.. _ca: **ca.h** -- exact real and complex numbers =============================================================================== A :type:`ca_t` represents a real or complex number in a form suitable for exact field arithmetic or comparison. Exceptionally, a :type:`ca_t` may represent a special nonnumerical value, such as an infinity. Introduction: numbers ------------------------------------------------------------------------------- A *Calcium number* is a real or complex number represented as an element of a formal field `K = \mathbb{Q}(a_1, \ldots, a_n)` where the symbols `a_k` denote fixed algebraic or transcendental numbers called *extension numbers*. For example, `e^{-2 \pi} - 3 i` may be represented as `(1 - 3 a_2^2 a_1) / a_2^2` in the field `\mathbb{Q}(a_1,a_2)` with `a_1 = i, a_2 = e^{\pi}`. Extension numbers and fields are documented in the following separate modules: * :ref:`ca-ext` * :ref:`ca-field` The user does not need to construct extension numbers or formal extension fields explicitly: each :type:`ca_t` contains an internal pointer to its formal field, and operations on Calcium numbers generate and cache fields automatically as needed to express the results. This representation is not canonical (in general). A given complex number can be represented in different ways depending on the choice of formal field *K*. Even within a fixed field *K*, a number can have different representations if there are algebraic relations between the extension numbers. Two numbers *x* and *y* can be tested for inequality using numerical evaluation; to test for equality, it may be necessary to eliminate dependencies between extension numbers. One of the central goals of Calcium will be to implement heuristics for such elimination. Together with each formal field *K*, Calcium stores a *reduction ideal* `I = \{g_1,\ldots,g_m\}` with `g_i \in \mathbb{Z}[a_1,\ldots,a_n]`, defining a set of algebraic relations `g_i(a_1,\ldots,a_n) = 0`. Relations can be absolute, say `g_i = a_j^2 + 1`, or relative, say `g_i = 2 a_j - 4 a_k - a_l a_m`. The reduction ideal effectively partitions `K` into equivalence classes of complex numbers (e.g. `i^2 = -1` or `2 \log(\pi i) = 4 \log(\sqrt{\pi}) + \pi i`), enabling simplifications and equality proving. Extension numbers are always sorted `a_1 \succ a_2 \succ \ldots \succ a_n` where `\succ` denotes a structural ordering (see :func:`ca_cmp_repr`). If the reduction ideal is triangular and the multivariate polynomial arithmetic uses lexicographic ordering, reduction by *I* eliminates numbers `a_i` with higher complexity in the sense of `\succ`. The reduction ideal is an imperfect computational crutch: it is not guaranteed to capture *all* algebraic relations, and reduction is not guaranteed to produce uniquely defined representatives. However, in the specific case of an absolute number field `K = \mathbb{Q}(a)` where *a* is a :type:`qqbar_t` extension, the reduction ideal (consisting of a single minimal polynomial) is canonical and field elements of *K* can be chosen canonically. Introduction: special values ------------------------------------------------------------------------------- In order to provide a closed arithmetic system and express limiting cases of operators and special functions, a :type:`ca_t` can hold any of the following special values besides ordinary numbers: * *Unsigned infinity*, a formal object `{\tilde \infty}` representing the value of `1 / 0`. More generally, this is the value of meromorphic functions at poles. * *Signed infinity*, a formal object `a \cdot \infty` where the sign `a` is a Calcium number with `|a| = 1`. The most common values are `+\infty, -\infty, +i \infty, -i \infty`. Signed infinities are used to denote directional limits and logarithmic singularities (for example, `\log(0) = -\infty`). * *Undefined*, a formal object representing the value of indeterminate forms such as `0 / 0` and essential singularities such as `\exp(\tilde \infty)`, where a number or infinity would not make sense as an answer. * *Unknown*, a meta-value used to signal that the actual desired value could not be computed, either because Calcium does not (yet) have a data structure or algorithm for that case, or because doing so would be unreasonably expensive. This occurs, for example, if Calcium performs a division and is unable to decide whether the result is a number, unsigned infinity or undefined (because testing for zero fails). Wrappers may want to check output variables for *Unknown* and throw an exception (e.g. *NotImplementedError* in Python). The distinction between *Calcium numbers* (which must represent elements of `\mathbb{C}`) and the different kinds of nonnumerical values (infinities, Undefined or Unknown) is essential. Nonnumerical values may not be used as field extension numbers `a_k`, and the denominator of a formal field element must always represent a nonzero complex number. Accordingly, for any given Calcium value *x* that is not *Unknown*, it is exactly known whether *x* represents A) a number, B) unsigned infinity, C) a signed infinity, or D) Undefined. Number objects ------------------------------------------------------------------------------- For all types, a *type_t* is defined as an array of length one of type *type_struct*, permitting a *type_t* to be passed by reference. .. type:: ca_struct .. type:: ca_t A :type:`ca_t` contains an index to a field *K*, and data representing an element *x* of *K*. The data is either an inline rational number (:type:`fmpq_t`), an inline Antic number field element (:type:`nf_elem_t`) when *K* is an absolute algebraic number field `\mathbb{Q}(a)`, or a pointer to a heap-allocated :type:`fmpz_mpoly_q_t` representing an element of a generic field `\mathbb{Q}(a_1,\ldots,a_n)`. Special values are encoded using magic bits in the field index. .. type:: ca_ptr Alias for ``ca_struct *``, used for vectors of numbers. .. type:: ca_srcptr Alias for ``const ca_struct *``, used for vectors of numbers when passed as constant input to functions. Context objects ------------------------------------------------------------------------------- .. type:: ca_ctx_struct .. type:: ca_ctx_t A :type:`ca_ctx_t` context object holds a cache of fields *K* and constituent extension numbers `a_k`. The field index in an individual :type:`ca_t` instance represents a shallow reference to the object defining the field *K* within the context object, so creating many elements of the same field is cheap. Since context objects are mutable (and may be mutated even when performing read-only operations on :type:`ca_t` instances), they must not be accessed simultaneously by different threads: in multithreaded environments, the user must use a separate context object for each thread. .. function:: void ca_ctx_init(ca_ctx_t ctx) Initializes the context object *ctx* for use. Any evaluation options stored in the context object are set to default values. .. function:: void ca_ctx_clear(ca_ctx_t ctx) Clears the context object *ctx*, freeing any memory allocated internally. This function should only be called after all :type:`ca_t` instances referring to this context have been cleared. .. function:: void ca_ctx_print(ca_ctx_t ctx) Prints a description of the context *ctx* to standard output. This will give a complete listing of the cached fields in *ctx*. Memory management for numbers ------------------------------------------------------------------------------- .. function:: void ca_init(ca_t x, ca_ctx_t ctx) Initializes the variable *x* for use, associating it with the context object *ctx*. The value of *x* is set to the rational number 0. .. function:: void ca_clear(ca_t x, ca_ctx_t ctx) Clears the variable *x*. .. function:: void ca_swap(ca_t x, ca_t y, ca_ctx_t ctx) Efficiently swaps the variables *x* and *y*. Symbolic expressions ------------------------------------------------------------------------------- .. function:: void ca_get_fexpr(fexpr_t res, const ca_t x, ulong flags, ca_ctx_t ctx) Sets *res* to a symbolic expression representing *x*. .. function:: int ca_set_fexpr(ca_t res, const fexpr_t expr, ca_ctx_t ctx) Sets *res* to the value represented by the symbolic expression *expr*. Returns 1 on success and 0 on failure. This function essentially just traverses the expression tree using ``ca`` arithmetic; it does not provide advanced symbolic evaluation. It is guaranteed to at least be able to parse the output of :func:`ca_get_fexpr`. .. _ca-printing: Printing ------------------------------------------------------------------------------- The style of printed output is controlled by ``ctx->options[CA_OPT_PRINT_FLAGS]`` (see :ref:`context-options`) which can be set to any combination of the following flags: .. macro:: CA_PRINT_N Print a decimal approximation of the number. The approximation is guaranteed to be correctly rounded to within one unit in the last place. If combined with ``CA_PRINT_REPR``, numbers appearing within the symbolic representation will also be printed with decimal approximations. Warning: printing a decimal approximation requires a computation, which can be expensive. It can also mutate cached data (numerical enclosures of extension numbers), affecting subsequent computations. .. macro:: CA_PRINT_DIGITS Multiplied by a positive integer, specifies the number of decimal digits to show with ``CA_PRINT_N``. If not given, the default precision is six digits. .. macro:: CA_PRINT_REPR Print the symbolic representation of the number (including its recursive elements). If used together with ``CA_PRINT_N``, field elements will print as ``decimal {symbolic}`` while extension numbers will print as ``decimal [symbolic]``. All extension numbers appearing in the field defining ``x`` and in the inner constructions of those extension numbers will be given local labels ``a``, ``b``, etc. for this printing. .. macro:: CA_PRINT_FIELD For each field element, explicitly print its formal field along with its reduction ideal if present, e.g. ``QQ`` or ``QQ(a,b,c) / ``. .. macro:: CA_PRINT_DEFAULT The default print style. Equivalent to ``CA_PRINT_N | CA_PRINT_REPR``. .. macro:: CA_PRINT_DEBUG Verbose print style for debugging. Equivalent to ``CA_PRINT_N | CA_PRINT_REPR | CA_PRINT_FIELD``. As a special case, small integers are always printed as simple literals. As illustration, here are the numbers `-7`, `2/3`, `(\sqrt{3}+5)/2` and `\sqrt{2} (\log(\pi) + \pi i)` printed in various styles:: # CA_PRINT_DEFAULT -7 0.666667 {2/3} 3.36603 {(a+5)/2 where a = 1.73205 [a^2-3=0]} 1.61889 + 4.44288*I {a*c+b*c*d where a = 1.14473 [Log(3.14159 {b})], b = 3.14159 [Pi], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]} # CA_PRINT_N -7 0.666667 3.36603 1.61889 + 4.44288*I # CA_PRINT_N | (CA_PRINT_DIGITS * 20) -7 0.66666666666666666667 3.3660254037844386468 1.6188925298220266685 + 4.4428829381583662470*I # CA_PRINT_REPR -7 2/3 (a+5)/2 where a = [a^2-3=0] a*c+b*c*d where a = Log(b), b = Pi, c = [c^2-2=0], d = [d^2+1=0] # CA_PRINT_DEBUG -7 0.666667 {2/3 in QQ} 3.36603 {(a+5)/2 in QQ(a)/ where a = 1.73205 [a^2-3=0]} 1.61889 + 4.44288*I {a*c+b*c*d in QQ(a,b,c,d)/ where a = 1.14473 [Log(3.14159 {b in QQ(b)})], b = 3.14159 [Pi], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]} .. function:: void ca_print(const ca_t x, ca_ctx_t ctx) Prints *x* to standard output. .. function:: void ca_fprint(FILE * fp, const ca_t x, ca_ctx_t ctx) Prints *x* to the file *fp*. .. function:: char * ca_get_str(const ca_t x, ca_ctx_t ctx) Prints *x* to a string which is returned. The user should free this string by calling ``flint_free``. .. function:: void ca_printn(const ca_t x, slong n, ca_ctx_t ctx) Prints an *n*-digit numerical representation of *x* to standard output. Special values ------------------------------------------------------------------------------- .. function:: void ca_zero(ca_t res, ca_ctx_t ctx) void ca_one(ca_t res, ca_ctx_t ctx) void ca_neg_one(ca_t res, ca_ctx_t ctx) Sets *res* to the integer 0, 1 or -1. This creates a canonical representation of this number as an element of the trivial field `\mathbb{Q}`. .. function:: void ca_i(ca_t res, ca_ctx_t ctx) void ca_neg_i(ca_t res, ca_ctx_t ctx) Sets *res* to the imaginary unit `i = \sqrt{-1}`, or its negation `-i`. This creates a canonical representation of `i` as the generator of the algebraic number field `\mathbb{Q}(i)`. .. function:: void ca_pi(ca_t res, ca_ctx_t ctx) Sets *res* to the constant `\pi`. This creates an element of the transcendental number field `\mathbb{Q}(\pi)`. .. function:: void ca_pi_i(ca_t res, ca_ctx_t ctx) Sets *res* to the constant `\pi i`. This creates an element of the composite field `\mathbb{Q}(i,\pi)` rather than representing `\pi i` (or even `2 \pi i`, which for some purposes would be more elegant) as an atomic quantity. .. function:: void ca_euler(ca_t res, ca_ctx_t ctx) Sets *res* to Euler's constant `\gamma`. This creates an element of the (transcendental?) number field `\mathbb{Q}(\gamma)`. .. function:: void ca_unknown(ca_t res, ca_ctx_t ctx) Sets *res* to the meta-value *Unknown*. .. function:: void ca_undefined(ca_t res, ca_ctx_t ctx) Sets *res* to *Undefined*. .. function:: void ca_uinf(ca_t res, ca_ctx_t ctx) Sets *res* to unsigned infinity `{\tilde \infty}`. .. function:: void ca_pos_inf(ca_t res, ca_ctx_t ctx) void ca_neg_inf(ca_t res, ca_ctx_t ctx) void ca_pos_i_inf(ca_t res, ca_ctx_t ctx) void ca_neg_i_inf(ca_t res, ca_ctx_t ctx) Sets *res* to the signed infinity `+\infty`, `-\infty`, `+i \infty` or `-i \infty`. Assignment and conversion ------------------------------------------------------------------------------- .. function:: void ca_set(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to a copy of *x*. .. function:: void ca_set_si(ca_t res, slong v, ca_ctx_t ctx) void ca_set_ui(ca_t res, ulong v, ca_ctx_t ctx) void ca_set_fmpz(ca_t res, const fmpz_t v, ca_ctx_t ctx) void ca_set_fmpq(ca_t res, const fmpq_t v, ca_ctx_t ctx) Sets *res* to the integer or rational number *v*. This creates a canonical representation of this number as an element of the trivial field `\mathbb{Q}`. .. function:: void ca_set_d(ca_t res, double x, ca_ctx_t ctx) void ca_set_d_d(ca_t res, double x, double y, ca_ctx_t ctx) Sets *res* to the value of *x*, or the complex value `x + yi`. NaN is interpreted as *Unknown* (not *Undefined*). .. function:: void ca_transfer(ca_t res, ca_ctx_t res_ctx, const ca_t src, ca_ctx_t src_ctx) Sets *res* to *src* where the corresponding context objects *res_ctx* and *src_ctx* may be different. This operation preserves the mathematical value represented by *src*, but may result in a different internal representation depending on the settings of the context objects. Conversion of algebraic numbers ------------------------------------------------------------------------------- .. function:: void ca_set_qqbar(ca_t res, const qqbar_t x, ca_ctx_t ctx) Sets *res* to the algebraic number *x*. If *x* is rational, *res* is set to the canonical representation as an element in the trivial field `\mathbb{Q}`. If *x* is irrational, this function always sets *res* to an element of a univariate number field `\mathbb{Q}(a)`. It will not, for example, identify `\sqrt{2} + \sqrt{3}` as an element of `\mathbb{Q}(\sqrt{2}, \sqrt{3})`. However, it may attempt to find a simpler number field than that generated by *x* itself. For example: * If *x* is quadratic, it will be expressed as an element of `\mathbb{Q}(\sqrt{N})` where *N* has no small repeated factors (obtained by performing a smooth factorization of the discriminant). * TODO: if possible, coerce *x* to a low-degree cyclotomic field. .. function:: int ca_get_fmpz(fmpz_t res, const ca_t x, ca_ctx_t ctx) int ca_get_fmpq(fmpq_t res, const ca_t x, ca_ctx_t ctx) int ca_get_qqbar(qqbar_t res, const ca_t x, ca_ctx_t ctx) Attempts to evaluate *x* to an explicit integer, rational or algebraic number. If successful, sets *res* to this number and returns 1. If unsuccessful, returns 0. The conversion certainly fails if *x* does not represent an integer, rational or algebraic number (respectively), but can also fail if *x* is too expensive to compute under the current evaluation limits. In particular, the evaluation will be aborted if an intermediate algebraic number (or more precisely, the resultant polynomial prior to factorization) exceeds ``CA_OPT_QQBAR_DEG_LIMIT`` or the coefficients exceed some multiple of ``CA_OPT_PREC_LIMIT``. Note that evaluation may hit those limits even if the minimal polynomial for *x* itself is small. The conversion can also fail if no algorithm has been implemented for the functions appearing in the construction of *x*. .. function:: int ca_can_evaluate_qqbar(const ca_t x, ca_ctx_t ctx) Checks if :func:`ca_get_qqbar` has a chance to succeed. In effect, this checks if all extension numbers are manifestly algebraic numbers (without doing any evaluation). Random generation ------------------------------------------------------------------------------- .. function:: void ca_randtest_rational(ca_t res, flint_rand_t state, slong bits, ca_ctx_t ctx) Sets *res* to a random rational number with numerator and denominator up to *bits* bits in size. .. function:: void ca_randtest(ca_t res, flint_rand_t state, slong depth, slong bits, ca_ctx_t ctx) Sets *res* to a random number generated by evaluating a random expression. The algorithm randomly selects between generating a "simple" number (a random rational number or quadratic field element with coefficients up to *bits* in size, or a random builtin constant), or if *depth* is nonzero, applying a random arithmetic operation or function to operands produced through recursive calls with *depth* - 1. The output is guaranteed to be a number, not a special value. .. function:: void ca_randtest_special(ca_t res, flint_rand_t state, slong depth, slong bits, ca_ctx_t ctx) Randomly generates either a special value or a number. .. function:: void ca_randtest_same_nf(ca_t res, flint_rand_t state, const ca_t x, slong bits, slong den_bits, ca_ctx_t ctx) Sets *res* to a random element in the same number field as *x*, with numerator coefficients up to *bits* in size and denominator up to *den_bits* in size. This function requires that *x* is an element of an absolute number field. Representation properties ------------------------------------------------------------------------------- The following functions deal with the representation of a :type:`ca_t` and hence can always be decided quickly and unambiguously. The return value for predicates is 0 for false and 1 for true. .. function:: int ca_equal_repr(const ca_t x, const ca_t y, ca_ctx_t ctx) Returns whether *x* and *y* have identical representation. For field elements, this checks if *x* and *y* belong to the same formal field (with generators having identical representation) and are represented by the same rational function within that field. For special values, this tests equality of the special values, with *Unknown* handled as if it were a value rather than a meta-value: that is, *Unknown* = *Unknown* gives 1, and *Unknown* = *y* gives 0 for any other kind of value *y*. If neither *x* nor *y* is *Unknown*, then representation equality implies that *x* and *y* describe to the same mathematical value, but if either operand is *Unknown*, the result is meaningless for mathematical comparison. .. function:: int ca_cmp_repr(const ca_t x, const ca_t y, ca_ctx_t ctx) Compares the representations of *x* and *y* in a canonical sort order, returning -1, 0 or 1. This only performs a lexicographic comparison of the representations of *x* and *y*; the return value does not say anything meaningful about the numbers represented by *x* and *y*. .. function:: ulong ca_hash_repr(const ca_t x, ca_ctx_t ctx) Hashes the representation of *x*. .. function:: int ca_is_unknown(const ca_t x, ca_ctx_t ctx) Returns whether *x* is Unknown. .. function:: int ca_is_special(const ca_t x, ca_ctx_t ctx) Returns whether *x* is a special value or metavalue (not a field element). .. function:: int ca_is_qq_elem(const ca_t x, ca_ctx_t ctx) Returns whether *x* is represented as an element of the rational field `\mathbb{Q}`. .. function:: int ca_is_qq_elem_zero(const ca_t x, ca_ctx_t ctx) int ca_is_qq_elem_one(const ca_t x, ca_ctx_t ctx) int ca_is_qq_elem_integer(const ca_t x, ca_ctx_t ctx) Returns whether *x* is represented as the element 0, 1 or any integer in the rational field `\mathbb{Q}`. .. function:: int ca_is_nf_elem(const ca_t x, ca_ctx_t ctx) Returns whether *x* is represented as an element of a univariate algebraic number field `\mathbb{Q}(a)`. .. function:: int ca_is_cyclotomic_nf_elem(slong * p, ulong * q, const ca_t x, ca_ctx_t ctx) Returns whether *x* is represented as an element of a univariate cyclotomic field, i.e. `\mathbb{Q}(a)` where *a* is a root of unity. If *p* and *q* are not *NULL* and *x* is represented as an element of a cyclotomic field, this also sets *p* and *q* to the minimal integers with `0 \le p < q` such that the generating root of unity is `a = e^{2 \pi i p / q}`. Note that the answer 0 does not prove that *x* is not a cyclotomic number, and the order *q* is also not necessarily the generator of the *smallest* cyclotomic field containing *x*. For the purposes of this function, only nontrivial cyclotomic fields count; the return value is 0 if *x* is represented as a rational number. .. function:: int ca_is_generic_elem(const ca_t x, ca_ctx_t ctx) Returns whether *x* is represented as a generic field element; i.e. it is not a special value, not represented as an element of the rational field, and not represented as an element of a univariate algebraic number field. Value predicates ------------------------------------------------------------------------------- The following predicates check a mathematical property which might not be effectively decidable. The result is a :type:`truth_t` to allow representing an unknown outcome. .. function:: truth_t ca_check_is_number(const ca_t x, ca_ctx_t ctx) Tests if *x* is a number. The result is ``T_TRUE`` is *x* is a field element (and hence a complex number), ``T_FALSE`` if *x* is an infinity or *Undefined*, and ``T_UNKNOWN`` if *x* is *Unknown*. .. function:: truth_t ca_check_is_zero(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_one(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_neg_one(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_i(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_neg_i(const ca_t x, ca_ctx_t ctx) Tests if *x* is equal to the number `0`, `1`, `-1`, `i`, or `-i`. .. function:: truth_t ca_check_is_algebraic(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_rational(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_integer(const ca_t x, ca_ctx_t ctx) Tests if *x* is respectively an algebraic number, a rational number, or an integer. .. function:: truth_t ca_check_is_real(const ca_t x, ca_ctx_t ctx) Tests if *x* is a real number. Warning: this returns ``T_FALSE`` if *x* is an infinity with real sign. .. function:: truth_t ca_check_is_negative_real(const ca_t x, ca_ctx_t ctx) Tests if *x* is a negative real number. Warning: this returns ``T_FALSE`` if *x* is negative infinity. .. function:: truth_t ca_check_is_imaginary(const ca_t x, ca_ctx_t ctx) Tests if *x* is an imaginary number. Warning: this returns ``T_FALSE`` if *x* is an infinity with imaginary sign. .. function:: truth_t ca_check_is_undefined(const ca_t x, ca_ctx_t ctx) Tests if *x* is the special value *Undefined*. .. function:: truth_t ca_check_is_infinity(const ca_t x, ca_ctx_t ctx) Tests if *x* is any infinity (unsigned or signed). .. function:: truth_t ca_check_is_uinf(const ca_t x, ca_ctx_t ctx) Tests if *x* is unsigned infinity `{\tilde \infty}`. .. function:: truth_t ca_check_is_signed_inf(const ca_t x, ca_ctx_t ctx) Tests if *x* is any signed infinity. .. function:: truth_t ca_check_is_pos_inf(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_neg_inf(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_pos_i_inf(const ca_t x, ca_ctx_t ctx) truth_t ca_check_is_neg_i_inf(const ca_t x, ca_ctx_t ctx) Tests if *x* is equal to the signed infinity `+\infty`, `-\infty`, `+i \infty`, `-i \infty`, respectively. Comparisons ------------------------------------------------------------------------------- .. function:: truth_t ca_check_equal(const ca_t x, const ca_t y, ca_ctx_t ctx) Tests `x = y` as a mathematical equality. The result is ``T_UNKNOWN`` if either operand is *Unknown*. The result may also be ``T_UNKNOWN`` if *x* and *y* are numerically indistinguishable and cannot be proved equal or unequal by an exact computation. .. function:: truth_t ca_check_lt(const ca_t x, const ca_t y, ca_ctx_t ctx) truth_t ca_check_le(const ca_t x, const ca_t y, ca_ctx_t ctx) truth_t ca_check_gt(const ca_t x, const ca_t y, ca_ctx_t ctx) truth_t ca_check_ge(const ca_t x, const ca_t y, ca_ctx_t ctx) Compares *x* and *y*, implementing the respective operations `x < y`, `x \le y`, `x > y`, `x \ge y`. Only real numbers and `-\infty` and `+\infty` are considered comparable. The result is ``T_FALSE`` (not ``T_UNKNOWN``) if either operand is not comparable (being a nonreal complex number, unsigned infinity, or undefined). Field structure operations ------------------------------------------------------------------------------- .. function:: void ca_merge_fields(ca_t resx, ca_t resy, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *resx* and *resy* to copies of *x* and *y* coerced to a common field. Both *x* and *y* must be field elements (not special values). In the present implementation, this simply merges the lists of generators, avoiding duplication. In the future, it will be able to eliminate generators satisfying algebraic relations. .. function:: void ca_condense_field(ca_t res, ca_ctx_t ctx) Attempts to demote the value of *res* to a trivial subfield of its current field by removing unused generators. In particular, this demotes any obviously rational value to the trivial field `\mathbb{Q}`. This function is applied automatically in most operations (arithmetic operations, etc.). .. function:: ca_ext_ptr ca_is_gen_as_ext(const ca_t x, ca_ctx_t ctx) If *x* is a generator of its formal field, `x = a_k \in \mathbb{Q}(a_1,\ldots,a_n)`, returns a pointer to the extension number defining `a_k`. If *x* is not a generator, returns *NULL*. Arithmetic ------------------------------------------------------------------------------- .. function:: void ca_neg(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the negation of *x*. For numbers, this operation amounts to a direct negation within the formal field. For a signed infinity `c \infty`, negation gives `(-c) \infty`; all other special values are unchanged. .. function:: void ca_add_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx) void ca_add_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx) void ca_add_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx) void ca_add_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx) void ca_add(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *res* to the sum of *x* and *y*. For special values, the following rules apply (`c \infty` denotes a signed infinity, `|c| = 1`): * `c \infty + d \infty = c \infty` if `c = d` * `c \infty + d \infty = \text{Undefined}` if `c \ne d` * `\tilde \infty + c \infty = \tilde \infty + \tilde \infty = \text{Undefined}` * `c \infty + z = c \infty` if `z \in \mathbb{C}` * `\tilde \infty + z = \tilde \infty` if `z \in \mathbb{C}` * `z + \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*) In any other case involving special values, or if the specific case cannot be distinguished, the result is *Unknown*. .. function:: void ca_sub_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx) void ca_sub_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx) void ca_sub_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx) void ca_sub_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx) void ca_fmpq_sub(ca_t res, const fmpq_t x, const ca_t y, ca_ctx_t ctx) void ca_fmpz_sub(ca_t res, const fmpz_t x, const ca_t y, ca_ctx_t ctx) void ca_ui_sub(ca_t res, ulong x, const ca_t y, ca_ctx_t ctx) void ca_si_sub(ca_t res, slong x, const ca_t y, ca_ctx_t ctx) void ca_sub(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *res* to the difference of *x* and *y*. This is equivalent to computing `x + (-y)`. .. function:: void ca_mul_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx) void ca_mul_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx) void ca_mul_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx) void ca_mul_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx) void ca_mul(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *res* to the product of *x* and *y*. For special values, the following rules apply (`c \infty` denotes a signed infinity, `|c| = 1`): * `c \infty \cdot d \infty = c d \infty` * `c \infty \cdot \tilde \infty = \tilde \infty` * `\tilde \infty \cdot \tilde \infty = \tilde \infty` * `c \infty \cdot z = \operatorname{sgn}(z) c \infty` if `z \in \mathbb{C} \setminus \{0\}` * `c \infty \cdot 0 = \text{Undefined}` * `\tilde \infty \cdot 0 = \text{Undefined}` * `z \cdot \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*) In any other case involving special values, or if the specific case cannot be distinguished, the result is *Unknown*. .. function:: void ca_inv(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the multiplicative inverse of *x*. In a univariate algebraic number field, this always produces a rational denominator, but the denominator might not be rationalized in a multivariate field. For special values and zero, the following rules apply: * `1 / (c \infty) = 1 / \tilde \infty = 0` * `1 / 0 = \tilde \infty` * `1 / \text{Undefined} = \text{Undefined}` * `1 / \text{Unknown} = \text{Unknown}` If it cannot be determined whether *x* is zero or nonzero, the result is *Unknown*. .. function:: void ca_fmpq_div(ca_t res, const fmpq_t x, const ca_t y, ca_ctx_t ctx) void ca_fmpz_div(ca_t res, const fmpz_t x, const ca_t y, ca_ctx_t ctx) void ca_ui_div(ca_t res, ulong x, const ca_t y, ca_ctx_t ctx) void ca_si_div(ca_t res, slong x, const ca_t y, ca_ctx_t ctx) void ca_div_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx) void ca_div_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx) void ca_div_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx) void ca_div_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx) void ca_div(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *res* to the quotient of *x* and *y*. This is equivalent to computing `x \cdot (1 / y)`. For special values and division by zero, this implies the following rules (`c \infty` denotes a signed infinity, `|c| = 1`): * `(c \infty) / (d \infty) = (c \infty) / \tilde \infty = \tilde \infty / (c \infty) = \tilde \infty / \tilde \infty = \text{Undefined}` * `c \infty / z = (c / \operatorname{sgn}(z)) \infty` if `z \in \mathbb{C} \setminus \{0\}` * `c \infty / 0 = \tilde \infty / 0 = \tilde \infty` * `z / (c \infty) = z / \tilde \infty = 0` if `z \in \mathbb{C}` * `z / 0 = \tilde \infty` if `z \in \mathbb{C} \setminus \{0\}` * `0 / 0 = \text{Undefined}` * `z / \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*) * `\text{Undefined} / z = \text{Undefined}` for any value *z* (including *Unknown*) In any other case involving special values, or if the specific case cannot be distinguished, the result is *Unknown*. .. function:: void ca_dot(ca_t res, const ca_t initial, int subtract, ca_srcptr x, slong xstep, ca_srcptr y, slong ystep, slong len, ca_ctx_t ctx) Computes the dot product of the vectors *x* and *y*, setting *res* to `s + (-1)^{subtract} \sum_{i=0}^{len-1} x_i y_i`. The initial term *s* is optional and can be omitted by passing *NULL* (equivalently, `s = 0`). The parameter *subtract* must be 0 or 1. The length *len* is allowed to be negative, which is equivalent to a length of zero. The parameters *xstep* or *ystep* specify a step length for traversing subsequences of the vectors *x* and *y*; either can be negative to step in the reverse direction starting from the initial pointer. Aliasing is allowed between *res* and *s* but not between *res* and the entries of *x* and *y*. .. function:: void ca_fmpz_poly_evaluate(ca_t res, const fmpz_poly_t poly, const ca_t x, ca_ctx_t ctx) void ca_fmpq_poly_evaluate(ca_t res, const fmpq_poly_t poly, const ca_t x, ca_ctx_t ctx) Sets *res* to the polynomial *poly* evaluated at *x*. .. function:: void ca_fmpz_mpoly_evaluate_horner(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx) void ca_fmpz_mpoly_evaluate_iter(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx) void ca_fmpz_mpoly_evaluate(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx) Sets *res* to the multivariate polynomial *f* evaluated at the vector of arguments *x*. .. function:: void ca_fmpz_mpoly_q_evaluate(ca_t res, const fmpz_mpoly_q_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx) Sets *res* to the multivariate rational function *f* evaluated at the vector of arguments *x*. .. function:: void ca_fmpz_mpoly_q_evaluate_no_division_by_zero(ca_t res, const fmpz_mpoly_q_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx) void ca_inv_no_division_by_zero(ca_t res, const ca_t x, ca_ctx_t ctx) These functions behave like the normal arithmetic functions, but assume (and do not check) that division by zero cannot occur. Division by zero will result in undefined behavior. Powers and roots ------------------------------------------------------------------------------- .. function:: void ca_sqr(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the square of *x*. .. function:: void ca_pow_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx) void ca_pow_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx) void ca_pow_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx) void ca_pow_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx) void ca_pow(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx) Sets *res* to *x* raised to the power *y*. Handling of special values is not yet implemented. .. function:: void ca_pow_si_arithmetic(ca_t res, const ca_t x, slong n, ca_ctx_t ctx) Sets *res* to *x* raised to the power *n*. Whereas :func:`ca_pow`, :func:`ca_pow_si` etc. may create `x^n` as an extension number if *n* is large, this function always perform the exponentiation using field arithmetic. .. function:: void ca_sqrt_inert(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_sqrt_nofactor(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_sqrt_factor(ca_t res, const ca_t x, ulong flags, ca_ctx_t ctx) void ca_sqrt(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the principal square root of *x*. For special values, the following definitions apply: * `\sqrt{c \infty} = \sqrt{c} \infty` * `\sqrt{\tilde \infty} = \tilde \infty`. * Both *Undefined* and *Unknown* map to themselves. The *inert* version outputs the generator in the formal field `\mathbb{Q}(\sqrt{x})` without simplifying. The *factor* version writes `x = A^2 B` in `K` where `K` is the field of *x*, and outputs `A \sqrt{B}` or `-A \sqrt{B}` (whichever gives the correct sign) as an element of `K(\sqrt{B})` or some subfield thereof. This factorization is only a heuristic and is not guaranteed to make `B` minimal. Factorization options can be passed through to *flags*: see :func:`ca_factor` for details. The *nofactor* version will not perform a general factorization, but may still perform other simplifications. It may in particular attempt to simplify `\sqrt{x}` to a single element in `\overline{\mathbb{Q}}`. .. function:: void ca_sqrt_ui(ca_t res, ulong n, ca_ctx_t ctx) Sets *res* to the principal square root of *n*. Complex parts ------------------------------------------------------------------------------- .. function:: void ca_abs(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the absolute value of *x*. For special values, the following definitions apply: * `|c \infty| = |\tilde \infty| = +\infty`. * Both *Undefined* and *Unknown* map to themselves. This function will attempt to simplify its argument through an exact computation. It may in particular attempt to simplify `|x|` to a single element in `\overline{\mathbb{Q}}`. In the generic case, this function outputs an element of the formal field `\mathbb{Q}(|x|)`. .. function:: void ca_sgn(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the sign of *x*, defined by .. math:: \operatorname{sgn}(x) = \begin{cases} 0 & x = 0 \\ \frac{x}{|x|} & x \ne 0 \end{cases} for numbers. For special values, the following definitions apply: * `\operatorname{sgn}(c \infty) = c`. * `\operatorname{sgn}(\tilde \infty) = \operatorname{Undefined}`. * Both *Undefined* and *Unknown* map to themselves. This function will attempt to simplify its argument through an exact computation. It may in particular attempt to simplify `\operatorname{sgn}(x)` to a single element in `\overline{\mathbb{Q}}`. In the generic case, this function outputs an element of the formal field `\mathbb{Q}(\operatorname{sgn}(x))`. .. function:: void ca_csgn(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the extension of the real sign function taking the value 1 for *z* strictly in the right half plane, -1 for *z* strictly in the left half plane, and the sign of the imaginary part when *z* is on the imaginary axis. Equivalently, `\operatorname{csgn}(z) = z / \sqrt{z^2}` except that the value is 0 when *z* is exactly zero. This function gives *Undefined* for unsigned infinity and `\operatorname{csgn}(\operatorname{sgn}(c \infty)) = \operatorname{csgn}(c)` for signed infinities. .. function:: void ca_arg(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the complex argument (phase) of *x*, normalized to the range `(-\pi, +\pi]`. The argument of 0 is defined as 0. For special values, the following definitions apply: * `\operatorname{arg}(c \infty) = \operatorname{arg}(c)`. * `\operatorname{arg}(\tilde \infty) = \operatorname{Undefined}`. * Both *Undefined* and *Unknown* map to themselves. .. function:: void ca_re(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the real part of *x*. The result is *Undefined* if *x* is any infinity (including a real infinity). .. function:: void ca_im(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the imaginary part of *x*. The result is *Undefined* if *x* is any infinity (including an imaginary infinity). .. function:: void ca_conj_deep(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_conj_shallow(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_conj(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the complex conjugate of *x*. The *shallow* version creates a new extension element `\overline{x}` unless *x* can be trivially conjugated in-place in the existing field. The *deep* version recursively conjugates the extension numbers in the field of *x*. .. function:: void ca_floor(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the floor function of *x*. The result is *Undefined* if *x* is any infinity (including a real infinity). For complex numbers, this is presently defined to take the floor of the real part. .. function:: void ca_ceil(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the ceiling function of *x*. The result is *Undefined* if *x* is any infinity (including a real infinity). For complex numbers, this is presently defined to take the ceiling of the real part. Exponentials and logarithms ------------------------------------------------------------------------------- .. function:: void ca_exp(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the exponential function of *x*. For special values, the following definitions apply: * `e^{+\infty} = +\infty` * `e^{c \infty} = \tilde \infty` if `0 < \operatorname{Re}(c) < 1`. * `e^{c \infty} = 0` if `\operatorname{Re}(c) < 0`. * `e^{c \infty} = \text{Undefined}` if `\operatorname{Re}(c) = 0`. * `e^{\tilde \infty} = \text{Undefined}`. * Both *Undefined* and *Unknown* map to themselves. The following symbolic simplifications are performed automatically: * `e^0 = 1` * `e^{\log(z)} = z` * `e^{(p/q) \log(z)} = z^{p/q}` (for rational `p/q`) * `e^{(p/q) \pi i}` = algebraic root of unity (for small rational `p/q`) In the generic case, this function outputs an element of the formal field `\mathbb{Q}(e^x)`. .. function:: void ca_log(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the natural logarithm of *x*. For special values and at the origin, the following definitions apply: * For any infinity, `\log(c\infty) = \log(\tilde \infty) = +\infty`. * `\log(0) = -\infty`. The result is *Unknown* if deciding `x = 0` fails. * Both *Undefined* and *Unknown* map to themselves. The following symbolic simplifications are performed automatically: * `\log(1) = 0` * `\log\left(e^z\right) = z + 2 \pi i k` * `\log\left(\sqrt{z}\right) = \tfrac{1}{2} \log(z) + 2 \pi i k` * `\log\left(z^a\right) = a \log(z) + 2 \pi i k` * `\log(x) = \log(-x) + \pi i` for negative real *x* In the generic case, this function outputs an element of the formal field `\mathbb{Q}(\log(x))`. Trigonometric functions ------------------------------------------------------------------------------- .. function:: void ca_sin_cos_exponential(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx) void ca_sin_cos_direct(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx) void ca_sin_cos_tangent(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx) void ca_sin_cos(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx) Sets *res1* to the sine of *x* and *res2* to the cosine of *x*. Either *res1* or *res2* can be *NULL* to compute only the other function. Various representations are implemented: * The *exponential* version expresses the sine and cosine in terms of complex exponentials. Simple algebraic values will simplify to rational numbers or elements of cyclotomic fields. * The *direct* method expresses the sine and cosine in terms of the original functions (perhaps after applying some symmetry transformations, which may interchange sin and cos). Extremely simple algebraic values will automatically simplify to elements of real algebraic number fields. * The *tangent* version expresses the sine and cosine in terms of `\tan(x/2)`, perhaps after applying some symmetry transformations. Extremely simple algebraic values will automatically simplify to elements of real algebraic number fields. By default, the standard function uses the *exponential* representation as this typically works best for field arithmetic and simplifications, although it has the disadvantage of introducing complex numbers where real numbers would be sufficient. The behavior of the standard function can be changed using the :macro:`CA_OPT_TRIG_FORM` context setting. For special values, the following definitions apply: * `\sin(\pm i \infty) = \pm i \infty` * `\cos(\pm i \infty) = +\infty` * All other infinities give `\operatorname{Undefined}` .. function:: void ca_sin(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_cos(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the sine or cosine of *x*. These functions are shortcuts for :func:`ca_sin_cos`. .. function:: void ca_tan_sine_cosine(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_tan_exponential(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_tan_direct(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_tan(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the tangent of *x*. The *sine_cosine* version evaluates the tangent as a quotient of a sine and cosine, the *direct* version evaluates it directly as a tangent (possibly after transforming the variable), and the *exponential* version evaluates it in terms of complex exponentials. Simple algebraic values will automatically simplify to elements of trigonometric or cyclotomic number fields. By default, the standard function uses the *exponential* representation as this typically works best for field arithmetic and simplifications, although it has the disadvantage of introducing complex numbers where real numbers would be sufficient. The behavior of the standard function can be changed using the :macro:`CA_OPT_TRIG_FORM` context setting. For special values, the following definitions apply: * At poles, `\tan((n+\tfrac{1}{2}) \pi) = \tilde \infty` * `\tan(e^{i \theta} \infty) = +i, \quad 0 < \theta < \pi` * `\tan(e^{i \theta} \infty) = -i, \quad -\pi < \theta < 0` * `\tan(\pm \infty) = \tan(\tilde \infty) = \operatorname{Undefined}` .. function:: void ca_cot(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the cotangent *x*. This is equivalent to computing the reciprocal of the tangent. .. function:: void ca_atan_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_atan_direct(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_atan(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the inverse tangent of *x*. The *direct* version expresses the result as an inverse tangent (possibly after transforming the variable). The *logarithm* version expresses it in terms of complex logarithms. Simple algebraic inputs will automatically simplify to rational multiples of `\pi`. By default, the standard function uses the *logarithm* representation as this typically works best for field arithmetic and simplifications, although it has the disadvantage of introducing complex numbers where real numbers would be sufficient. The behavior of the standard function can be changed using the :macro:`CA_OPT_TRIG_FORM` context setting (exponential mode results in logarithmic forms). For special values, the following definitions apply: * `\operatorname{atan}(\pm i) = \pm i \infty` * `\operatorname{atan}(c \infty) = \operatorname{csgn}(c) \pi / 2` * `\operatorname{atan}(\tilde \infty) = \operatorname{Undefined}` .. function:: void ca_asin_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_acos_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_asin_direct(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_acos_direct(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_asin(ca_t res, const ca_t x, ca_ctx_t ctx) void ca_acos(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the inverse sine (respectively, cosine) of *x*. The *direct* version expresses the result as an inverse sine or cosine (possibly after transforming the variable). The *logarithm* version expresses it in terms of complex logarithms. Simple algebraic inputs will automatically simplify to rational multiples of `\pi`. By default, the standard function uses the *logarithm* representation as this typically works best for field arithmetic and simplifications, although it has the disadvantage of introducing complex numbers where real numbers would be sufficient. The behavior of the standard function can be changed using the :macro:`CA_OPT_TRIG_FORM` context setting (exponential mode results in logarithmic forms). The inverse cosine is presently implemented as `\operatorname{acos}(x) = \pi/2 - \operatorname{asin}(x)`. Special functions ------------------------------------------------------------------------------- .. function:: void ca_gamma(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the gamma function of *x*. .. function:: void ca_erf(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the error function of *x*. .. function:: void ca_erfc(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the complementary error function of *x*. .. function:: void ca_erfi(ca_t res, const ca_t x, ca_ctx_t ctx) Sets *res* to the imaginary error function of *x*. Numerical evaluation ------------------------------------------------------------------------------- .. function:: void ca_get_acb_raw(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx) Sets *res* to an enclosure of the numerical value of *x*. A working precision of *prec* bits is used internally for the evaluation, without adaptive refinement. If *x* is any special value, *res* is set to *acb_indeterminate*. .. function:: void ca_get_acb(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx) void ca_get_acb_accurate_parts(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx) Sets *res* to an enclosure of the numerical value of *x*. The working precision is increased adaptively to try to ensure *prec* accurate bits in the output. The *accurate_parts* version tries to ensure *prec* accurate bits for both the real and imaginary part separately. The refinement is stopped if the working precision exceeds ``CA_OPT_PREC_LIMIT`` (or twice the initial precision, if this is larger). The user may call *acb_rel_accuracy_bits* to check is the calculation was successful. The output is not rounded down to *prec* bits (to avoid unnecessary double rounding); the user may call *acb_set_round* when rounding is desired. .. function:: char * ca_get_decimal_str(const ca_t x, slong digits, ulong flags, ca_ctx_t ctx) Returns a decimal approximation of *x* with precision up to *digits*. The output is guaranteed to be correct within 1 ulp in the returned digits, but the number of returned digits may be smaller than *digits* if the numerical evaluation does not succeed. If *flags* is set to 1, attempts to achieve full accuracy for both the real and imaginary parts separately. If *x* is not finite or a finite enclosure cannot be produced, returns the string "?". The user should free the returned string with ``flint_free``. Rewriting and simplification ------------------------------------------------------------------------------- .. function:: void ca_rewrite_complex_normal_form(ca_t res, const ca_t x, int deep, ca_ctx_t ctx) Sets *res* to *x* rewritten using standardizing transformations over the complex numbers: * Elementary functions are rewritten in terms of (complex) exponentials, roots and logarithms * Complex parts are rewritten using logarithms, square roots, and (deep) complex conjugates * Algebraic numbers are rewritten in terms of cyclotomic fields where applicable If *deep* is set, the rewriting is applied recursively to the tower of extension numbers; otherwise, the rewriting is only applied to the top-level extension numbers. The result is not a normal form in the strong sense (the same number can have many possible representations even after applying this transformation), but in practice this is a powerful heuristic for simplification. Factorization ------------------------------------------------------------------------------- .. type:: ca_factor_struct .. type:: ca_factor_t Represents a real or complex number in factored form `b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}` where `b_i` and `e_i` are :type:`ca_t` numbers (the exponents need not be integers). .. function:: void ca_factor_init(ca_factor_t fac, ca_ctx_t ctx) Initializes *fac* and sets it to the empty factorization (equivalent to the number 1). .. function:: void ca_factor_clear(ca_factor_t fac, ca_ctx_t ctx) Clears the factorization structure *fac*. .. function:: void ca_factor_one(ca_factor_t fac, ca_ctx_t ctx) Sets *fac* to the empty factorization (equivalent to the number 1). .. function:: void ca_factor_print(const ca_factor_t fac, ca_ctx_t ctx) Prints a description of *fac* to standard output. .. function:: void ca_factor_insert(ca_factor_t fac, const ca_t base, const ca_t exp, ca_ctx_t ctx) Inserts `b^e` into *fac* where *b* is given by *base* and *e* is given by *exp*. If a base element structurally identical to *base* already exists in *fac*, the corresponding exponent is incremented by *exp*; otherwise, this factor is appended. .. function:: void ca_factor_get_ca(ca_t res, const ca_factor_t fac, ca_ctx_t ctx) Expands *fac* back to a single :type:`ca_t` by evaluating the powers and multiplying out the result. .. function:: void ca_factor(ca_factor_t res, const ca_t x, ulong flags, ca_ctx_t ctx) Sets *res* to a factorization of *x* of the form `x = b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}`. Requires that *x* is not a special value. The type of factorization is controlled by *flags*, which can be set to a combination of constants in the following section. Factorization options ................................................................................ The following flags select the structural polynomial factorization to perform over formal fields `\mathbb{Q}(a_1,\ldots,a_n)`. Each flag in the list strictly encompasses the factorization power of the preceding flag, so it is unnecessary to pass more than one flag. .. macro:: CA_FACTOR_POLY_NONE No polynomial factorization at all. .. macro:: CA_FACTOR_POLY_CONTENT Only extract the rational content. .. macro:: CA_FACTOR_POLY_SQF Perform a squarefree factorization in addition to extracting the rational content. .. macro:: CA_FACTOR_POLY_FULL Perform a full multivariate polynomial factorization. The following flags select the factorization to perform over `\mathbb{Z}`. Integer factorization is applied if *x* is an element of `\mathbb{Q}`, and to the extracted rational content of polynomials. Each flag in the list strictly encompasses the factorization power of the preceding flag, so it is unnecessary to pass more than one flag. .. macro:: CA_FACTOR_ZZ_NONE No integer factorization at all. .. macro:: CA_FACTOR_ZZ_SMOOTH Perform a smooth factorization to extract small prime factors (heuristically up to ``CA_OPT_SMOOTH_LIMIT`` bits) in addition to identifying perfect powers. .. macro:: CA_FACTOR_ZZ_FULL Perform a complete integer factorization into prime numbers. This is prohibitively slow for general integers exceeding 70-80 digits. .. _context-options: Context options ------------------------------------------------------------------------------- The *options* member of a :type:`ca_ctx_t` object is an array of *slong* values controlling simplification behavior and various other settings. The values of the array at the following indices can be changed by the user (example: ``ctx->options[CA_OPT_PREC_LIMIT] = 65536``). It is recommended to set options controlling evaluation only at the time when a context object is created. Changing such options later should normally be harmless, but since the update will not apply retroactively to objects that have already been computed and cached, one might not see the expected behavior. Superficial options (printing) can be changed at any time. .. macro:: CA_OPT_VERBOSE Whether to print debug information. Default value: 0. .. macro:: CA_OPT_PRINT_FLAGS Printing style. See :ref:`ca-printing` for details. Default value: ``CA_PRINT_DEFAULT``. .. macro:: CA_OPT_MPOLY_ORD Monomial ordering to use for multivariate polynomials. Possible values are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``. Default value: ``ORD_LEX``. This option must be set before doing any computations. .. macro:: CA_OPT_PREC_LIMIT Maximum precision to use internally for numerical evaluation with Arb, and in some cases for the magntiude of exact coefficients. This parameter affects the possibility to prove inequalities and find simplifications between related extension numbers. This is not a strict limit; some calculations may use higher precision when there is a good reason to do so. Default value: 4096. .. macro:: CA_OPT_QQBAR_DEG_LIMIT Maximum degree of :type:`qqbar_t` elements allowed internally during simplification of algebraic numbers. This limit may be exceeded when the user provides explicit :type:`qqbar_t` input of higher degree. Default value: 120. .. macro:: CA_OPT_LOW_PREC Numerical precision to use for fast checks (typically, before attempting more expensive operations). Default value: 64. .. macro:: CA_OPT_SMOOTH_LIMIT Size in bits for factors in smooth integer factorization. Default value: 32. .. macro:: CA_OPT_LLL_PREC Precision to use to find integer relations using LLL. Default value: 128. .. macro:: CA_OPT_POW_LIMIT Largest exponent to expand powers automatically. This only applies in multivariate and transcendental fields: in number fields, ``CA_OPT_PREC_LIMIT`` applies instead. Default value: 20. .. macro:: CA_OPT_USE_GROEBNER Boolean flag for whether to use Gröbner basis computation. This flag and the following limits affect the ability to prove multivariate identities. Default value: 1. .. macro:: CA_OPT_GROEBNER_LENGTH_LIMIT Maximum length of ideal basis allowed in Buchberger's algorithm. Default value: 100. .. macro:: CA_OPT_GROEBNER_POLY_LENGTH_LIMIT Maximum length of polynomials allowed in Buchberger's algorithm. Default value: 1000. .. macro:: CA_OPT_GROEBNER_POLY_BITS_LIMIT Maximum coefficient size in bits of polynomials allowed in Buchberger's algorithm. Default value: 10000. .. macro:: CA_OPT_VIETA_LIMIT Maximum degree *n* of algebraic numbers for which to add Vieta's formulas to the reduction ideal. This must be set relatively low since the number of terms in Vieta's formulas is `O(2^n)` and the resulting Gröbner basis computations can be expensive. Default value: 6. .. macro:: CA_OPT_TRIG_FORM Default representation of trigonometric functions. The following values are possible: .. macro:: CA_TRIG_DIRECT Use the direct functions (with some exceptions). .. macro:: CA_TRIG_EXPONENTIAL Use complex exponentials. .. macro:: CA_TRIG_SINE_COSINE Use sines and cosines. .. macro:: CA_TRIG_TANGENT Use tangents. Default value: ``CA_TRIG_EXPONENTIAL``. The *exponential* representation is currently used by default as typically works best for field arithmetic and simplifications, although it has the disadvantage of introducing complex numbers where real numbers would be sufficient. This may change in the future. Internal representation ------------------------------------------------------------------------------- .. macro:: CA_FMPQ(x) .. macro:: CA_FMPQ_NUMREF(x) .. macro:: CA_FMPQ_DENREF(x) Assuming that *x* holds an element of the trivial field `\mathbb{Q}`, this macro returns a pointer which can be used as an :type:`fmpq_t`, or respectively to the numerator or denominator as an :type:`fmpz_t`. .. macro:: CA_MPOLY_Q(x) Assuming that *x* holds a generic field element as data, this macro returns a pointer which can be used as an :type:`fmpz_mpoly_q_t`. .. macro:: CA_NF_ELEM(x) Assuming that *x* holds an Antic number field element as data, this macro returns a pointer which can be used as an :type:`nf_elem_t`. .. function:: void _ca_make_field_element(ca_t x, ca_field_srcptr new_index, ca_ctx_t ctx) Changes the internal representation of *x* to that of an element of the field with index *new_index* in the context object *ctx*. This may destroy the value of *x*. .. function:: void _ca_make_fmpq(ca_t x, ca_ctx_t ctx) Changes the internal representation of *x* to that of an element of the trivial field `\mathbb{Q}`. This may destroy the value of *x*. .. raw:: latex \newpage