FLINT 1.5: Fast Library for Number Theory

William B. Hart and David Harvey

September 23, 2009

Contents

1. Introduction 1
2. Building and using FLINT 1
3. Test code 2
4. Reporting bugs 2
5. Example programs 2
6. FLINT macros 3
7. The fmpz_poly module 3
 7.1 Simple example 3
 7.2 Definition of the fmpz_poly_t polynomial type 4
 7.3 Initialisation and memory management 4
 7.4 Setting/retrieving coefficients 5
 7.5 String conversions and I/O 8
 7.6 Polynomial parameters (length, degree, max limbs, etc.) 9
 7.7 Assignment and basic manipulation 10
 7.8 Conversions 11
 7.9 Chinese remaindering 11
 7.10 Comparison 12
 7.11 Shifting 12
 7.12 Norms 12
 7.13 Addition/subtraction 12
 7.14 Scalar multiplication and division 13
 7.15 Polynomial multiplication 14
 7.16 Polynomial division 15
7.17 Pseudo division ... 16
7.18 Powering .. 17
7.19 Gaussian content .. 17
7.20 Greatest common divisor and resultant 18
7.21 Modular arithmetic ... 18
7.22 Derivative .. 18
7.23 Evaluation ... 19
7.24 Polynomial composition 19
7.25 Polynomial signature 19
7.26 Squarefree ... 19
7.27 Subpolynomials .. 20

8 The fmpz module ... 20
8.1 A simple example ... 21
8.2 Memory management ... 21
8.3 String operations .. 21
8.4 fmpz properties ... 22
8.5 Assignment ... 22
8.6 Comparison .. 23
8.7 Conversions .. 23
8.8 Addition/subtraction ... 23
8.9 Multiplication ... 24
8.10 Division .. 25
8.11 Modular arithmetic ... 25
8.12 Powering .. 26
8.13 Root extraction ... 26
8.14 Number theoretical ... 26
8.15 Chinese remaindering 26
8.16 Montgomery format .. 27

9 The Fmpz module ... 29
9.1 Simple example ... 29
9.2 Memory Management 30
9.3 Random generation ... 30
9.4 Assignment and basic manipulation 30
9.5 Comparison .. 32
9.6 Properties of integers 32
9.7 Input/output ... 33
9.8 Addition/subtraction .. 33
9.9 Multiplication ... 33
9.10 Division and remainder 34
9.11 Powering .. 35
1 Introduction

FLINT is a C library of functions for doing number theory. It is highly optimised and can be compiled on numerous platforms. FLINT also has the aim of providing support for multicore and multiprocessor computer architectures, though we do not yet provide this facility.

FLINT is currently maintained by William Hart of Warwick University in the UK.

As of version 1.1.0 FLINT supports 32 and 64 bit processors including x86, PPC, Alpha and Itanium processors, though in theory it compiles on any machine with GCC version 3.4 or later and with GMP version 4.2.1 or MPIR 0.9.0 or later.

FLINT is supplied as a set of modules, fmpz, fmpz_poly, etc., each of which can be linked to a C program making use of their functionality.

All of the functions in FLINT have a corresponding test function provided in an appropriately named test file, e.g: all the functions in the file fmpz_poly.c have test functions in the file fmpz_poly-test.c.
2 Building and using FLINT

The easiest way to use FLINT is to build a shared library. Simply download the FLINT tarball and untar it on your system.

FLINT requires GMP version 4.2.1 or later or MPIR version 0.9.0 or later (in GMP compatibility mode). Set the environment variables `FLINT_GMP_LIB_DIR` and `FLINT_GMP_INCLUDE_DIR` to point to your GMP or MPIR library and include directories respectively. Alternatively you can set default values for these environment variables in the `flint_env` file.

The `NTL-interface` module of FLINT requires NTL version 5.4.1 or later. However NTL is not required to build FLINT if this interface module is not required. To build with NTL set the environment variables `FLINT_NTL_LIB_DIR` and `FLINT_NTL_INCLUDE_DIR` to point to your NTL library and include directories respectively.

Once the environment variables are set or defaults are set in `flint_env` simply type:

```
source flint_env
```

in the main directory of the FLINT directory tree.

Finally type:

```
make library
```

Move the library file `libflint.so`, `libflint.dll` or `libflint.dylib` (depending on your platform) into your library path and move all the `.h` files in the main directory of FLINT into your include path.

Now to use FLINT, simply include the appropriate header files for the FLINT modules you wish to use in your C program. Then compile your program, linking against the FLINT library and GMP/MPIR with the options `-lflint -lgmp`.

If you are using the `NTL-interface`, you will also need to link against NTL with the `-lntl` linker option.

3 Test code

Each module of FLINT has an extensive associated test module. We strongly recommend running the test programs before relying on results from FLINT on your system.

To make and run the test programs, simply type:

```
make check
```

in the main FLINT directory.

To test the `NTL-interface` module simply:

```
make NTL-interface-test
./NTL-interface-test
```

4 Reporting bugs

The maintainer wishes to be made aware of any and all bugs. Please send an email with your bug report to hart_wb@yahoo.com.

If possible please include details of your system, version of gcc, version of GMP/MPIR and precise details of how to replicate the bug.

Note that FLINT needs to be linked against version 4.2.1 or later of GMP or version 0.9.0 or later of MPIR (in GMP compatibility mode) and must be compiled with gcc version 3.4 or later. In particular the compiler must be fully C99 compatible.
5 Example programs

FLINT comes with a number of example programs to demonstrate current and future FLINT features. To make the example programs, type:

```make examples```

The current example programs are:

- **delta_qexp**: Compute the first \( n \) terms of the delta function, e.g. `delta_qexp 1000000` will compute the first one million terms of the \( q \)-expansion of delta.

- **BPTJCubes**: Implements the algorithm of Beck, Pine, Tarrant and Jensen for finding solutions to the equation \( x^3 + y^3 + z^3 = k \). This program outputs a file `output.log` containing parameters for reconstructing the first solution it finds, and then aborts.

- **beroulli_zmod**: Compute many Bernoulli numbers modulo a prime. If no command line input is supplied it merely checks that the bernoulli_zmod function works for the first 2000 primes. If you specify an integer argument \( n \) on the command line, it computes the Bernoulli numbers \( B_0, B_2, \ldots, B_{p-1} \) modulo \( p \), where \( p \) is the next prime from \( n \).

- **expmod**: Computes a very large modular exponentiation. This is actually a basic pseudo primality test.

- **Zmul**: Compares the output of the FLINT FFT with that of GMP for ever larger operands.

- **thetaproduct**: Computes the congruent number theta function. To run this you need to have openmp on your machine, you need a recent version of gcc (e.g. 4.3.x or 4.4.x) and you need to export OMP_NUM_THREADS=16 or some factor of 16, depending on how many cores your machine has. The code also expects a directory `/storage` with PLENTY of space where temporary files will be created. Be warned that this code multiplies HUGE integers which do not fit into memory and much disk space is used. You also need a significant amount of memory on your machine, which must also be a 64 bit Linux platform. Parameters can be changed at the top of the file `thetaproduct.c`. Primitive (squarefree) zeroes of the congruent number theta function curve will be computed up to \( \text{MOD} \times \text{LIMIT} \) in the class \( \text{K} \) (mod \( \text{MOD} \)). At present FILES1 and FILES2 must be equal. LIMIT must also be divisible by BLOCK and by BUNDLE*FILES1. The code is not currently designed to correctly handle small problems.

6 FLINT macros

In the file `flint.h` are various useful macros.

The macro constant **FLINT_BITS** is set at compile time to be the number of bits per limb on the machine. FLINT requires it to be either 32 or 64 bits. Other architectures are not currently supported.

The macro constant **FLINT_D_BITS** is set at compile time to be the number of bits per double on the machine or the number of bits per limb, whichever is smaller. This will have the value 53 or 32 on currently supported architectures. Numerous functions using precomputed inverses only support operands up to **FLINT_D_BITS** bits, hence the macro.

**FLINT_ABS(x)** returns the absolute value of a long \( x \).

**FLINT_MIN(x, y)** returns the minimum of two long or two unsigned long values \( x \) and \( y \).

**FLINT_MAX(x, y)** returns the maximum of two long or two unsigned long values \( x \) and \( y \).

**FLINT_BIT_COUNT(x)** returns the number of binary bits required to represent an unsigned long \( x \).
7 The fmpz_poly module

The fmpz_poly_t data type represents elements of \( \mathbb{Z}[x] \). The fmpz_poly module provides routines for memory management, basic arithmetic, and conversions to/from other types.

Each coefficient of an fmpz_poly_t is an integer of the FLINT fmpz_t type.

Unless otherwise specified, all functions in this section permit aliasing between their input arguments and between their input and output arguments.

7.1 Simple example

The following example computes the square of the polynomial \( 5x^3 - 1 \).

```c
#include "fmpz_poly.h"
....
fmpz_poly_t x, y;
fmpz_poly_init(x);
fmpz_poly_init(y);
fmpz_poly_set_coeff_ui(x, 3, 5);
fmpz_poly_set_coeff_si(x, 0, -1);
fmpz_poly_mul(y, x, x);
fmpz_poly_print(x); printf("\n");
fmpz_poly_print(y); printf("\n");
fmpz_poly_clear(x);
fmpz_poly_clear(y);
```

The output is:

```
4 -1 0 0 5
7 1 0 0 25 0 0 -10 0 0 25
```

7.2 Definition of the fmpz_poly_t polynomial type

The fmpz_poly_t type is a typedef for an array of length 1 of fmpz_poly_struct’s. This permits passing parameters of type fmpz_poly_t ‘by reference’ in a manner similar to the way GMP integers of type mpz_t can be passed by reference.

In reality one never deals directly with the struct and simply deals with objects of type fmpz_poly_t. For simplicity we will think of an fmpz_poly_t as a struct, though in practice to access fields of this struct, one needs to dereference first, e.g. to access the length field of an fmpz_poly_t called poly1 one writes poly1->length.

An fmpz_poly_t is said to be normalised if either length == 0, or if the leading coefficient of the polynomial is nonzero. All fmpz_poly functions expect their inputs to be normalised, and unless otherwise specified they produce output that is normalised.

It is recommended that users do not access the fields of an fmpz_poly_t or its coefficient data directly, but make use of the functions designed for this purpose (detailed below).

Functions in fmpz_poly do all the memory management for the user. One does not need to specify the maximum length or number of limbs per coefficient in advance before using a polynomial object. FLINT reallocates space automatically as the computation proceeds, if more space is required.

We now describe the functions available in fmpz_poly.
### 7.3 Initialisation and memory management

```c
void fmpz_poly_init(fmpz_poly_t poly)
```

Initialise an `fmpz_poly_t` for use. The length of `poly` is set to zero. A corresponding call to `fmpz_poly_clear` must be made after finishing with the `fmpz_poly_t` to free the memory used by the polynomial.

For efficiency reasons, a call to `fmpz_poly_init` does not actually allocate any memory for coefficients. Each of the functions will automatically allocate any space needed for coefficients and in fact the easiest way to use `fmpz_poly` is to let FLINT do all the allocation automatically.

To this end, a user need only ever make calls to the `fmpz_poly_init` and `fmpz_poly_clear` memory management functions if they so wish. Naturally, more efficient code may result if the other memory management functions are also used.

```c
void fmpz_poly_realloc(fmpz_poly_t poly, unsigned long alloc)
```

Shrink or expand the polynomial so that it has space for precisely `alloc` coefficients. If `alloc` is less than the current length, the polynomial is truncated (and then normalised), otherwise the coefficients and current length remain unaffected.

If the parameter `alloc` is zero, any space currently allocated for coefficients in `poly` is free’d. A subsequent call to `fmpz_poly_clear` is still permitted and does nothing.

```c
void fmpz_poly_fit_length(fmpz_poly_t poly, unsigned long alloc)
```

Expand the polynomial (if necessary) so that it has space for at least `alloc` coefficients. This function will never shrink the memory allocated for coefficients and the contents of the existing coefficients and the current length remain unaffected.

```c
void fmpz_poly_fit_limbs(fmpz_poly_t poly, unsigned long limbs)
```

Currently all the coefficients of an `fmpz_poly_t` have the same number of limbs of space allocated for them (plus an additional limb for the sign/size limb). This function can be used to increase the space allocated for the coefficients. As all functions in the `fmpz_poly` module automatically manage memory allocation for the user, this function should only be used when directly manipulating the coefficients by means of the functions in the `fmpz` module (described below). In a later version of FLINT, this function will become defunct, as FLINT will automatically reallocate `fmpz_t`'s when there is insufficient space, and this will include polynomial coefficients.

```c
void fmpz_poly_clear(fmpz_poly_t poly)
```

Free all memory used by the coefficients of `poly`. The polynomial object `poly` cannot be used again until a subsequent call to an initialisation function is made.
7.4 Setting/retrieving coefficients

```c
void fmpz_poly_get_coeff_mpz(mpz_t x, const fmpz_poly_t poly,
 unsigned long n)
```

Retrieve coefficient \(n\) as an `mpz_t`. Coefficients are numbered from zero, starting with the constant coefficient. Sets \(x\) to zero when \(n > \text{poly->length}\).

```c
void fmpz_poly_get_coeff_mpz_read_only(mpz_t x,
 const fmpz_poly_t poly,
 unsigned long n)
```

Retrieve coefficient \(n\) as a read only `mpz_t`. The function must be passed an uninitialised `mpz_t`. The `mpz_t` can then be used as an input to a GMP function, but not as an output. Its contents may be inspected, but not altered. This function will in general be much faster than the function `fmpz_poly_get_coeff_mpz` which makes an extra copy of the data. Coefficients are numbered from zero, starting with the constant coefficient. Sets \(x\) to zero when \(n > \text{poly->length}\).

```c
void fmpz_poly_set_coeff_mpz(fmpz_poly_t poly,
 unsigned long n,
 mpz_t x)
```

Set coefficient \(n\) to the value of the given `mpz_t`. Coefficients are numbered from zero, starting with the constant coefficient. If \(n\) represents a coefficient beyond the current length of `poly`, zero coefficients are added in between the existing coefficients and the new coefficient, if required.

```c
void fmpz_poly_set_coeff_fmpz(fmpz_poly_t poly,
 unsigned long n,
 fmpz_t x)
```

Set coefficient \(n\) to the value of the given `fmpz_t`. Coefficients are numbered from zero, starting with the constant coefficient. If \(n\) represents a coefficient beyond the current length of `poly`, zero coefficients are added in between the existing coefficients and the new coefficient, if required.

```c
unsigned long fmpz_poly_get_coeff_ui(const fmpz_poly_t poly,
 unsigned long n)
```

Retrieve coefficient \(n\) as an `unsigned long`. Coefficients are numbered from zero, starting with the constant coefficient. Sets \(x\) to zero when \(n > \text{poly->length}\).
Return the absolute value of coefficient \( n \) as an **unsigned long**.
Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient is longer than a single limb, the first limb is returned.
Returns zero when \( n \geq \text{poly->length} \).

```c
void fmpz_poly_set_coeff_ui(fmpz_poly_t poly, unsigned long n, unsigned long x)
```

Set coefficient \( n \) to the value of the given **unsigned long**.
Coefficients are numbered from zero, starting with the constant coefficient. If \( n \) represents a coefficient beyond the current length of \text{poly}, zero coefficients are added in between the existing coefficients and the new coefficient, if required.

```c
long fmpz_poly_get_coeff_si(const fmpz_poly_t poly, unsigned long n)
```

Return the value of coefficient \( n \) as a **long**.
Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient will not fit into a **long**, i.e. if its absolute value takes up more than FLINT_BITS - 1 bits then the result is undefined.
Returns zero when \( n \geq \text{poly->length} \).

```c
void fmpz_poly_set_coeff_si(fmpz_poly_t poly, unsigned long n, long x)
```

Set coefficient \( n \) to the value of the given **long**.
Coefficients are numbered from zero, starting with the constant coefficient. If \( n \) represents a coefficient beyond the current length of \text{poly}, zero coefficients are added in between the existing coefficients and the new coefficient, if required.

```c
fmpz_t fmpz_poly_get_coeff_ptr(fmpz_poly_t poly, unsigned long n)
```

Return a reference to coefficient \( n \) (as an **fmpz_t**). This function is provided so that individual coefficients can be accessed and operated on by functions in the **fmpz** module. This function does not make a copy of the data, but returns a reference to the actual coefficient.
Coefficients are numbered from zero, starting with the constant coefficient.
Returns NULL when \( n \geq \text{poly->length} \).

```c
fmpz_t fmpz_poly_lead(const fmpz_poly_t poly)
```

Return a reference to the leading coefficient (as an **fmpz_t**) of \text{poly}. This function is provided so that the leading coefficient can be easily accessed and operated on by functions in the **fmpz** module. This function does not make a copy of the data, but returns a reference to the actual coefficient.
Returns NULL when the polynomial has length zero.
7.5 String conversions and I/O

The functions in this section are not intended to be particularly fast. They are intended mainly as a debugging aid.

For the string output functions there are two variants. The first uses a simple string representation of polynomials which prints only the length of the polynomial and the integer coefficients, whilst the latter variant (appended with _pretty) uses a more traditional string representation of polynomials which prints a variable name as part of the representation.

The first string representation is given by a sequence of integers, in decimal notation, separated by white space. The first integer gives the length of the polynomial; the remaining length integers are the coefficients. For example $5x^3 - x + 1$ is represented by the string “4 1 -1 0 5”, and the zero polynomial is represented by “0”. The coefficients may be signed and arbitrary precision.

The string representation of the functions appended by _pretty includes only the non-zero terms of the polynomial, starting with the one of highest degree. Each term starts with a coefficient, prepended with a sign (positive or negative), followed by the character *, followed by a variable name, which must be passed as a string parameter to the function, followed by a carot ^ followed by a non-negative exponent.

If the sign of the leading coefficient is positive, it is omitted. Also the exponents of the degree 1 and 0 terms are omitted, as is the variable and the * character in the case of the degree 0 coefficient. If the coefficient is plus or minus one, the coefficient is omitted, except for the sign.

Some examples of the _pretty representation are:

$5x^3 + 7x - 4$

$x^2 + 3$

$-x^4 + 2x - 1$

$x + 1$

$5$

int fmpz_poly_from_string(fmpz_poly_t poly, const char * s)

Import a polynomial from a string. If the string represents a valid polynomial the function returns 1, otherwise it returns 0.

char * fmpz_poly_to_string(const fmpz_poly_t poly)

char * fmpz_poly_to_string_pretty(const fmpz_poly_t poly, const char * x)

Convert a polynomial to a string and return a pointer to the string. Space is allocated for the string by this function and must be freed when it is no longer used, by a call to free.

The pretty version must be supplied with a string x which represents the variable name to be used when printing the polynomial.

void fmpz_poly_fprint(const fmpz_poly_t poly, FILE * f)

void fmpz_poly_fprint_pretty(const fmpz_poly_t poly, FILE * f, const char * x)

Convert a polynomial to a string and write it to the given stream.

The pretty version must be supplied with a string x which represents the variable name to be used when printing the polynomial.
void fmpz_poly_print(const fmpz_poly_t poly)
void fmpz_poly_print_pretty(const fmpz_poly_t poly, const char * x)

Convert a polynomial to a string and write it to stdout. The pretty version must be supplied with a string x which represents the variable name to be used when printing the polynomial.

void fmpz_poly_fread(fmpz_poly_t poly, FILE * f)

Read a polynomial from the given stream. Return 1 if the data from the stream represented a valid polynomial, otherwise return 0.

void fmpz_poly_read(fmpz_poly_t poly)

Read a polynomial from stdin. Return 1 if the data read from stdin represented a valid polynomial, otherwise return 0.

7.6 Polynomial parameters (length, degree, max limbs, etc.)

long fmpz_poly_degree(const fmpz_poly_t poly)

Return poly->length - 1. The zero polynomial is defined to have degree -1.

unsigned long fmpz_poly_length(const fmpz_poly_t poly)

Return poly->length. The zero polynomial is defined to have length 0.

unsigned long fmpz_poly_max_limbs(const fmpz_poly_t poly)

Returns the maximum number of limbs required to store the absolute value of coefficients of poly.

long fmpz_poly_max_bits(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of poly. If all the coefficients of poly are non-negative, b is returned, otherwise -b is returned.

long fmpz_poly_max_bits1(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of poly. If all the coefficients of poly are non-negative, b is returned, otherwise -b is returned. The assumption is made that the absolute value of each coefficient fits into an unsigned long. This function will be more efficient than the more general fmpz_poly_max_bits in this situation.
7.7 Assignment and basic manipulation

```c
void fmpz_poly_set(fmpz_poly_t output, const fmpz_poly_t poly)
```
Set polynomial `output` equal to the polynomial `poly`.

```c
void fmpz_poly_swap(fmpz_poly_t poly1, fmpz_poly_t poly2)
```
Efficiently swap two polynomials. The coefficients are not moved in memory, pointers are simply switched.

```c
void fmpz_poly_zero(fmpz_poly_t poly)
```
Set the polynomial to the zero polynomial.

```c
void fmpz_poly_zero_coeffs(fmpz_poly_t poly, unsigned long n)
```
Set the first `n` coefficients of `poly` to zero. If `n` is greater than or equal to the length of `poly` then `poly` is set to the zero polynomial.

```c
void fmpz_poly_neg(fmpz_poly_t output, fmpz_poly_t poly)
```
Negate the polynomial `poly`, i.e. set `output` to `-poly`.

```c
void fmpz_poly_truncate(fmpz_poly_t poly, const unsigned long trunc)
```
If `trunc` is less than the current length of the polynomial, truncate the polynomial to that length. Note that as the function normalises its output, the eventual length of the polynomial may be less than `trunc`. If `trunc` is not less than the current length of the polynomial, this function does nothing.

```c
void fmpz_poly_reverse(fmpz_poly_t output, const fmpz_poly_t poly, unsigned long length)
```
This function considers the polynomial `poly` to be of length `n`, notionally truncating and zero padding if required, and reverses the result. Since this function normalises its result the eventual length of `output` may be less than `length`. Note that the supplied `length` may be smaller or larger than the current length of `poly` if required.

```c
void _fmpz_poly_normalise(fmpz_poly_t poly)
```
This function normalises `poly` so that the leading coefficient is non-zero (or the polynomial is the zero polynomial). As all functions in `fmpz_poly` expect and return normalised polynomials, this function is only used when manipulating the coefficients directly by making use of the functions in the `fmpz` module (described below).
7.8 Conversions

void fmpz_poly_to_zmod_poly(zmod_poly_t zpol, fmpz_poly_t fpol)
void fmpz_poly_to_zmod_poly_no_red(zmod_poly_t zpol, fmpz_poly_t fpol)

Reduce the coefficients of the fmpz_poly_t fpol mod the modulus of the zmod_poly_t zpol and store the result in zpol.
If the modulus of zpol is p, the no_red version of this function assumes that the coefficients of fmpz_poly_t fpol are in the range [-p, p) and the computation is done more efficiently.
These functions are provided to enable the implementation of multimodular algorithms.

void zmod_poly_to_fmpz_poly_unsigned(fmpz_poly_t fpol, zmod_poly_t zpol)

Convert the zmod_poly_t zpol to an fmpz_poly_t. The coefficients of the fmpz_poly_t will all be unsigned.

void zmod_poly_to_fmpz_poly(fmpz_poly_t fpol, zmod_poly_t zpol)

Convert the zmod_poly_t zpol to an fmpz_poly_t. If p is the modulus of zpol then coefficients which lie in [0, p/2] are unchanged, however, coefficients a in the range (p/2, p) become a - p.
This function is provided to enable the implementation of multimodular algorithms.

7.9 Chinese remaindering

int fmpz_poly_CRT_unsigned(fmpz_poly_t res, fmpz_poly_t fpol,
zmod_poly_t zpol, fmpz_t newmod, fmpz_t oldmod)

Performs modular recombination using the Chinese Remainder Theorem. If zpol has modulus p, newmod is set equal to oldmod*p and each coefficient of res is set to the unique value modulo newmod, in the range [0, newmod) which is a modulo oldmod and b modulo p, where a is the coefficient of fpol and b is the corresponding coefficient of zpol.
The coefficients of fpol are assumed to be unsigned.

int fmpz_poly_CRT(fmpz_poly_t res, fmpz_poly_t fpol,
zmod_poly_t zpol, fmpz_t newmod, fmpz_t oldmod)

Performs modular recombination using the Chinese Remainder Theorem. If zpol has modulus p, newmod is set equal to oldmod*p and each coefficient of res is set to the unique value modulo newmod, in the range [-(newmod - 1)/2, newmod/2] which is a modulo oldmod and b modulo p, where a is the coefficient of fpol and b is the corresponding coefficient of zpol.
7.10 Comparison

```c
int fmpz_poly_equal(const fmpz_poly_t poly1,
 const fmpz_poly_t poly2)
```

Return 1 if the two polynomials are equal, 0 otherwise.

7.11 Shifting

```c
void fmpz_poly_left_shift(fmpz_poly_t output,
 const fmpz_poly_t poly, unsigned long n)
```

Shift `poly` to the left by `n` coefficients (multiply by \(x^n\)) and write the result to `output`. Zero coefficients are inserted.

The parameter `n` must be non-negative, but can be zero.

```c
void fmpz_poly_right_shift(fmpz_poly_t output,
 const fmpz_poly_t poly, unsigned long n)
```

Shift `poly` to the right by `n` coefficients (divide by \(x^n\) and discard the remainder) and write the result to `output`.

The parameter `n` must be non-negative, but can be zero. Shifting right by greater than or equal to the current length of the polynomial results in the zero polynomial.

7.12 Norms

```c
void fmpz_poly_2norm(fmpz_t norm, fmpz_poly_t pol)
```

Sets `norm` to the euclidean norm of `pol`, i.e. the integer square root (discarding the remainder) of the sum of the squares of the coefficients of `pol`.

7.13 Addition/subtraction

```c
void fmpz_poly_add(fmpz_poly_t output, const fmpz_poly_t poly1,
 const fmpz_poly_t poly2)
```

Set the output to the sum of the input polynomials.

Note that if `poly1` and `poly2` have the same length, cancellation may occur (if the leading coefficients have the same absolute values but opposite signs) and so the result may have less coefficients than either of the inputs.

```c
void fmpz_poly_sub(fmpz_poly_t output, const fmpz_poly_t poly1,
 const fmpz_poly_t poly2)
```

Set the output to \(poly1 - poly2\).

Note that if `poly1` and `poly2` have the same length, cancellation may occur (if the leading coefficients have the same values) and so the result may have less coefficients than either of the inputs.
7.14 Scalar multiplication and division

void fmpz_poly_scalar_mul_ui(fmpz_poly_t output,
    const fmpz_poly_t poly, unsigned long x)

Multiply poly by the unsigned long x and write the result to output.

void fmpz_poly_scalar_mul_si(fmpz_poly_t output,
    const fmpz_poly_t poly, long x)

Multiply poly by the long x and write the result to output.

void fmpz_poly_scalar_mul_fmpz(fmpz_poly_t output,
    const fmpz_poly_t poly, const fmpz_t x)

Multiply poly by the fmpz_t x and write the result to output.

void fmpz_poly_scalar_mul_mpz(fmpz_poly_t output,
    const fmpz_poly_t poly, const mpz_t x)

Multiply poly by the mpz_t x and write the result to output.

void fmpz_poly_scalar_div_ui(fmpz_poly_t output,
    const fmpz_poly_t poly, unsigned long x)

Divide poly by the unsigned long x, round quotients towards minus infinity, discard remainders and write the result to output.

void fmpz_poly_scalar_div_si(fmpz_poly_t output,
    const fmpz_poly_t poly, long x)

Divide poly by the long x, round quotients towards minus infinity, discard remainders and write the result to output.

void fmpz_poly_scalar_tdiv_ui(fmpz_poly_t output,
    const fmpz_poly_t poly, unsigned long x)

Divide poly by the unsigned long x, round quotients towards zero, discard remainders and write the result to output.

void fmpz_poly_scalar_tdiv_si(fmpz_poly_t output,
    const fmpz_poly_t poly, long x)
Divide poly by the long x, round quotients towards zero, discard remainders and write the result to output.

```c
void fmpz_poly_scalar_div_exact_ui(fmpz_poly_t output,
const fmpz_poly_t poly, unsigned long x)
```

Divide poly by the unsigned long x. Division is assumed to be exact and the result is undefined otherwise.

```c
void fmpz_poly_scalar_div_exact_si(fmpz_poly_t output,
const fmpz_poly_t poly, long x)
```

Divide poly by the long x. Division is assumed to be exact and the result is undefined otherwise.

```c
void fmpz_poly_scalar_div_fmpz(fmpz_poly_t output,
const fmpz_poly_t poly, const fmpz_t x)
```

Divide poly by the fmpz_t x, round quotients towards minus infinity, discard remainders, and write the result to output.

```c
void fmpz_poly_scalar_div_mpz(fmpz_poly_t output,
const fmpz_poly_t poly, const mpz_t x)
```

Divide poly by the mpz_t x, round quotients towards minus infinity, discard remainders, and write the result to output.

### 7.15 Polynomial multiplication

```c
void fmpz_poly_mul(fmpz_poly_t output, const fmpz_poly_t poly1,
const fmpz_poly_t poly2)
```

Multiply the two given polynomials and return the result in output.

The length of the output polynomial will be `poly1->length + poly2->length - 1`.

```c
void fmpz_poly_mul_trunc_n(fmpz_poly_t output,
const fmpz_poly_t poly1, const fmpz_poly_t poly2, unsigned long n)
```

Multiply the two given polynomials and truncate the result to n coefficients, storing the result in output. This is sometimes known as a short product.

The length of the output polynomial will be at most the minimum of n and the value `poly1->length + poly2->length - 1`. It is permissible to set n to any non-negative value, however the function is optimised for n about half of `poly1->length + poly2->length`.

This function is more efficient than multiplying the two polynomials then truncating. It is the operation used when multiplying power series.
Multiply the two given polynomials storing the result in output. This function guarantees all the coefficients except the first $n$, which may be arbitrary. This is sometimes known as an opposite short product.

The length of the output polynomial will be $\text{poly1->length} + \text{poly2->length} - 1$ unless $n$ is greater than or equal to this value, in which case it will return the zero polynomial. It is permissible to set $n$ to any non-negative value, however the function is optimised for $n$ about half of $\text{poly1->length} + \text{poly2->length}$.

For short polynomials, this function is more efficient than computing the full product.

### 7.16 Polynomial division

**void fmpz_poly_divrem(fmpz_poly_t Q, fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)**

Performs division with remainder in $\mathbb{Z}[x]$. Computes polynomials $Q$ and $R$ in $\mathbb{Z}[x]$ such that the equation $A = B\cdot Q + R$, holds. All but the final $B->length - 1$ coefficients of $R$ will be positive and less than the absolute value of the lead coefficient of $B$.

Note that in the special cases where the leading coefficient of $B$ is $\pm 1$ or $A = B\cdot Q$ for some polynomial $Q$, the result of this function is the same as if the computation had been done over $\mathbb{Q}$.

**void fmpz_poly_div(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B)**

Performs division without remainder in $\mathbb{Z}[x]$. The computation returns the same result as fmpz_poly_divrem, but no remainder is computed. This is in general faster than computing quotient and remainder.

Note that in the special cases where the leading coefficient of $B$ is $\pm 1$ or $A = B\cdot Q$ for some polynomial $Q$, the result of this function is the same as if the computation had been done over $\mathbb{Q}$.

**void fmpz_poly_invert_series(fmpz_poly_t Q_inv, const fmpz_poly_t Q, const unsigned long n)**

Sets $Q_inv$ to $n$ terms of the inverse of $Q$. Calling this function is equivalent to calling the function below, fmpz_poly_div_series, with $A$ equal to 1. Assumes that the constant term of $Q$ is 1.

**void fmpz_poly_div_series(fmpz_poly_t Q, const fmpz_poly_t A, const fmpz_poly_t B, unsigned long n)**
Perform power series division in \( \mathbb{Z}[x] \). The function considers the polynomials \( A \) and \( B \) to be power series of length \( n \) starting with the constant terms. The function assumes that \( B \) is normalised, i.e. that the constant coefficient is 1. The result is truncated to length \( n \) regardless of the inputs.

\[
\text{int fmpz_poly_divides(fmpz_poly_t Q, fmpz_poly_t A, fmpz_poly_t B)}
\]

If the polynomial \( A \) is divisible by the polynomial \( B \) this function returns 1 and sets \( Q \) to the quotient, otherwise it returns 0.

This function can be used for efficient exact division.

### 7.17 Pseudo division

\[
\text{void fmpz_poly_pseudo_divrem(fmpz_poly_t Q, fmpz_poly_t R, unsigned long * d, const fmpz_poly_t A, const fmpz_poly_t B)}
\]

Performs division with remainder of two polynomials in \( \mathbb{Z}[x] \), notionally returning the results in \( \mathbb{Q}[x] \) (actually in \( \mathbb{Z}[x] \) with a single common denominator).

Computes polynomials \( Q \) and \( R \) such that \( \text{lead}(B)^d \cdot A = B \cdot Q + R \) where \( R \) has degree less than that of \( B \).

This function may be used to do division of polynomials in \( \mathbb{Q}[x] \) as follows. Suppose polynomials \( C \) and \( D \) are given in \( \mathbb{Q}[x] \).

1) Write \( C = d_1 \cdot A \) and \( D = d_2 \cdot B \) for some polynomials \( A \) and \( B \) in \( \mathbb{Z}[x] \) and integers \( d_1 \) and \( d_2 \).
2) Use pseudo-division to compute \( Q \) and \( R \) in \( \mathbb{Z}[x] \) so that \( l^d \cdot A = B \cdot Q + R \) where \( l \) is the leading coefficient of \( B \).
3) We can now write \( C = (d_1/d_2 \cdot D \cdot Q + d_1 \cdot R) / l^d \).

\[
\text{void fmpz_poly_pseudo_div(fmpz_poly_t Q, unsigned long * d, const fmpz_poly_t A, const fmpz_poly_t B)}
\]

Performs division without remainder of two polynomials in \( \mathbb{Z}[x] \), notionally returning the results in \( \mathbb{Q}[x] \) (actually in \( \mathbb{Z}[x] \) with a single common denominator).

Notionally computes polynomials \( Q \) and \( R \) such that \( \text{lead}(B)^d \cdot A = B \cdot Q + R \) where \( R \) has degree less than that of \( B \), but returns only \( Q \). This is slightly more efficient than computing the quotient and remainder.

\[
\text{void fmpz_poly_pseudo_rem(fmpz_poly_t R, unsigned long * d, const fmpz_poly_t A, const fmpz_poly_t B)}
\]

Performs division with remainder of two polynomials in \( \mathbb{Z}[x] \), without returning the quotient, notionally returning the results in \( \mathbb{Q}[x] \) (actually in \( \mathbb{Z}[x] \) with a single common denominator).

Notionally computes polynomials \( Q \) and \( R \) such that \( \text{lead}(B)^d \cdot A = B \cdot Q + R \) where \( R \) has degree less than that of \( B \), but returns only \( R \). This is more efficient than computing the quotient and remainder.

Note that at present this function is not asymptotically fast. Use \( \text{fmpz_poly_pseudo_divrem} \) if large operands will be supplied (e.g. of length greater than 32).
void fmpz_poly_pseudo_divrem_cohen(fmpz_poly_t Q, fmpz_poly_t R, 
    const fmpz_poly_t A, const fmpz_poly_t B)

This is a variant of \texttt{fmpz\_poly\_pseudo\_divrem} which computes polynomials \(Q\) and \(R\) such that
\[
\text{lead}(B)^d \times A = B \times Q + R.
\]
However the value \(d\) is fixed at \(A->\text{length} - B->\text{length} + 1\).
This function is faster when the remainder is not well behaved, i.e. where it is not expected
to be zero or close to it. Note that this function is not asymptotically fast. It is efficient only
for short polynomials (e.g. \(B->\text{length} < 32\)).

void fmpz_poly_pseudo_rem_cohen(fmpz_poly_t R, const fmpz_poly_t A, 
    const fmpz_poly_t B)

This is a variant of \texttt{fmpz\_poly\_pseudo\_rem} which also notionally computes polynomials \(Q\) and \(R\) such that
\[
\text{lead}(B)^d \times A = B \times Q + R,
\]
but returns only \(R\). However the value \(d\) is fixed at \(A->\text{length} - B->\text{length} + 1\).
This function is faster when the remainder is not well behaved, i.e. where it is not expected
to be zero or close to it. Note that this function is not asymptotically fast. It is efficient only
for short polynomials (e.g. \(B->\text{length} < 32\)).

7.18 Powering

void fmpz_poly_power(fmpz_poly_t output, const fmpz_poly_t poly, 
    unsigned long exp)

Raises \(poly\) to the power \(exp\) and writes the result in \(output\).

void fmpz_poly_power_trunc_n(fmpz_poly_t output, 
    const fmpz_poly_t poly, unsigned long exp, unsigned long n)

Notionally raises \(poly\) to the power \(exp\), truncates the result to length \(n\) and writes the result
in \(output\). This is computed much more efficiently than simply powering the polynomial and
truncating.
If \(exp\) is zero then the result will be the constant polynomial equal to 1, unless \(poly\) is zero,
in which case the output will be zero.
This function can be used to raise power series to a power in an efficient way.

7.19 Gaussian content

void fmpz_poly_content(fmpz_t c, fmpz_poly_t poly)

Set the \texttt{fmpz\_t c} to the Gaussian content of the polynomial \(poly\), i.e. to the greatest common
divisor of its coefficients.

void fmpz_poly_primitive_part(fmpz_poly_t prim, fmpz_poly_t poly)

Set \(prim\) to the primitive part of the polynomial \(poly\), i.e. to \(poly\) divided by its Gaussian
content.
7.20 Greatest common divisor and resultant

void fmpz_poly_gcd(fmpz_poly_t res, const fmpz_poly_t poly1, const fmpz_poly_t poly2)

Sets res to the greatest common divisor of the polynomials poly1 and poly2.

unsigned long fmpz_poly_resultant_bound(fmpz_poly_t a, fmpz_poly_t b)
void fmpz_poly_resultant(fmpz_t r, fmpz_poly_t a, fmpz_poly_t b)

Compute the resultant of the polynomials a and b. If a and b are monic with 
\[ a(x) = \prod_i (x - \alpha_i) \]
and 
\[ b(x) = \prod_j (x - \beta_j) \]
when factored over the complex numbers, then the resultant is given by the expression 
\[ r(x) = \prod_{i,j} (\alpha_i - \beta_j) . \]
If the polynomials are not monic, and a and b have leading coefficients \( l_1 \) and \( l_2 \) and degrees \( d_1 \) and \( d_2 \) respectively, then this quantity is multiplied by \( l_1^{d_2-1} l_2^{d_1-1} \).

Note that the resultant is zero iff the polynomials share a root over the algebraic closure of \( \mathbb{Q} \).

Currently it is necessary to ensure r has sufficient space to store the result. The function fmpz_poly_resultant_bound is used to determine a bit bound on the number of bits b required and r must have space for \( b/\text{FLINT_BITS} + 2 \) limbs.

In a future version of FLINT, this computation will not be necessary.

void fmpz_poly_xgcd(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t, fmpz_poly_t a, fmpz_poly_t b)

Given coprime polynomials a and b this function computes polynomials s and t and the resultant r of the polynomials such that 
\[ r = a \cdot s + b \cdot t . \]

See the function fmpz_poly_resultant for information on how large r needs to be to hold the result.

7.21 Modular arithmetic

void fmpz_poly_invmod(fmpz_t d, fmpz_poly_t H, fmpz_poly_t poly1, fmpz_poly_t poly2)

Computes a polynomial H and a denominator d such that poly1*H is d modulo poly2.
Assumes that poly1 and poly2 are coprime and that poly2 is monic.
This function is useful for computing inverses in number field arithmetic.

7.22 Derivative

void fmpz_poly_derivative(fmpz_poly_t der, fmpz_poly_t poly)

Sets der to the derivative of poly.
7.23  Evaluation

void fmpz_poly_evaluate(fmpz_t output,  
const fmpz_poly_t poly, const fmpz_t val)

Evaluates poly at the value val and sets output to the result.

unsigned long fmpz_poly_evaluate_mod(const fmpz_poly_t poly,  
unsigned long p, unsigned long val, pre_inv_t pinv)

Evaluates poly at the value val modulo p and returns the result. The last argument pinv must be set to the precomputed inverse of p, which can be obtained using the function z_precompute_inverse.

7.24  Polynomial composition

void fmpz_poly_compose(fmpz_poly_t output, 
const fmpz_poly_t f, const fmpz_poly_t g)

Sets output to the polynomial composition of f with g, i.e. computes \( f(g(x)) \).

void fmpz_poly_translate_mod_horner(zmod_poly_t output,  
const fmpz_poly_t f, const zmod_poly_t g)

Sets output to the polynomial composition of f with g where g is of the form \( x + c \) for some \( c \in \mathbb{Z}_p \) with p the modulus of g, i.e. computes \( f(x + c) \mod p \).

7.25  Polynomial signature

void fmpz_poly_signature(ulong * r1, ulong * r2, fmpz_poly_t poly)

Determines the signature r1, r2 (where \( r1 + 2r2 = \text{degree}(poly) \) and r1 is the number of real roots of poly). The input polynomial must be squarefree, otherwise the result is undefined and an exception may be raised. The zero polynomial is allowed, for convenience, and the number of real and complex roots are both set to 0 in that case.

7.26  Squarefree

void fmpz_poly_is_squarefree(ulong * r1, ulong * r2, fmpz_poly_t poly)

Returns 1 if poly is squarefree, otherwise returns 0.
7.27 Subpolynomials

A number of functions are provided for attaching an \texttt{fmpz\_poly\_t} object to an existing polynomial or to a range of coefficients of an existing polynomial providing an alias for the original polynomial or part thereof.

Each of the functions in this section normalise the subpolynomials so that they can be used as inputs to \texttt{fmpz\_poly} functions.

As FLINT has no way of reallocating space in subpolynomials, they should not be used for outputs of \texttt{fmpz\_poly} functions, but only for inputs. In a later version of FLINT, this restriction will be lifted.

Note that FLINT may perform suboptimally if a polynomial and an alias of the polynomial are passed as inputs to the same function, as FLINT has no way to tell that it is dealing with aliases of the same polynomial.

\begin{verbatim}
void _fmpz_poly_attach(fmpz_poly_t output, const fmpz_poly_t poly)
  Attach the \texttt{fmpz\_poly\_t} object \texttt{output} to the polynomial \texttt{poly}. Any changes made to the length field of \texttt{output} do not affect \texttt{poly}.

void _fmpz_poly_attach_shift(fmpz_poly_t output, const fmpz_poly_t input, unsigned long n)
  Attach the \texttt{fmpz\_poly\_t} object \texttt{output} to \texttt{poly} but shifted to the left by \texttt{n} coefficients. This is equivalent to notionally shifting the original polynomial right (dividing by \(x^n\)) then attaching to the result without affecting the original polynomial.

void _fmpz_poly_attach_truncate(fmpz_poly_t output, const fmpz_poly_t input, unsigned long n)
  Attach the \texttt{fmpz\_poly\_t} object \texttt{output} to the first \texttt{n} coefficients of the polynomial \texttt{poly}. This is equivalent to notionally truncating the original polynomial to \texttt{n} coefficients then attaching to the result without affecting the original polynomial.
\end{verbatim}

8 The \texttt{fmpz} module

The \texttt{fmpz} module is designed for manipulation of the FLINT flat multiprecision integer format \texttt{fmpz\_t}.

Internally, the data for an \texttt{fmpz\_t} has first limb a sign/size limb. If it is 0 the integer represented by the \texttt{fmpz\_t} is 0. The absolute value of the sign/size limb is the number of subsequent limbs that the absolute value of the integer being represented, takes up. The absolute value of the integer is then stored as limbs, least significant limb first, in the subsequent limbs after the sign/size limb. If the sign/size limb is positive, a positive integer is intended and if the sign/size limb is negative the negative integer with the stored absolute value is intended.

The \texttt{fmpz\_t} type is not intended as a standalone integer type. It is intended to be used in composite types such as polynomials and matrices which consist of many integer entries.

Currently the user is responsible for memory management of \texttt{fmpz\_t}'s, i.e. one must ensure that the output of a function in the \texttt{fmpz} module contains sufficient space to store the result. This will be changed in a later version of FLINT, where automatic memory management will be done for the user.
To ensure that the correct number of limbs are available in each \texttt{fmpz_t} of an \texttt{fmpz_poly_t} one must currently call \texttt{void fmpz_poly_fit_limbs(fmpz_poly_t pol, unsigned long limbs)}, which will then ensure that each coefficient of \texttt{pol} has space for at least the given number of limbs (referring to the absolute value of the coefficients). Again, in a later version of FLINT, this step will be unnecessary as automatic memory management will be done for all \texttt{fmpz_t}'s, including coefficients of \texttt{fmpz_poly_t}'s. Note that \texttt{fmpz_t}'s are not currently guaranteed to allow aliasing between inputs or between inputs and outputs. However some optimised inplace functions are provided.

### 8.1 A simple example

We start with a simple example of the use of the \texttt{fmpz} module. This example sets $x$ to 3 and adds 5 to it.

```c
#include "fmpz.h"
....
fmpz_t x = fmpz_init(1); // Allocate 1 limb of space
fmpz_set_ui(x, 3);
fmpz_add_ui_inplace(x, 5);
printf("3 + 5 is "); fmpz_print(x); printf("\n");
fmpz_clear(x);
```

We now discuss the functions available in the \texttt{fmpz} module.

### 8.2 Memory management

\texttt{fmpz_t fmpz_init(unsigned long limbs)}

Allocates space for an \texttt{fmpz_t} with the given number of limbs (plus an additional limb for the sign/size) on the heap and return a pointer to the space.

\texttt{fmpz_t fmpz_realloc(fmpz_t f, unsigned long limbs)}

Reallocate the space used by the \texttt{fmpz_t \texttt{f}} so that it has space for the given number of limbs (plus a sign/size limb). The parameter \texttt{limbs} must be non-negative. The existing contents of \texttt{f} are not altered if they still fit in the new size.

\texttt{void fmpz_clear(const fmpz_t f)}

Free space used by the \texttt{fmpz_t \texttt{f}}.

### 8.3 String operations

\texttt{void fmpz_print(const fmpz_t f)}

Print the multiprecision integer \texttt{f}. A minus sign is prepended if the integer is negative.
8.4 fmpz properties

unsigned long fmpz_size(const fmpz_t f)

Return the number of limbs used to store the absolute value of the multiprecision integer f.

unsigned long fmpz_bits(const fmpz_t f)

Return the number of bits required to store the absolute value of the multiprecision integer f.

int fmpz_sgn(const fmpz_t f)

Return 1 if the sign of f is positive, −1 if it is negative and 0 if f is zero.

8.5 Assignment

void fmpz_set_ui(fmpz_t res, unsigned long x)

Set the multiprecision integer res to the unsigned long x.

void fmpz_set_si(fmpz_t res, long x)

Set the multiprecision integer res to the long x.

double fmpz_get_d(fmpz_t x)

Returns a double floating point approximation to the multiprecision integer x. Note that the exponent of a double is limited to strictly less that 1024, thus the absolute value of the integer x must be less than \(2^{1024}\).

void fmpz_set(fmpz_t res, const fmpz_t f)

Set the multiprecision integer res to equal the multiprecision integer f.

void fmpz_abs(fmpz_t res, const fmpz_t f)

Set the multiprecision integer res to the absolute value of the multiprecision integer f.

void fmpz_neg(fmpz_t res, const fmpz_t f)

Set the multiprecision integer res to minus the multiprecision integer f.
8.6 Comparison

```c
int fmpz_equal(const fmpz_t f1, const fmpz_t f2)

Return 1 if f1 is equal to f2, otherwise return 0.
```

```c
int fmpz_is_one(const fmpz_t f)

Return 1 if f is one, otherwise return 0.
```

```c
int fmpz_is_m1(const fmpz_t f)

Return 1 if f is minus one, otherwise return 0.
```

```c
int fmpz_is_zero(const fmpz_t f)

Return 1 if f is zero, otherwise return 0.
```

```c
int fmpz_cmpabs(const fmpz_t f1, const fmpz_t f2)

Compares the absolute values of f1 and f2. If the absolute value of f1 is less than that of f2 then a negative value is returned. If the absolute value of f1 is greater than that of f2 then a positive value is returned. If the absolute values are equal, then zero is returned.
```

8.7 Conversions

```c
void mpz_to_fmpz(fmpz_t res, const mpz_t x)

Convert the mpz_t x to the fmpz_t res.
```

```c
void fmpz_to_mpz(mpz_t res, const fmpz_t f)

Convert the fmpz_t f to the mpz_t res.
```

8.8 Addition/subtraction

```c
void fmpz_add(fmpz_t res, const fmpz_t f1, const fmpz_t f2)

Set res to the sum of f1 and f2.
```

```c
void fmpz_add_ui_inplace(fmpz_t res, unsigned long x)

Set res to the sum of res and the unsigned long x.
```
void fmpz_add_ui(fmpz_t res, const fmpz_t f, unsigned long x)
Set res to the sum of f and the unsigned long x.

void fmpz_sub(fmpz_t res, const fmpz_t f1, const fmpz_t f2)
Set res to f1 minus f2.

void fmpz_sub_ui_inplace(fmpz_t res, unsigned long x)
Set res to res minus the unsigned long x.

void fmpz_sub_ui(fmpz_t res, const fmpz_t f, unsigned long x)
Set res to f minus the unsigned long x.

8.9 Multiplication

void fmpz_mul(fmpz_t res, const fmpz_t f1, const fmpz_t f2)
Set res to f1 times f2.

void fmpz_mul_trunc(fmpz_t res, fmpz_t a,
                    fmpz_t b, unsigned long trunc)
Set res to f1 times f2 truncated to trunc limbs. This is in general faster than doing a full multiplication then truncating.

void fmpz_mul_ui(fmpz_t res, const fmpz_t f1, unsigned long x)
Set res to f1 times the unsigned long x.

void fmpz_mul_2exp(fmpz_t output, fmpz_t x, unsigned long exp)
Set output to x multiplied by $2^\text{exp}$.

void fmpz_addmul(fmpz_t res, const fmpz_t f1, const fmpz_t f2)
Set res to res + f1 * f2.
8.10 Division

void fmpz_tdiv(fmpz_t res, const fmpz_t f1, const fmpz_t f2)

Set res to the quotient of f1 by f2. Round the quotient towards zero and discard the remainder.

void fmpz_fdiv(fmpz_t res, const fmpz_t f1, const fmpz_t f2)

Set res to the quotient of f1 by f2. Round the quotient towards minus infinity and discard the remainder.

void fmpz_tdiv_ui(fmpz_t res, const fmpz_t f1, unsigned long x)

Set res to the quotient of f1 by the unsigned long x. Round the quotient towards zero and discard the remainder.

void fmpz_div_2exp(fmpz_t output, fmpz_t x, unsigned long exp)

Divide x by 2^exp, returning the quotient and discarding the remainder. Rounding occurs towards zero.

int fmpz_divides(fmpz_t q, const fmpz_t a, const fmpz_t b)

If b divides a then set q to the quotient and return 1, else return 0.

8.11 Modular arithmetic

unsigned long fmpz_mod_ui(const fmpz_t input, const unsigned long x)

Returns f1 modulo the unsigned long x. Note that input may be signed.

void fmpz_mod(fmpz_t res, const fmpz_t input, const fmpz_t x)

Sets res to input modulo x. Note that input may be signed but x must be unsigned.

void fmpz_mulmod(fmpz_t res, fmpz_t a, fmpz_t b, fmpz_t m)

Sets res to a multiplied by b modulo m. Note m must be unsigned and both a and b are assumed to be reduced modulo m.

void fmpz_invert(fmpz_t res, fmpz_t x, fmpz_t m)

Sets res to the inverse of x modulo m. Note m must be unsigned, x and m must be coprime and x reduced modulo m.

void fmpz_divmod(fmpz_t res, fmpz_t a, fmpz_t b, fmpz_t m)

Sets res to a divided by b modulo m. Note m must be unsigned, b and m must be coprime and both a and b are assumed to be reduced modulo m.
8.12 Powering

void fmpz_pow_ui(fmpz_t res, const fmpz_t f, unsigned long exp)

Set res to f raised to the power exp. This requires exp to be non-negative.

8.13 Root extraction

void fmpz_sqrtrem(fmpz_t sqrt, fmpz_t rem, fmpz_t x)

Computes the square root of x and returns the integer part of the square root, sqrt, and the remainder, rem = x - sqrt^2.
Note that x must be non-negative, else an exception is raised.

8.14 Number theoretical

void fmpz_gcd(fmpz_t output, fmpz_t x1, fmpz_t x2)

Compute the greatest common divisor of x1 and x2. The result is always non-negative and will be zero if both of the inputs are zero.

8.15 Chinese remainding

void fmpz_CRT_ui_precomp(fmpz_t x, fmpz_t r1, fmpz_t m1,
unsigned long r2, unsigned long m2, unsigned long c,
pre_inv_t pre)
void fmpz_CRT_ui2_precomp(fmpz_t x, fmpz_t r1, fmpz_t m1,
unsigned long r2, unsigned long m2, unsigned long c,
pre_inv2_t pre)

Computes the unique value x modulo m1*m2 that is r1 modulo m1 and r2 modulo m2. Requires m1 and m2 to be coprime, c to be set to the value m1 modulo m2 and pre to be a precomputed inverse of m2 (computed using z_precompute_inverse(m2)).
The first version of the function requires that m2 be no more than FLINT_D_BITS bits, whereas the second version requires m2 to be no more than FLINT_BITS - 1 bits.

Multiple modular reductions or Chinese remainders can be done at once with the following functions. An fmpz_comb_t type holds information which is used to speed up the modular reductions and modular recombinations. The first two functions are for initialising and clearing such a structure.

void fmpz_comb_init(fmpz_comb_t comb, ulong * primes, ulong num_primes)

Initialise a comb structure for multimodular reduction and recombination. The array primes is assumed to contain num_primes primes each of FLINT_BITS - 1 bits. Modular reductions and recombinations will be done modulo this list of primes. The primes array must not be free’d until the comb structure is no longer required and must be cleared by the user.

void fmpz_comb_clear(fmpz_comb_t comb)
Clear the given comb structure, releasing any memory it uses.

```c
fmpz_t ** fmpz_comb_temp_init(fmpz_comb_t comb)
```

Creates temporary space to be used by multimodular and CRT functions based on an initialised comb structure.

```c
void fmpz_comb_temp_clear(fmpz_t ** temp, fmpz_comb_t comb);
```

Clears temporary space `temp` used by multimodular and CRT functions using the given comb.

```c
void fmpz_multi_mod_ui(unsigned long * out, fmpz_t in, fmpz_comb_t comb, fmpz_t ** temp)
```

Reduces the multiprecision integer `in` modulo each of the primes stored in the comb structure. The array `out` will be filled with the residues modulo these primes. The array `temp` is temporary space which must be provided by `fmpz\_comb\_temp\_init` and cleared by `fmpz\_comb\_temp\_clear`.

```c
void fmpz_multi_CRT_ui_unsigned(fmpz_t output, unsigned long * residues, fmpz_comb_t comb, fmpz_t ** comb_temp)
```

This function takes a set of residues modulo the list of primes contained in the comb structure and reconstructs the unique unsigned multiprecision integer modulo the product of the primes which has these residues modulo the corresponding primes. The array `temp` is temporary space which must be provided by `fmpz\_comb\_temp\_init` and cleared by `fmpz\_comb\_temp\_clear`.

```c
void fmpz_multi_CRT_ui(fmpz_t output, unsigned long * residues, fmpz_comb_t comb, fmpz_t ** comb_temp)
```

This function takes a set of residues modulo the list of primes contained in the comb structure and reconstructs a signed multiprecision integer modulo the product of the primes which has these residues modulo the corresponding primes. If \( N \) is the product of all the primes then `output` is normalised to be in the range \([- (N - 1)/2, N/2]\]. The array `temp` is temporary space which must be provided by `fmpz\_comb\_temp\_init` and cleared by `fmpz\_comb\_temp\_clear`.

### 8.16 Montgomery format

In this section a number of functions are described which deal with numbers in Montgomery format. In cases where multiple multiplicative functions need to be applied, Montgomery format provides a speed increase over manipulating the integers in ordinary multiprecision format.

```c
void fmpz_montgomery_init(fmpz_montgomery_t mont, fmpz_t m)
```

Convert the multiprecision integer to Montgomery format for use with the `fmpz_montgomery_redc` function.
void fmpz_montgomery_clear(fmpz_montgomery_t mont)

Clear the Montgomery structure, releasing any memory used.

void fmpz_montgomery_redc(fmpz_t res, fmpz_t x,
                         fmpz_montgomery_t mont)

Compute the product of x and the integer stored in Montgomery format in mont and store the result in Montgomery format in res.

void fmpz_montgomery_mulmod_init(fmpz_montgomery_t mont,
                                  fmpz_t b, fmpz_t m)

Compute the Montgomery format of a precomputed multiplication by b modulo m.

void fmpz_montgomery_mulmod(fmpz_t res, fmpz_t a,
                            fmpz_montgomery_t mont)

Compute the product of a by b modulo m where the precomputed data b and m are stored in the Montgomery structure mont by the previous function. Set res to the result, which is in ordinary integer format, not Montgomery format.

void fmpz_montgomery_divmod_init(fmpz_montgomery_t mont,
                                  fmpz_t b, fmpz_t m)

Compute the Montgomery format of a precomputed division by b modulo m, assuming b is coprime with and reduced modulo m.

void fmpz_montgomery_mulmod(fmpz_t res, fmpz_t a,
                            fmpz_montgomery_t mont)

Compute a divided by b modulo m where the precomputed data b and m are stored in the Montgomery structure mont by the previous function. Set res to the result, which is in ordinary integer format, not Montgomery format.

void fmpz_montgomery_mod_init(fmpz_montgomery_t mont, fmpz_t m)

Compute the Montgomery format for a precomputed reduction modulo m.

void fmpz_montgomery_mod(fmpz_t res, fmpz_t a,
                        fmpz_montgomery_t mont)

Compute a modulo m where the precomputed data m is stored in the Montgomery structure mont by the previous function. Set res to the result, which is in ordinary integer format, not Montgomery format.
The F_mpz module introduces a new FLINT integer format, the F_mpz_t. By default an F_mpz_t is implemented as an array of F_mpz’s of length one to allow passing by reference as one can do with GMP/MPIR’s mpz_t type. The F_mpz type is simply a single limb, though the user does not need to be aware of this except in one specific case outlined below. In all respects, F_mpz_t’s act precisely like GMP/MPIR mpz_t’s, with automatic memory management, however in the first place only one limb is used to implement them. Once an F_mpz_t overflows a limb then a multiprecision integer is automatically allocated and instead of storing the actual integer data the long which implements the type becomes an index into a FLINT wide array of mpz_t’s. These internal implementation details are not important for the user to understand, except for three important things. Firstly, F_mpz_t’s will be more efficient than mpz_t’s for single limb operations (strictly speaking for signed quantities whose absolute value does not exceed FLINT_BITS - 2 bits). Secondly, for small integers that fit into FLINT_BITS - 2 bits much less memory will be used than for an mpz_t. When very many F_mpz_t’s are used, there can be important cache benefits on account of this. Thirdly, it is important to understand how to deal with arrays of F_mpz_t’s. As for mpz_t’s there is an underlying type (an F_mpz) which can be used to create the array, e.g.:

F_mpz myarr[100];

Now recall that an F_mpz_t is an array of length one of F_mpz’s. Thus a pointer to an F_mpz can be used in place of an F_mpz_t. For example to find the sign of the third integer in our array we would write:

int sign = F_mpz_sgn(myarr + 2);

The F_mpz module provides routines for memory management, basic manipulation and basic arithmetic. Unless otherwise specified, all functions in this section permit aliasing between their input arguments and between their input and output arguments.

9.1 Simple example

The following example computes the square of the integer 7 and prints the result.

```c
#include "F_mpz.h"
....
F_mpz_t x, y;
F_mpz_init(x);
F_mpz_init(y);
F_mpz_set_ui(x, 7);
F_mpz_mul(y, x, x);
F_mpz_print(x);
printf("^2 = ");
F_mpz_print(y);
printf("\n");
F_mpz_clear(x);
F_mpz_clear(y);
```

The output is:

7^2 = 49

We now describe the functions available in the F_mpz module.
9.2 Memory Management

void F_mpz_init(F_mpz_t f)

Initialise an F_mpz_t for use. It starts as a small F_mpz_t (i.e. one not representing an mpz_t).

void F_mpz_init2(F_mpz_t f, ulong limbs)

Allocate an F_mpz_t with the given number of limbs. If limbs is zero then a small F_mpz_t results (i.e. not representing an mpz_t).

void F_mpz_clear(F_mpz_t f)

Clear the given F_mpz_t.

9.3 Random generation

At the present moment the following random generation functions are provided for convenience only. They are not intended to be efficient and their prototypes may change in a later version of FLINT.

void F_mpz_random(F_mpz_t f, const ulong bits)

Generate a random F_mpz_t with the given number of bits.

void F_mpz_randomm(F_mpz_t f, const mpz_t n)

Generate a random F_mpz_t in [0,n) where n is an mpz_t.

9.4 Assignment and basic manipulation

void F_mpz_zero(F_mpz_t f)

Set the given F_mpz_t to zero.

void F_mpz_neg(F_mpz_t f, F_mpz_t g)

Set f to minus g.

void F_mpz_set_si(F_mpz_t f, const long val)

Set f to a signed long value val.

void F_mpz_set_ui(F_mpz_t f, const ulong val)
Set $f$ to an unsigned long value $val$.

\begin{verbatim}
long F_mpz_get_si(const F_mpz_t f)

Return the value of $f$ as a long.

long F_mpz_get_ui(const F_mpz_t f)

Return the value of $f$ as an unsigned long.

void F_mpz_get_mpz(mpz_t x, const F_mpz_t f)

Returns $f$ as an $mpz_t$.

double F_mpz_get_d_2exp(long * exp, const F_mpz_t f)

Return $f$ as a signed normalised double and a long exponent.

void F_mpz_set_mpz(F_mpz_t f, const mpz_t x)

Sets $f$ to the given $mpz_t$.

void F_mpz_set_limbz(F_mpz_t f, const mp_limb_t * x, const ulong limbs)

Sets $f$ to the array of limbs $x$ which is the given number of limbs in length and where the least significant limb is stored first in $x$.

ulong F_mpz_set_limbz(const mp_limb_t * x, F_mpz_t f)

Sets the array of limbs $x$ to the absolute value of $f$. The array is assumed to be stored with least significant limb first. The number of limbs written is returned.

void F_mpz_set(F_mpz_t f, F_mpz_t g)

Sets $f$ to the value of $g$.

void F_mpz_swap(F_mpz_t f, F_mpz_t g)

Efficiently swaps the two $F_mpz_t$'s $f$ and $g$.
\end{verbatim}
9.5 Comparison

```c
int F_mpz_equal(const F_mpz_t f, const F_mpz_t g)
```
Returns 1 if the values f and g are equal, otherwise returns 0.

```c
int F_mpz_cmpabs(const F_mpz_t f, const F_mpz_t g)
```
Returns a negative value if \(\text{abs}(f) < \text{abs}(g)\), positive if \(\text{abs}(f) > \text{abs}(g)\) and returns 0 if the two values are equal.

```c
int F_mpz_cmp(const F_mpz_t f, const F_mpz_t g)
```
Returns a negative value if \(f < g\), positive if \(f > g\) and returns 0 if the two values are equal.

9.6 Properties of integers

```c
ulong F_mpz_size(F_mpz_t f)
```
Returns the number of limbs required to store the absolute value of f. Returns 0 if f is zero.

```c
int F_mpz_sgn(const F_mpz_t f)
```
Returns 1 if f is positive, -1 if it is negative and 0 if f is zero.

```c
int F_mpz_is_zero(const F_mpz_t f)
```
Returns 1 if f is zero, 0 otherwise.

```c
ulong F_mpz_bits(F_mpz_t f)
```
Returns the number of bits required to store the absolute value of f. Returns 0 if f is zero.

```c
__mpz_struct * F_mpz_ptr_mpz(F_mpz f)
```
Returns a pointer to the \mpz_t associated with the coefficient f. Assumes f is actually associated with an \mpz_t and not a long. To determine if g is actually an \mpz_t one can use the macro COEFF_IS_MPZ(*g).

Users generally do not need to use this function and it is mainly used internally by FLINT. However it can be useful when one wishes to read an F_mpz_t as an \mpz_t without making a copy of the data.

If g is an F_mpz_t one must first dereference it before passing it to this function.

To get the value of g as a long when it is not associated with an \mpz_t simply dereference g, i.e. the value is given by *g.
9.7 Input/output

void F_mpz_print(F_mpz_t x)

Print the given F_mpz_t to stdout.

void F_mpz_read(F_mpz_t x)

Read an F_mpz_t from stdin. The integer can be a signed multiprecision integer in decimal format.

9.8 Addition/subtraction

void F_mpz_add_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Add the unsigned long x to g and set f to the result.

void F_mpz_sub_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Subtract the unsigned long x from g and set f to the result.

void F_mpz_add_mpz(F_mpz_t f, const F_mpz_t g, mpz_t h)

Set f to g plus h, where h is an mpz_t.

void F_mpz_add(F_mpz_t f, const F_mpz_t g, F_mpz_t h)

Set f to g plus h.

void F_mpz_sub(F_mpz_t f, const F_mpz_t g, F_mpz_t h)

Set f to g minus h.

9.9 Multiplication

void F_mpz_mul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply g by the unsigned long x and set f to the result.

void F_mpz_mul_si(F_mpz_t f, const F_mpz_t g, const long x)

Multiply g by the signed long x and set f to the result.
void F_mpz_mul2(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply \( g \) by \( h \) and set \( f \) to the result. The function is called \texttt{mul2} rather than \texttt{mul} due to a conflict in naming with the \texttt{mpn_extras} module in FLINT. This conflict will be removed in a later version of FLINT.

void F_mpz_mul_2exp(F_mpz_t f, const F_mpz_t g, const ulong exp)

Multiply \( g \) by \( 2^{\text{exp}} \) and set \( f \) to the result.

void F_mpz_addmul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply \( g \) by the unsigned long \( x \) and add the result to \( f \), in place.

void F_mpz_submul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply \( g \) by the unsigned long \( x \) and subtract the result from \( f \), in place.

void F_mpz_addmul(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply \( g \) by \( h \) and add the result to \( f \), in place.

void F_mpz_submul(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply \( g \) by \( h \) and subtract the result from \( f \), in place.

9.10 Division and remainder

void F_mpz_div_2exp(F_mpz_t f, const F_mpz_t g, const ulong exp)

Divide \( g \) by \( 2^{\text{exp}} \) and set \( f \) to the result. Rounding is towards zero.

void F_mpz_mod(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set \( f \) to \( g \) modulo \( h \).

void F_mpz_divexact(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set \( f \) to \( g \) divided by \( h \), assuming the division is exact.

void F_mpz_fdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set \( f \) to \( g \) divided by \( h \), rounded down towards minus infinity.

void F_mpz_cdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set \( f \) to \( g \) divided by \( h \), rounded up towards infinity.

void F_mpz_rdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set \( f \) to \( g \) divided by \( h \), rounded to nearest, ties rounded towards positive infinity.
9.11 Powering

void Fmpz_pow_ui(Fmpz_t f, const Fmpz_t g, const ulong exp)

Set f to g to the power exp. If 0 is raised to the power 0, the result will be 1.

10 The zmod_poly module

The zmod_poly_t data type represents elements of \(\mathbb{Z}/n\mathbb{Z}[x]\) for some word sized integer \(n\). Most of the functions work for an arbitrary \(n\), however the division functions require the leading coefficient of the divisor polynomial to be invertible modulo \(n\) and the factoring, gcd and resultant functions require \(n\) to be prime.

The zmod_poly module provides routines for memory management, basic manipulation and basic arithmetic.

Each coefficient of a zmod_poly_t is stored as an unsigned long and is assumed to be reduced modulo the modulus \(n\). Unless otherwise specified all functions return polynomials whose coefficients are reduced modulo \(n\).

Unless otherwise specified, all functions in this section permit aliasing between their input arguments and between their input and output arguments.

10.1 Simple example

The following example computes the square of the polynomial \(5x^3 + 1\), where the coefficients are understood to be in \(\mathbb{Z}/7\mathbb{Z}\).

```
#include "zmod_poly.h"
....
zmod_poly_t x, y;
zmod_poly_init(x, 7);
zmod_poly_init(y);
zmod_poly_set_coeff_ui(x, 3, 5);
zmod_poly_set_coeff_ui(x, 0, 1);
zmod_poly_mul(y, x, x);
zmod_poly_print(x); printf("\n");
zmod_poly_print(y); printf("\n");
zmod_poly_clear(x);
zmod_poly_clear(y);
```

The output is:

```
4 1 0 0 5
7 1 0 0 3 0 0 4
```

10.2 Definition of the zmod_poly_t polynomial type

The zmod_poly_t type is a typedef for an array of length 1 of zmod_poly_struct's. This permits passing parameters of type zmod_poly_t ‘by reference’.
All \texttt{zmod\_poly} functions expect their inputs to be normalised, and unless otherwise specified they produce output that is normalised.

It is recommended that users do not access the fields of a \texttt{zmod\_poly\_t} or its coefficient data directly, but make use of the functions designed for this purpose (detailed below). The type has fields for the length of the polynomial, the number of coefficients allocated (the length is always less than or equal to this), a modulus \( n \) and possibly a precomputed inverse of \( n \). Data is also stored for manipulation of the polynomials by \texttt{zn\_poly} which is included in FLINT for efficient computation with polynomials in this module.

Functions in \texttt{zmod\_poly} do all the memory management for the user. One does not need to specify the maximum length in advance before using a \texttt{zmod\_poly\_t} polynomial object, but it may be more efficient to do so. FLINT reallocates space automatically as the computation proceeds, if more space is required.

We now describe the functions available in \texttt{zmod\_poly}.

### 10.3 Memory management

```c
void zmod_poly_init(zmod_poly_t poly, unsigned long p)
```

Initialise \texttt{poly} as a polynomial over \( \mathbb{Z}/p\mathbb{Z} \).

```c
void zmod_poly_init2(zmod_poly_t poly, unsigned long p, unsigned long alloc)
```

Initialise \texttt{poly} as a polynomial over \( \mathbb{Z}/p\mathbb{Z} \), allocating space for at least the given number of coefficients.

```c
void zmod_poly_clear(zmod_poly_t poly)
```

Release the memory used by \texttt{poly}, which cannot then be used until it is initialised again.

```c
void zmod_poly_realloc(zmod_poly_t poly, unsigned long alloc)
```

Reallocate \texttt{poly} so that it has space for \texttt{alloc} coefficients. If \texttt{alloc} is greater than the current length of the polynomial, the existing coefficients are retained, otherwise the polynomial is truncated and normalised.

```c
void zmod_poly_fit_length(zmod_poly_t poly, unsigned long alloc)
```

Reallocate \texttt{poly} so that it has space for at least \texttt{alloc} coefficients. This function will not reduce the number of allocated coefficients, so no data will be lost.
10.4 Setting/retrieving coefficients

```c
unsigned long zmod_poly_get_coeff_ui(zmod_poly_t poly,
 unsigned long n)
```

Return the \( n \)-th coefficient as an \texttt{unsigned long}. Coefficients are numbered from zero, starting with the constant coefficient. If \( n \) is greater than or equal to the current length of the polynomial, zero is returned.

```c
void zmod_poly_set_coeff_ui(zmod_poly_t poly, unsigned long n,
 unsigned long c)
```

Set the \( n \)-th coefficient to the \texttt{unsigned long} \( c \). It is assumed that \( c \) is already reduced modulo the modulus of the polynomial. Coefficients are numbered from zero, starting with the constant coefficient. If \( n \) is greater than the current length of the polynomial, zeroes are inserted between the new coefficient and the existing coefficients if required.

10.5 String conversions and I/O

The functions in this section read/write a polynomial to/from a string representation. The representation starts with the length of the polynomial, a space and then the modulus of the polynomial. If the length is not zero, this is followed by two spaces and then a space separated list of the coefficients starting from the constant coefficient. Each coefficient is represented as an integer between zero and one less than the modulus.

The polynomial \( 3 \times x^2 + 2 \) in \( \mathbb{Z}/7\mathbb{Z}[x] \) would be represented:

```
3 7 2 0 3
```

```c
int zmod_poly_from_string(zmod_poly_t poly, char* s)
```

Load \texttt{poly} from the given string \( s \).

```c
char* zmod_poly_to_string(zmod_poly_t poly)
```

Return a pointer to a string representing \texttt{poly}. Space is allocated for the string and must be freed after use.

```c
void zmod_poly_print(zmod_poly_t poly)
```

Print the string representation of \texttt{poly} to stdout.

```c
void zmod_poly_fprint(zmod_poly_t poly, FILE* f)
```

Print the string representation of \texttt{poly} to the given file/stream \( f \).
int zmod_poly_read(zmod_poly_t poly)

Read a polynomial in string representation from stdin. The function returns 1 if the string represented a valid polynomial, otherwise it returns 0.

int zmod_poly_fread(zmod_poly_t poly, FILE* f)

Read a polynomial in string representation from the given file/stream f. The function returns 1 if the string represented a valid polynomial, otherwise it returns 0.

10.6 Polynomial parameters (length, degree, modulus, etc.)

unsigned long zmod_poly_length(zmod_poly_t poly)

Return the current length of the polynomial. The zero polynomial has length 0.

long zmod_poly_degree(zmod_poly_t poly)

Return the degree of the polynomial. The zero polynomial is defined to have length −1.

unsigned long zmod_poly_modulus(zmod_poly_t poly)

Return the modulus of the polynomial, i.e. if n is returned, the polynomial is an element of \( \mathbb{Z}/n\mathbb{Z}[x] \).

unsigned long zmod_poly_bits(zmod_poly_t poly)

Return the maximum number of bits used in the coefficients of poly, i.e. if n is returned, then no coefficient of the polynomial uses more than n bits.

10.7 Assignment and basic manipulation

void zmod_poly_truncate(zmod_poly_t poly, unsigned long length)

Truncate poly to the given length and normalise.

void zmod_poly_set(zmod_poly_t res, zmod_poly_t poly)

Set res to equal poly.

void zmod_poly_zero(zmod_poly_t poly)

Set poly to be the zero polynomial.
void zmod_poly_swap(zmod_poly_t poly1, zmod_poly_t poly2)

Efficiently swap poly1 and poly2. Data is not actually copied in memory. Instead, pointers are swapped.

void zmod_poly_neg(zmod_poly_t res, zmod_poly_t poly)

Negate the polynomial poly, i.e. set res to -poly.

void zmod_poly_reverse(zmod_poly_t output, zmod_poly_t input, unsigned long length)

Notionally zero padding or truncating if necessary, this function considers input to be a polynomial of the given length and reverses it, storing the result in output.

void __zmod_poly_normalise(zmod_poly_t poly)

Normalises the given polynomial. The polynomial will then either be of length zero or its leading coefficient will be non-zero. As all functions in the zmod_poly module expect and return normalised polynomials, this function is only used when manipulating coefficients directly rather than through the functions provided.

10.8 Subpolynomials

These functions allow one to attach a zmod_poly_t object to an existing polynomial or subpolynomial thereof. The subpolynomial is normalised if necessary.

Since FLINT cannot reallocate the attached polynomial object, these functions should only be used to construct polynomial objects to be used as inputs to other zmod_poly functions.

void _zmod_poly_attach(zmod_poly_t poly1, zmod_poly_t poly2)

Attach poly1 to the polynomial object poly2.

void _zmod_poly_attach_shift(zmod_poly_t poly1, zmod_poly_t poly2, unsigned long n)

This function notionally shifts poly2 to the right by n coefficients and then attaches the polynomial object poly1 to the result.

void _zmod_poly_attach_truncate(zmod_poly_t poly1, zmod_poly_t poly2, unsigned long n)

This function notionally truncates poly2 to length n and then attaches the polynomial object poly1 to the result.
10.9 Comparison

```c
int zmod_poly_equal(zmod_poly_t poly1, zmod_poly_t poly2)
```

Returns 1 if the two polynomials are equal, otherwise returns 0.

```c
int zmod_poly_is_one(zmod_poly_t poly1)
```

Returns 1 if the polynomial is equal to the constant polynomial 1, otherwise returns 0.

```c
int zmod_poly_is_zero(zmod_poly_t poly1)
```

Returns 1 if the polynomial is the zero polynomial, otherwise returns 0.

10.10 Scalar multiplication and division

```c
void zmod_poly_scalar_mul(zmod_poly_t res, zmod_poly_t poly, unsigned long scalar)
```

Multiply the polynomial through by the given scalar. It is assumed that `scalar` is already reduced modulo the modulus of the polynomial.

```c
void zmod_poly_make_monic(zmod_poly_t output, zmod_poly_t pol)
```

Divide the polynomial through by the inverse of the leading coefficient of the polynomial. It is assumed that the leading coefficient is invertible modulo the modulus of the polynomial. This function results in a monic polynomial if this condition is met, otherwise the result is undefined.

10.11 Addition/subtraction

```c
void zmod_poly_add(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2)
```

Set `res` to the sum of `poly1` and `poly2`. Note that if cancellation occurs, `res` may have a lesser length than either of the two input polynomials.

```c
void zmod_poly_sub(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2)
```

Set `res` to `poly1` minus `poly2`. Note that if cancellation occurs, `res` may have a lesser length than either of the two input polynomials.
10.12 Shifting

void zmod_poly_left_shift(zmod_poly_t res, zmod_poly_t poly,
                         unsigned long k)

Shift the polynomial poly left by k coefficients, i.e. multiply the polynomial by \(x^k\) and store the result in res. The value of k must be non-negative.

void zmod_poly_right_shift(zmod_poly_t res, zmod_poly_t poly,
                          unsigned long k)

Shift the polynomial poly right by k coefficients, i.e. divide the polynomial by \(x^k\), ignoring the remainder and store the result in res. The value of k must be non-negative. If k is greater than or equal to the current length of poly, res is set to the zero polynomial.

10.13 Polynomial multiplication

void zmod_poly_mul(zmod_poly_t res, zmod_poly_t poly1,
                   zmod_poly_t poly2)

Set res to poly1 multiplied by poly2. The length of res will be poly1->length + poly2->length - 1.

void zmod_poly_sqr(zmod_poly_t res, zmod_poly_t poly)

Set res to poly squared. The length of res will be 2*poly->length - 1.

void zmod_poly_mul_precache_init(zmod_poly_precache_t pre,
                                 zmod_poly_t poly2, unsigned long bits_input,
                                 unsigned long length1)

This function precaches an FFT of the polynomial input2 for (usually multiple) subsequent multiplications by the polynomial input2, with up to the given number of bits per output coefficient (0 if this is to be computed automatically). One must set length1 to the maximum length of any polynomials poly1 that poly2 will be multiplied by.

void zmod_poly_mul_precache(zmod_poly_t output,
                           zmod_poly_t poly1, zmod_poly_precache_t pre)

Multiply the polynomial poly1 by the polynomial whose precached FFT has been stored in pre by zmod_poly_mul_precache_init, i.e. sets output to the product of poly1 by poly2.

void zmod_poly_mul_precache_clear(zmod_poly_precache_t pre)

Free any memory used by the zmod_poly_mul_precache_t pre.
void zmod_poly_mul_trunc_n(zmod_poly_t res, zmod_poly_t poly1, 
                         zmod_poly_t poly2, unsigned long n)

Set res to poly1 multiplied by poly2 and truncate to length n if this is less than the length of 
the full product. This function is usually more efficient than simply doing the multiplication 
and then truncating. The function is tuned for n about half the length of a full product. This 
function is sometimes called a short product. 

This function can be used for power series multiplication.

void zmod_poly_mul_trunc_left_n(zmod_poly_t res, 
                                zmod_poly_t poly1, zmod_poly_t poly2, unsigned long n)

Set res to poly1 multiplied by poly2 ignoring the least significant n terms of the result which 
may be set to anything. This function is more efficient than doing the full multiplication if 
the operands are relatively short. It is tuned for n about half the length of a full product. 
This function is sometimes called an opposite short product.

void zmod_poly_mul_trunc_n_precache_init(zmod_poly_precache_t pre, 
                                         zmod_poly_t poly2, unsigned long bits, unsigned long trunc)

This function precaches an FFT of a polynomial poly2 to be used (usually multiple times) 
for truncated multiplications by input2, with up to the given number of bits per output 
coefficient (0 if this is to be computed automatically), where the output will be truncated to 
given length. 

This function is also used for initialising a precached middle product.

void zmod_poly_mul_trunc_n_precache(zmod_poly_t output, 
                                     zmod_poly_t poly1, zmod_poly_precache_t pre, unsigned long trunc)

Performs a truncated multiplication by a polynomial whose FFT has been precached using 
zmod_poly_mul_trunc_n_precache_init, i.e. output is set to poly1 multiplied by poly2 
and truncated to length trunc (and normalised).

void zmod_poly_mul_middle(zmod_poly_t output, 
                          zmod_poly_t poly1, zmod_poly_t poly22, 
                          unsigned long trunc)

Performs a middle product of the polynomial poly1 by the polynomial poly2. 
The middle product is the product of poly1 by poly2 truncated to length trunc and with 
the first trunc/2 coefficients set to zero. Note that for this function to return a correct result 
one must ensure that if the full product were wrapped around after the first trunc terms 
then no more than trunc/2 terms would be affected by the wraparound. 

The typical situation to apply this function is when multiplying a polynomial of length 2n 
by one of length n. Ordinarily the product would have 3n − 1 terms, however if trunc is set 
to 2n the first n terms will be set to zero and the product truncated at 2n terms. Note that 
n − 1 terms would be wrapped around and n − 1 is less than the n terms that will be set to 
zero.
void zmod_poly_mul_middle_precache(zmod_poly_t output,
        zmod_poly_t poly1, zmod_poly_precache_t pre,
        unsigned long trunc)

Performs a middle product of the polynomial poly1 by the precached polynomial poly2 stored in pre by the function zmod_poly_mul_trunc_n_precache_init. The middle product is the product of poly1 by poly2 truncated to length trunc with the first trunc/2 coefficients set to zero. Note that for this function to return a correct result one must ensure that if the full product were wrapped around after the first trunc terms then no more than trunc/2 terms would be affected by the wraparound. The typical situation to apply this function is when multiplying a polynomial of length 2n by one of length n. Ordinarily the product would have 3n – 1 terms, however if trunc is set to 2n the first n terms will be set to zero and the product truncated at 2n terms.

10.14 Polynomial division

void zmod_poly_invert_series(zmod_poly_t Q_inv, zmod_poly_t Q,
        unsigned long n)

Treat the polynomial Q as a series of length n (the constant coefficient of the series is taken to be the constant coefficient of the polynomial, which must be invertible modulo the modulus of Q) and invert it, yielding a series Q_inv also given to precision n.

void zmod_poly_div_series(zmod_poly_t Q, zmod_poly_t A,
        zmod_poly_t B, unsigned long n)

Treat the polynomials A and B as series of length n and compute the quotient series Q = A/B.

void zmod_poly_divrem(zmod_poly_t Q, zmod_poly_t R,
        zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by B and set Q to the quotient and R to the remainder. The leading coefficient of B must be invertible modulo the modulus of B.

void zmod_poly_div(zmod_poly_t Q, zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by the polynomial B and set Q to the quotient. The leading coefficient of B must be invertible modulo the modulus of B. This function is slightly faster than computing the quotient and remainder as per zmod_poly_divrem.

void zmod_poly_rem(zmod_poly_t R, zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by B and set R to the remainder. The leading coefficient of B must be invertible modulo the modulus of B. This function is more efficient than computing the quotient and remainder as per zmod_poly_divrem.
10.15 Greatest common divisor and resultant

```c
unsigned long zmod_poly_resultant(zmod_poly_t a, zmod_poly_t b)
```

Compute the resultant of the polynomials \(a\) and \(b\).

If \(a\) and \(b\) are monic with \(a(x) = \prod_i (x - \alpha_i)\) and \(b(x) = \prod_j (x - \beta_j)\), when factored over an algebraic closure of the field of coefficients, then the resultant is given by the expression \(r(x) = \prod_{i,j} (\alpha_i - \beta_j)\). If the polynomials are not monic, and \(a\) and \(b\) have leading coefficients \(l_1\) and \(l_2\) and degrees \(d_1\) and \(d_2\) respectively, then this quantity is multiplied by \(l_1^{d_2-1}l_2^{d_1-1}\).

Note that the resultant is zero iff the polynomials share a root over an algebraic closure of the coefficient ring.

```c
void zmod_poly_gcd(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2)
```

Compute the greatest common divisor of the polynomials \(poly1\) and \(poly2\). The result that is returned will be monic.

```c
int zmod_poly_gcd_invert(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2)
```

Compute a polynomial \(res\) such that \(res*poly1\) is 1 modulo \(poly2\). The two polynomials \(poly1\) and \(poly2\) are assumed to be coprime. If this is not the case, the function returns 0 and the result is undefined, otherwise it returns 1.

```c
void zmod_poly_xgcd(zmod_poly_t res, zmod_poly_t s, zmod_poly_t t, zmod_poly_t poly1, zmod_poly_t poly)
```

Compute polynomials \(s\) and \(t\) such that \(s*poly1+t*poly2\) is the resultant of the polynomials \(poly1\) and \(poly2\). The polynomials \(poly1\) and \(poly2\) are assumed to be coprime. The resultant that is returned will be monic.

10.16 Differentiation

```c
void zmod_poly_derivative(zmod_poly_t res, zmod_poly_t poly)
```

Set \(res\) equal to the derivative of \(poly\) and reduce all the coefficients modulo the modulus of \(poly\).

10.17 Arithmetic modulo a polynomial

```c
void zmod_poly_mulmod(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2, zmod_poly_t f)
```

Set \(res\) equal to the product of \(poly1\) and \(poly2\) modulo \(f\). Assumes that \(poly1\) and \(poly2\) are reduced modulo \(f\).
void zmod_poly_powmod(zmod_poly_t res, zmod_poly_t pol, long exp, zmod_poly_t f)

Sets res equal to pol raised to the power exp modulo f. Assumes pol is reduced modulo f. There are no restrictions on exp, i.e. it can be zero, positive or negative. The leading coefficient of f must be invertible modulo the modulus.

10.18 Composition and evaluation

ulong zmod_poly_evaluate(zmod_poly_t poly, ulong c)

Evaluate the polynomial poly at the value c and return the result. It is assumed that c is already reduced modulo the modulus of poly.

void zmod_poly_compose_horner(zmod_poly_t res, zmod_poly_t poly1, zmod_poly_t poly2)

Compute the composition poly1(poly2(x)) and set res to the result.

10.19 Polynomial Factorization

void zmod_poly_factor_init(zmod_poly_factor_t fac)

Initializes an array for storing factors resulting from a factorisation.

void zmod_poly_factor_clear(zmod_poly_factor_t fac)

Clear an array of factors, releasing any memory used by the struct.

void zmod_poly_factor_add(zmod_poly_factor_t fac, zmod_poly_t poly)

Adds an extra element, poly, to the array of factors, fac.

void zmod_poly_factor_concat(zmod_poly_factor_t res, zmod_poly_factor_t fac)

Concatenates the two arrays, res and fac, into a single array of factors, res.

void zmod_poly_factor_print(zmod_poly_factor_t fac)

Prints to stdout each factor in the array fac each with their corresponding exponent.
void zmod_poly_factor_pow(zmod_poly_factor_t fac,
                        unsigned long exp)

   Raises each factor in the array fac to the power exp.

void zmod_poly_factor_square_free(zmod_poly_factor_t res,
                                   zmod_poly_t f)

   Sets res to a square-free factorization of f.

void zmod_poly_factor_berlekamp(zmod_poly_factor_t factors,
                                 zmod_poly_t f)

   Performs the Berlekamp factoring algorithm on f. Sets factors to the factors of f. Assumes
   f is squarefree.

unsigned long zmod_poly_factor(zmod_poly_factor_t result,
                               zmod_poly_t input)

   Sets result to be a complete factorization of input. There are no restrictions on input.

int zmod_poly_isirreducible(zmod_poly_t f)

   Returns 1 if the polynomial f is irreducible, otherwise it returns 0.

11 The long_extras module

The long_extras module contains functions for doing arithmetic with integers which will fit into an
unsigned long, including functions for modular arithmetic.

Many of the functions take a precomputed inverse, which increases performance. Unless otherwise
specified, the functions which include 2 in the name support moduli up to FLINT_BITS - 1 bits, i.e. 31
or 63 bits, and the remainder work with moduli up to and including FLINT_D_BITS.

On 64 bit machines, FLINT_BITS is 64 and FLINT_D_BITS is 53 bits. On a 32 bit machine the functions
with 2 in the name are in fact macros aliasing the corresponding unadorned version. In this case
FLINT_BITS is 32.

The functions which begin z_1l_ generally take a parameter consisting of two unsigned long’s thought
of as an integer of twice the normal size, e.g. on a 64 bit machine these functions would support an input
of 128 bits.

Many of the functions in this module can be used to manipulate the individual coefficients of polynomials
of type zmod_poly_t.

pre_inv_t z_precompute_inverse(unsigned long n)

pre_inv2_t z_precompute_inverse2(unsigned long n)

pre_inv_1l_t z_1l_precompute_inverse2(unsigned long n)
Return a precomputed inverse of the integer $n$. The first version returns a $\text{pre}_\text{inv}_\text{t}$, which is used with functions taking parameters up to $\text{FLINT}_\text{D}_\text{BITS}$. The second version returns a $\text{pre}_\text{inv}_\text{2}_\text{t}$ for use with functions with second versions of functions taking a precomputed inverse, which support parameters up to $\text{FLINT}_\text{BITS} - 1$ bits. The third version returns an inverse suitable for use with $\text{z}_\text{ll}_\text{t}$ functions which support an operand consisting of two $\text{unsigned long}$'s for twice the normal integer precision.

`unsigned long z_addmod(unsigned long a, unsigned long b, unsigned long p)`

Return the sum of $a$ and $b$ modulo $p$. Both $a$ and $b$ are assumed to be reduced modulo $p$ when calling this function.

`unsigned long z_submod(unsigned long a, unsigned long b, unsigned long p)`

Return $a$ minus $b$ modulo $p$. Both $a$ and $b$ are assumed to be reduced modulo $p$ when calling this function.

`unsigned long z_negmod(unsigned long a, unsigned long p)`

Return minus $a$ modulo $p$. The value $a$ is assumed to be reduced modulo $p$ when calling this function.

`unsigned long z_div2_precomp(unsigned long a, unsigned long n, \text{pre}_\text{inv}_\text{2}_\text{t} \text{ninv})`  

Return the floor of the quotient of $a$ by $n$. There are no restrictions on the size of $a$.

`unsigned long z_mod_precomp(unsigned long a, unsigned long n, \text{pre}_\text{inv}_\text{t} \text{ninv})`

`unsigned long z_mod2_precomp(unsigned long a, unsigned long n, \text{pre}_\text{inv}_\text{2}_\text{t} \text{ninv})`

`unsigned long z_ll_mod_precomp(unsigned long a_\text{hi}, unsigned long a_\text{lo}, unsigned long n, \text{pre}_\text{inv}_\text{ll}_\text{t} \text{ninv})`

Return $a$ modulo $n$. The first version assumes that $a$ is less than $n^2$. The second and third versions place no restrictions on $a$.

`unsigned long z_mulmod_precomp(unsigned long a, unsigned long b, unsigned long n, \text{pre}_\text{inv}_\text{t} \text{ninv})`

`unsigned long z_mulmod2_precomp(unsigned long a, unsigned long b, unsigned long n, \text{pre}_\text{inv}_\text{2}_\text{t} \text{ninv})`
Return $a$ times $b$ modulo $n$. The first version assumes that $a$ and $b$ have been reduced modulo $n$ before calling the function. The second version places no restrictions on $a$ and $b$, i.e. their product may be up to two full limbs.

\[
\text{unsigned long z_powmod(unsigned long a, long exp, unsigned long n)}
\]
\[
\text{unsigned long z_powmod2(unsigned long a, long exp, unsigned long n)}
\]
\[
\text{unsigned long z_powmod_precomp(unsigned long a, long exp, unsigned long n, pre_inv_t ninv)}
\]
\[
\text{unsigned long z_powmod2_precomp(unsigned long a, long exp, unsigned long n, pre_inv2_t ninv)}
\]

Raise $a$ to the power $exp$ modulo $n$. All versions assume $a$ is reduced modulo $n$, but there are no restrictions on $exp$, which may be negative (assuming $a$ is invertible modulo $n$) or zero.

\[
\text{int z_legendre_precomp(unsigned long a, unsigned long p, pre_inv_t pinv)}
\]

Computes the Legendre symbol of $a$ modulo $p$ for a prime $p$. Assumes that $a$ is reduced modulo $p$.

\[
\text{int z_jacobi(long x, unsigned long y)}
\]

Calculates the Jacobi symbol of $x$ mod $y$. Assumes that $\gcd(x,y) = 1$ and $y$ is odd.

\[
\text{int z_ispseudoprime_fermat(unsigned long const n, unsigned long const b)}
\]

Checks to see if $n$ is a Fermat pseudoprime with base $b$. Assumes that $n$ does not divide $b$.

\[
\text{int z_isprime(unsigned long n)}
\]
\[
\text{int z_isprime_precomp(unsigned long n, pre_inv_t ninv)}
\]

Returns 1 if $n$ is proved prime, otherwise it returns 0 in which case $n$ is composite. In the precomp version of the function it is assumed that $n$ is greater than 2 and odd. The function takes a precomputed inverse of $n$.

\[
\text{int z_isprobab_prime(unsigned long n)}
\]
\[
\text{int z_isprobab_prime_precomp(unsigned long n, pre_inv_t ninv)}
\]
This is a deterministic prime test up to $10^{16}$. Requires $n$ to be at most FLINT_BITS-1 bits. For numbers greater than $10^{16}$ there are no known counterexamples to the conjecture that a composite will never be declared prime. Primes are always declared prime by this test.

**unsigned long z_nextprime(unsigned long n, int proved)**

Returns the next prime after $n$. Assumes the result will fit in an unsigned long. If `proved` is 0 the prime is not proven prime, otherwise it is.

**int z_isprime_pocklington(unsigned long const n, unsigned long const iterations)**

Proves that $n$ is prime using a Pocklington-Lehmer test. Returns 0 if composite, 1 if prime and -1 if it failed to prove either way. The number of iterations can be increased for a more thorough check but will take longer. Setting `iterations` to -$1L$ will cause it to continue until the number is proven prime or composite.

**int z_ispseudoprime_lucas_ab(unsigned long n, int a, int b)**

Tests to see if $n$ is an $a,b$-Lucas pseudoprime. Returns 0 if $n$ is composite or fails gcd($n$, $2^a b^b (a^a - 4^b)) = 1$. Returns 1 if $n$ is a Lucas pseudoprime with respect to $x^2 - ax + b$. Returns -1 if the discriminant of the quadratic is square. Assumes $n$ has been checked for primality using trial factoring up to 256. The absolute values of $a$ and $b$ should be < 128. For details of this function see the book “Primes : a computational perspective” by Pomerance and Crandall.

**int z_ispseudoprime_lucas(unsigned long const n)**

Tests if $n$ is a Lucas pseudoprime as per the algorithm of Baillie and Wagstaff (see Math. Comp. vol 35, no. 152, 1980, pp. 1391–1417). Assumes $n$ has been checked for primality using trial factoring up to 256.

**unsigned long z_pow(unsigned long a, unsigned long exp)**

Computes $a$ to the power `exp` which must be non-negative. Assumes that the result will fit in an `unsigned long`.

**unsigned long z_sqrtmod(unsigned long a, unsigned long p)**

Returns a square root of $a$ modulo $p$. Assumes $a$ is reduced modulo $p$. The function returns 0 if $a$ is not a quadratic residue modulo a prime $p$.

**unsigned long z_cuberootmod(unsigned long * cuberoot1, unsigned long a, unsigned long p)**

51
Returns a cube root of \(a\) modulo a prime \(p\). Assumes \(a\) is reduced modulo \(p\). If \(a\) is not 0, the function also sets **cuberoott** to a cube root of unity modulo \(p\) if the cube roots of \(a\) are distinct, otherwise **cuberoott** is set to 1. If \(a\) is not a cubic residue modulo \(p\) the function returns 0.

unsigned long z_gcd(long x, long y)

Returns the greatest common divisor of \(x\) and \(y\), which may be signed.

unsigned long z_invert(unsigned long a, unsigned long n)

Returns a multiplicative inverse of \(a\) modulo \(n\). Assumes \(a\) is reduced modulo \(n\).

long z_gcd_invert(long * a, long x, long y)

Returns the greatest common divisor \(d\) of \(x\) and \(y\) (which may be signed) and sets \(a\) such that \(a \times x \equiv d \pmod{y}\). We ensure \(a\) is reduced modulo \(y\).

long z_xgcd(long * a, long * b, long x, long y)

Returns the greatest common divisor \(d\) of \(x\) and \(y\) (which may be signed) and sets \(a\) and \(b\) such that \(d = a \times x + b \times y\).

unsigned long z_intsqrt(unsigned long r)

Returns the integer part of the square root of \(r\).

int z_issquare(long x)

The function returns 0 if \(x\) is not a perfect square and 1 otherwise.

unsigned long z_CRT(unsigned long x1, unsigned long n1, unsigned long x2, unsigned long n2)

Returns the unique integer \(d\) reduced modulo \(n_1 \times n_2\) which is \(x_1 \pmod{n_1}\) and \(x_2 \pmod{n_2}\). Assumes \(x_1\) is reduced modulo \(n_1\) and \(x_2\) is reduced modulo \(n_2\). Also assumes \(n_1 \times n_2\) is no more than FLINT_BITS - 1 bits and that \(n_1\) and \(n_2\) are coprime.

int z_remove(unsigned long * n, unsigned long p)

int z_remove_precomp(unsigned long * n, unsigned long p, pre_inv_t pinv)
Removes the highest power of \( p \) possible from \( n \) and returns the exponent to which it appeared in \( n \). In the second function \( n \) can only be up to FLINT_BITS-1 bits.

```c
void z_factor(factor_t * factors, unsigned long n, int proved)
```

Find the factors of \( n \). If `proved` is set to 0 then the factors are not proved prime, otherwise the result is proved.

The `factor_t` struct contains three fields. The first is the `num` field, which is an int containing the number of factors. Then `p` is an array of unsigned long's containing the actual factors, and the respective exponents are given by the array of unsigned long's comprising the `exp` field of the struct.

```c
unsigned long z_factor_partial(factor_t * factors, unsigned long n, unsigned long limit, int proved)
```

Factors \( n \) until the product of the factor found is > `limit`. It puts the factors in `factors` and returns the cofactor. If `proved` is set to 0 then the factors are not proved prime, otherwise the result is proved.

```c
int z_issquarefree(unsigned long n, int proved)
```

Returns 1 if \( n \) is squarefree, otherwise returns 0. If `proved` is set to 1 then the result is guaranteed, and if set to 0 then internal factoring may declare some composites prime. Note that \( n \) must be at most FLINT_BITS - 1 bits.

```c
int z_issquare(long n)
```

Returns 1 if \( n \) is a square, otherwise returns 0. There are no restrictions on \( n \), which may be signed and negative numbers will not be declared square.

```c
unsigned long z_randint(unsigned long limit)
```

Returns a random uniformly distributed integer in the range 0 to `limit` - 1 inclusive. If `limit` is set to 0, the function returns a full random limb.

```c
unsigned long z_randbits(unsigned long bits)
```

Returns a random uniformly distributed integer with up to the given number of bits. If `bits` is set to 0, the function returns a full random limb.

```c
unsigned long (unsigned long bits, int proved)
```

Returns a random prime integer with up to the given number of bits. Assumes bits > 1. If `proved` is 0 then the prime is not proven prime, otherwise it is.
12 The mpn_extras module

The mpn_extras module is designed to supplement the low level mpn functions provided in GMP/MPIR. These functions are designed to operate on raw limbs of multiprecision integer data. Each such integer consists of a string of limbs representing an integer, with the least significant limb first. The integers may either be unsigned or signed in two's complement format.

```c
void F_mpn_negate(mp_limb_t * dest, mp_limb_t * src,
 unsigned long count)
```

Considering the data at the location src to be an integer of count limbs stored in two's complement format, this function negates the integer and stores the result at the location dest.

```c
void F_mpn_copy(mp_limb_t * dest, const mp_limb_t * src,
 unsigned long count)
```

Copy count raw limbs at src to the location dest. Copying begins with the most significant limb first, thus the destination limbs may overlap the source limbs only if dest > src in memory.

```c
void F_mpn_copy_forward(mp_limb_t * dest, const mp_limb_t * src,
 unsigned long count)
```

Copy count raw limbs at src to the location dest. Copying begins with the least significant limb first, thus the destination limbs may overlap the source limbs only if dest < src in memory.

```c
void F_mpn_clear(mp_limb_t * dest, unsigned long count)
```

Set all bits of the count limbs starting at dest to binary zeros.

```c
void F_mpn_set(mp_limb_t * dest, unsigned long count)
```

Set all bits of the count limbs starting at dest to binary ones.

```c
pre_limb_t F_mpn_precompute_inverse(mp_limb_t d)
```

Returns a precomputed inverse of d for use in F_mpn functions which take a pre_limb_t precomputed inverse dinv of d.

One needs to normalise d before computing the precomputed inverse. This computation can be done as follows:
#include "flint.h"

unsigned long norm;
count_lead_zeros(norm, d);
pre_limb_t xinv = F_mpn_precompute_inverse(d<<norm);

Note that although one must normalise d before precomputing its inverse, the actual value of d, not its
normalisation, is passed to the functions below.

mp_limb_t F_mpn_divrem_ui_precomp(mp_limb_t * quot,
    mp_limb_t * x, unsigned long xn, mp_limb_t d, pre_limb_t dinv)

    Compute the quotient of the unsigned multiprecision integer of \(x_n\) limbs at \(x\) by the limb \(d\),
    placing the quotient at \(quot\) and returning the remainder. The location \(quot\) needs space for
    \(x_n\) limbs. The function takes a precomputed inverse of \(d\).

mp_limb_t F_mpn_mul(mp_limb_t * r1, mp_limb_t * s1p,
    unsigned long s1n, mp_limb_t * s2p, unsigned long s2n)

    Set \(r1\) to \(s1p*s2p\) where \(s1p\) has \(s1n\) limbs and \(s2p\) has \(s2n\) limbs. The number of limbs
    written is \(s1n + s2n\). The most significant limb of the result (which may be zero) is returned
    by the function.
    This function simply calls the GMP \(mpn\_mul\) function for small operands, however for integers
    of FFT size (larger than about 1300 limbs for multiplication and 1000 limbs for squares) the
    function is significantly faster than GMP 4.2.2.

mp_limb_t F_mpn_mul_trunc(mp_limb_t * r1, mp_limb_t * s1p,
    unsigned long s1n, mp_limb_t * s2p, unsigned long s2n,
    unsigned long tn)

    Set \(r1\) to \(s1p*s2p\) where \(\text{code}\{s1p\}\) has \(s1n\) limbs and \(s2p\) has \(s2n\) limbs. The output is
    truncated to \(tn\) limbs, where \(tn\) must be at most \(s1n+s2n\). The most significant limb of the
    result (i.e. limb \(tn\)) is returned by the function.
    The location \(r1\) must have space for \(s1n + s2n\) limbs, regardless of the value of \(tn\).
    This function simply calls the GMP \(mpn\_mul\) function for small operands, however for integers
    of FFT size the function is significantly faster than GMP 4.2.2. and slightly faster than doing
    a full multiplication.

void F_mpn_mul_precomp_init(F_mpn_precomp_t precomp,
    mp_limb_t * s1p, unsigned long s1n, s2n)

    When multiplying a single large integer \(s1p\) of \(s1n\) limbs (usually hundreds or more), by many
    other integers whose maximum size is \(s2n\) limbs, one can cache the FFT of \(s1p\) to speed up
    the multiplications. The precomputed data is attached to an \(F_mpn_precomp_t\) \(precomp\) by
    this function for use in the functions below.
void F_mpn_mul_precomp_clear(F_mpn_precomp_t precomp)

Release the memory allocated for the data attached to the F_mpn_precomp_t precomp.

mp_limb_t F_mpn_mul_precomp(mp_limb_t * rp, mp_limb_t * s2p,
   unsigned long s2n, F_mpn_precomp_t precomp)

Multiply the integer s2p of s2n limbs by the integer whose FFT has been cached and attached
to the F_mpn_precomp_t precomp, computed previously with F_mpn_mul_precomp_init.
The total number of limbs written is s1n + s2n (even if the final limb is zero) where s1n is
the size of the integer whose FFT was cached. The most significant limb of the product is
returned by the function.

13 NTL interface

Various functions are provided for converting between FLINT objects and NTL objects. To make use of
these functions one must type:
#include "NTL-interface.h"

If one is linking against libflint then one must also build NTL-interface.o in the top level FLINT
source tree as follows:
g++ -c NTL-interface -o NTL-interface.o -O2 -fPIC

One must then include NTL-interface.o in the list of files to link when compiling your program and
linking against libflint, e.g.
g++ myprog.cpp NTL-interface.o -o myprog -O2 -I$FLINT_GMP_INCLUDE_DIR \
-I$FLINT_NTL_INCLUDE_DIR -L$FLINT_GMP_LIB_DIR -L$FLINT_NTL_LIB_DIR \
-lntl -lgmp

In each case the functions provided for conversion expect the output objects, whether NTL or FLINT
objects, to be initialised. The first function is unmanaged in that the user must ensure that sufficient
space is allocated in the fmpz_t to hold the integer contained in the ZZ.
void ZZ_to_fmpz(fmpz_t output, const ZZ& z)

Convert an NTL ZZ integer object to a FLINT fmpz_t integer object.
The following functions are managed, in that a reallocation automatically occurs if insufficient space was
allocated by the user.
void fmpz_to_ZZ(ZZ& output, const fmpz_t z)

Convert a FLINT fmpz_t integer object to an NTL ZZ integer object.

void fmpz_poly_to_ZZX(ZZX& output, const fmpz_poly_t poly)

Convert a FLINT fmpz_poly_t polynomial object to an NTL ZZX polynomial object.

void ZZX_to_fmpz_poly(fmpz_poly_t output, const ZZX& poly)

Convert an NTL ZZX polynomial object to a FLINT fmpz_poly_t polynomial object.
14 The quadratic sieve

Currently the quadratic sieve is a standalone program which can be built by typing:

```
make mpQS
```

in the main FLINT directory.

The program is called mpQS. Upon running it, one enters the number to be factored at the prompt.

The quadratic sieve requires that the number entered not be a prime and not be a perfect power. Trial division and the elliptic curve method should be run before making a call to the quadratic sieve, to remove small factors. The sieve may fail silently if the conditions are not met or if the number is too small to be factored by the quadratic sieve (currently about 26 binary bits or below).

15 Large integer multiplication

In the module mpn_extras and mpz_extras are functions F_mpn_mul and F_mpz_mul respectively which are drop in replacements for GMP/MPIR’s mpn_mul and mpz_mul respectively.

These replacement functions are substantially faster than GMP 4.3.1 and somewhat faster than MPIR 1.2.0 when multiplying integers which are thousands of limbs in size. For smaller multiplications these functions call their respective GMP/MPIR counterparts.