.. _fmpz-vec: **fmpz_vec.h** -- vectors of integers ================================================================================================== Memory management -------------------------------------------------------------------------------- .. function:: fmpz * _fmpz_vec_init(slong len) Returns an initialised vector of ``fmpz``'s of given length. .. function:: void _fmpz_vec_clear(fmpz * vec, slong len) Clears the entries of ``(vec, len)`` and frees the space allocated for ``vec``. Randomisation -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_randtest(fmpz * f, flint_rand_t state, slong len, flint_bitcnt_t bits) Sets the entries of a vector of the given length to random integers with up to the given number of bits per entry. .. function:: void _fmpz_vec_randtest_unsigned(fmpz * f, flint_rand_t state, slong len, flint_bitcnt_t bits) Sets the entries of a vector of the given length to random unsigned integers with up to the given number of bits per entry. Bit sizes and norms -------------------------------------------------------------------------------- .. function:: slong _fmpz_vec_max_bits(const fmpz * vec, slong len) If `b` is the maximum number of bits of the absolute value of any coefficient of ``vec``, then if any coefficient of ``vec`` is negative, `-b` is returned, else `b` is returned. .. function:: slong _fmpz_vec_max_bits_ref(const fmpz * vec, slong len) If `b` is the maximum number of bits of the absolute value of any coefficient of ``vec``, then if any coefficient of ``vec`` is negative, `-b` is returned, else `b` is returned. This is a slower reference implementation of ``_fmpz_vec_max_bits``. .. function:: void _fmpz_vec_sum_max_bits(slong * sumabs, slong * maxabs, const fmpz * vec, slong len) Sets ``sumabs`` to the bit count of the sum of the absolute values of the elements of ``vec``. Sets ``maxabs`` to the bit count of the maximum of the absolute values of the elements of ``vec``. .. function:: mp_size_t _fmpz_vec_max_limbs(const fmpz * vec, slong len) Returns the maximum number of limbs needed to store the absolute value of any entry in ``(vec, len)``. If all entries are zero, returns zero. .. function:: void _fmpz_vec_height(fmpz_t height, const fmpz * vec, slong len) Computes the height of ``(vec, len)``, defined as the largest of the absolute values the coefficients. Equivalently, this gives the infinity norm of the vector. If ``len`` is zero, the height is `0`. .. function:: slong _fmpz_vec_height_index(const fmpz * vec, slong len) Returns the index of an entry of maximum absolute value in the vector. The length must be at least 1. Input and output -------------------------------------------------------------------------------- .. function:: int _fmpz_vec_fread(FILE * file, fmpz ** vec, slong * len) Reads a vector from the stream ``file`` and stores it at ``*vec``. The format is the same as the output format of ``_fmpz_vec_fprint()``, followed by either any character or the end of the file. The interpretation of the various input arguments depends on whether or not ``*vec`` is ``NULL``: If ``*vec == NULL``, the value of ``*len`` on input is ignored. Once the length has been read from ``file``, ``*len`` is set to that value and a vector of this length is allocated at ``*vec``. Finally, ``*len`` coefficients are read from the input stream. In case of a file or parsing error, clears the vector and sets ``*vec`` and ``*len`` to ``NULL`` and ``0``, respectively. Otherwise, if ``*vec != NULL``, it is assumed that ``(*vec, *len)`` is a properly initialised vector. If the length on the input stream does not match ``*len``, a parsing error is raised. Attempts to read the right number of coefficients from the input stream. In case of a file or parsing error, leaves the vector ``(*vec, *len)`` in its current state. In case of success, returns a positive value. In case of failure, returns a non-positive value. .. function:: int _fmpz_vec_read(fmpz ** vec, slong * len) Reads a vector from ``stdin`` and stores it at ``*vec``. For further details, see ``_fmpz_vec_fread()``. .. function:: int _fmpz_vec_fprint(FILE * file, const fmpz * vec, slong len) Prints the vector of given length to the stream ``file``. The format is the length followed by two spaces, then a space separated list of coefficients. If the length is zero, only `0` is printed. In case of success, returns a positive value. In case of failure, returns a non-positive value. .. function:: int _fmpz_vec_print(const fmpz * vec, slong len) Prints the vector of given length to ``stdout``. For further details, see ``_fmpz_vec_fprint()``. Conversions -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_get_nmod_vec(mp_ptr res, const fmpz * poly, slong len, nmod_t mod) Reduce the coefficients of ``(poly, len)`` modulo the given modulus and set ``(res, len)`` to the result. .. function:: void _fmpz_vec_set_nmod_vec(fmpz * res, mp_srcptr poly, slong len, nmod_t mod) Set the coefficients of ``(res, len)`` to the symmetric modulus of the coefficients of ``(poly, len)``, i.e. convert the given coefficients modulo the given modulus `n` to their signed integer representatives in the range `[-n/2, n/2)`. .. function:: void _fmpz_vec_get_fft(mp_limb_t ** coeffs_f, const fmpz * coeffs_m, slong l, slong length) Convert the vector of coeffs ``coeffs_m`` to an fft vector ``coeffs_f`` of the given ``length`` with ``l`` limbs per coefficient with an additional limb for overflow. .. function:: void _fmpz_vec_set_fft(fmpz * coeffs_m, slong length, const mp_ptr * coeffs_f, slong limbs, slong sign) Convert an fft vector ``coeffs_f`` of fully reduced Fermat numbers of the given ``length`` to a vector of ``fmpz``'s. Each is assumed to be the given number of limbs in length with an additional limb for overflow. If the output coefficients are to be signed then set ``sign``, otherwise clear it. The resulting ``fmpz``s will be in the range `[-n,n]` in the signed case and in the range `[0,2n]` in the unsigned case where ``n = 2^(FLINT_BITS*limbs - 1)``. .. function:: slong _fmpz_vec_get_d_vec_2exp(double * appv, const fmpz * vec, slong len) Export the array of ``len`` entries starting at the pointer ``vec`` to an array of doubles ``appv``, each entry of which is notionally multiplied by a single returned exponent to give the original entry. The returned exponent is set to be the maximum exponent of all the original entries so that all the doubles in ``appv`` have a maximum absolute value of 1.0. Assignment and basic manipulation -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_set(fmpz * vec1, const fmpz * vec2, slong len2) Makes a copy of ``(vec2, len2)`` into ``vec1``. .. function:: void _fmpz_vec_swap(fmpz * vec1, fmpz * vec2, slong len2) Swaps the integers in ``(vec1, len2)`` and ``(vec2, len2)``. .. function:: void _fmpz_vec_zero(fmpz * vec, slong len) Zeros the entries of ``(vec, len)``. .. function:: void _fmpz_vec_neg(fmpz * vec1, const fmpz * vec2, slong len2) Negates ``(vec2, len2)`` and places it into ``vec1``. .. function:: void _fmpz_vec_scalar_abs(fmpz * vec1, const fmpz * vec2, slong len2) Takes the absolute value of entries in ``(vec2, len2)`` and places the result into ``vec1``. Comparison -------------------------------------------------------------------------------- .. function:: int _fmpz_vec_equal(const fmpz * vec1, const fmpz * vec2, slong len) Compares two vectors of the given length and returns `1` if they are equal, otherwise returns `0`. .. function:: int _fmpz_vec_is_zero(const fmpz * vec, slong len) Returns `1` if ``(vec, len)`` is zero, and `0` otherwise. .. function:: void _fmpz_vec_max(fmpz * vec1, const fmpz * vec2, const fmpz * vec3, slong len) Sets ``vec1`` to the pointwise maximum of ``vec2`` and ``vec3``. .. function:: void _fmpz_vec_max_inplace(fmpz * vec1, const fmpz * vec2, slong len) Sets ``vec1`` to the pointwise maximum of ``vec1`` and ``vec2``. Sorting -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_sort(fmpz * vec, slong len) Sorts the coefficients of ``vec`` in ascending order. Addition and subtraction -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_add(fmpz * res, const fmpz * vec1, const fmpz * vec2, slong len2) Sets ``(res, len2)`` to the sum of ``(vec1, len2)`` and ``(vec2, len2)``. .. function:: void _fmpz_vec_sub(fmpz * res, const fmpz * vec1, const fmpz * vec2, slong len2) Sets ``(res, len2)`` to ``(vec1, len2)`` minus ``(vec2, len2)``. Scalar multiplication and division -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_scalar_mul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Sets ``(vec1, len2)`` to ``(vec2, len2)`` multiplied by `c`, where `c` is an ``fmpz_t``. .. function:: void _fmpz_vec_scalar_mul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` multiplied by `c`, where `c` is a ``slong``. .. function:: void _fmpz_vec_scalar_mul_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` multiplied by `c`, where `c` is an ``ulong``. .. function:: void _fmpz_vec_scalar_mul_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets ``(vec1, len2)`` to ``(vec2, len2)`` multiplied by ``2^exp``. .. function:: void _fmpz_vec_scalar_divexact_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `x`, where the division is assumed to be exact for every entry in ``vec2``. .. function:: void _fmpz_vec_scalar_divexact_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `x`, where the division is assumed to be exact for every entry in ``vec2``. .. function:: void _fmpz_vec_scalar_divexact_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `x`, where the division is assumed to be exact for every entry in ``vec2``. .. function:: void _fmpz_vec_scalar_fdiv_q_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding down towards minus infinity whenever the division is not exact. .. function:: void _fmpz_vec_scalar_fdiv_q_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding down towards minus infinity whenever the division is not exact. .. function:: void _fmpz_vec_scalar_fdiv_q_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding down towards minus infinity whenever the division is not exact. .. function:: void _fmpz_vec_scalar_fdiv_q_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by ``2^exp``, rounding down towards minus infinity whenever the division is not exact. .. function:: void _fmpz_vec_scalar_fdiv_r_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets ``(vec1, len2)`` to the remainder of ``(vec2, len2)`` divided by ``2^exp``, rounding down the quotient towards minus infinity whenever the division is not exact. .. function:: void _fmpz_vec_scalar_tdiv_q_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding towards zero whenever the division is not exact. .. function:: void _fmpz_vec_scalar_tdiv_q_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding towards zero whenever the division is not exact. .. function:: void _fmpz_vec_scalar_tdiv_q_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by `c`, rounding towards zero whenever the division is not exact. .. function:: void _fmpz_vec_scalar_tdiv_q_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets ``(vec1, len2)`` to ``(vec2, len2)`` divided by ``2^exp``, rounding down towards zero whenever the division is not exact. .. function:: void _fmpz_vec_scalar_addmul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) .. function:: void _fmpz_vec_scalar_addmul_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) .. function:: void _fmpz_vec_scalar_addmul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Adds ``(vec2, len2)`` times `c` to ``(vec1, len2)``. .. function:: void _fmpz_vec_scalar_addmul_si_2exp(fmpz * vec1, const fmpz * vec2, slong len2, slong c, ulong exp) Adds ``(vec2, len2)`` times ``c * 2^exp`` to ``(vec1, len2)``, where `c` is a ``slong``. .. function:: void _fmpz_vec_scalar_submul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Subtracts ``(vec2, len2)`` times `c` from ``(vec1, len2)``, where `c` is a ``fmpz_t``. .. function:: void _fmpz_vec_scalar_submul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Subtracts ``(vec2, len2)`` times `c` from ``(vec1, len2)``, where `c` is a ``slong``. .. function:: void _fmpz_vec_scalar_submul_si_2exp(fmpz * vec1, const fmpz * vec2, slong len2, slong c, ulong e) Subtracts ``(vec2, len2)`` times `c \times 2^e` from ``(vec1, len2)``, where `c` is a ``slong``. Sums and products -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_sum(fmpz_t res, const fmpz * vec, slong len) Sets ``res`` to the sum of the entries in ``(vec, len)``. Aliasing of ``res`` with the entries in ``vec`` is not permitted. .. function:: void _fmpz_vec_prod(fmpz_t res, const fmpz * vec, slong len) Sets ``res`` to the product of the entries in ``(vec, len)``. Aliasing of ``res`` with the entries in ``vec`` is not permitted. Uses binary splitting. Reduction mod `p` -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_scalar_mod_fmpz(fmpz * res, const fmpz * vec, slong len, const fmpz_t p) Reduces all entries in ``(vec, len)`` modulo `p > 0`. .. function:: void _fmpz_vec_scalar_smod_fmpz(fmpz * res, const fmpz * vec, slong len, const fmpz_t p) Reduces all entries in ``(vec, len)`` modulo `p > 0`, choosing the unique representative in `(-p/2, p/2]`. Gaussian content -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_content(fmpz_t res, const fmpz * vec, slong len) Sets ``res`` to the non-negative content of the entries in ``vec``. The content of a zero vector, including the case when the length is zero, is defined to be zero. .. function:: void _fmpz_vec_content_chained(fmpz_t res, const fmpz * vec, slong len, const fmpz_t input) Sets ``res`` to the non-negative content of ``input`` and the entries in ``vec``. This is useful for calculating the common content of several vectors. .. function:: void _fmpz_vec_lcm(fmpz_t res, const fmpz * vec, slong len) Sets ``res`` to the nonnegative least common multiple of the entries in ``vec``. The least common multiple is zero if any entry in the vector is zero. The least common multiple of a length zero vector is defined to be one. Dot product -------------------------------------------------------------------------------- .. function:: void _fmpz_vec_dot_general_naive(fmpz_t res, const fmpz_t initial, int subtract, const fmpz * a, const fmpz * b, int reverse, slong len) void _fmpz_vec_dot_general(fmpz_t res, const fmpz_t initial, int subtract, const fmpz * a, const fmpz * b, int reverse, slong len) Computes the dot product of the vectors *a* and *b*, setting *res* to `s + (-1)^{subtract} \sum_{i=0}^{len-1} a_i b_i`. The initial term *s* is optional and can be omitted by passing *NULL* (equivalently, `s = 0`). The parameter *subtract* must be 0 or 1. If the *reverse* flag is 1, the second vector is reversed. Aliasing is allowed between ``res`` and ``initial`` but not between ``res`` and the entries of ``a`` and ``b``. The *naive* version is used for testing purposes. .. function:: void _fmpz_vec_dot(fmpz_t res, const fmpz * vec1, const fmpz * vec2, slong len2) Sets ``res`` to the dot product of ``(vec1, len2)`` and ``(vec2, len2)``.