, a call to
nmod_berlekamp_massey_reduce()will calculate the polynomials \(U\), \(V\) and \(R\) in the extended euclidean remainder sequence with\[U x^n + V (a_1 x^{n-1} + a_{n-1} x + \cdots + a_n) = R, \quad \deg(U) < \deg(V) \le n/2, \quad \deg(R) < n/2.\]The polynomials \(V\) and \(R\) may be obtained with
nmod_berlekamp_massey_V_poly()andnmod_berlekamp_massey_R_poly(). This class differs fromfmpz_mod_poly_minpoly()in the following respect. Let \(v_i\) denote the coefficient of \(x^i\) in \(V\).fmpz_mod_poly_minpoly()will return a polynomial \(V\) of lowest degree that annihilates the whole sequence \(a_1, \dots, a_n\) as\[\sum_{i} v_i a_{j + i} = 0, \quad 1 \le j \le n - \deg(V).\]The cost is that a polynomial of degree \(n-1\) might be returned and the return is not generally uniquely determined by the input sequence. For the nmod_berlekamp_massey_t we have
\[\sum_{i,j} v_i a_{j+i} x^{-j} = -U + \frac{R}{x^n}\text{,}\]and it can be seen that \(\sum_{i} v_i a_{j + i}\) is zero for \(1 \le j < n - \deg(R)\). Thus whether or not \(V\) has annihilated the whole sequence may be checked by comparing the degrees of \(V\) and \(R\).
-
void nmod_berlekamp_massey_init(nmod_berlekamp_massey_t B, ulong p)¶
Initialize
Bin characteristicpwith an empty stream.
-
void nmod_berlekamp_massey_clear(nmod_berlekamp_massey_t B)¶
Free any space used by
B.
-
void nmod_berlekamp_massey_start_over(nmod_berlekamp_massey_t B)¶
Empty the stream of points in
B.
-
void nmod_berlekamp_massey_set_prime(nmod_berlekamp_massey_t B, ulong p)¶
Set the characteristic of the field and empty the stream of points in
B.
-
void nmod_berlekamp_massey_add_points(nmod_berlekamp_massey_t B, const ulong *a, slong count)¶
-
void nmod_berlekamp_massey_add_zeros(nmod_berlekamp_massey_t B, slong count)¶
-
void nmod_berlekamp_massey_add_point(nmod_berlekamp_massey_t B, ulong a)¶
Add point(s) to the stream processed by
B. The addition of any number of points will not update the \(V\) and \(R\) polynomial.
-
int nmod_berlekamp_massey_reduce(nmod_berlekamp_massey_t B)¶
Ensure that the polynomials \(V\) and \(R\) are up to date. The return value is
1if this function changed \(V\) and0otherwise. For example, if this function is called twice in a row without adding any points in between, the return of the second call should be0. As another example, suppose the object is emptied, the points \(1, 1, 2, 3\) are added, then reduce is called. This reduce should return1with \(\deg(R) < \deg(V) = 2\) because the Fibonacci sequence has been recognized. The further addition of the two points \(5, 8\) and a reduce will result in a return value of0.
-
slong nmod_berlekamp_massey_point_count(const nmod_berlekamp_massey_t B)¶
Return the number of points stored in
B.
-
const ulong *nmod_berlekamp_massey_points(const nmod_berlekamp_massey_t B)¶
Return a pointer to the array of points stored in
B. This may beNULLifnmod_berlekamp_massey_point_count()returns0.
-
const nmod_poly_struct *nmod_berlekamp_massey_V_poly(const nmod_berlekamp_massey_t B)¶
Return the polynomial \(V\) in
B.
-
const nmod_poly_struct *nmod_berlekamp_massey_R_poly(const nmod_berlekamp_massey_t B)¶
Return the polynomial \(R\) in
B.