.. _fq-zech: **fq_zech.h** -- finite fields (Zech logarithm representation) =============================================================================== We represent an element of the finite field as a power of a generator for the multiplicative group of the finite field. In particular, we use a root of `f(x)`, where `f(X) \in \mathbf{F}_p[X]` is a monic, irreducible polynomial of degree `n`, as a polynomial in `\mathbf{F}_p[X]` of degree less than `n`. The underlying data structure is just an ``mp_limb_t``. The default choice for `f(X)` is the Conway polynomial for the pair `(p,n)`, enabled by Frank Lübeck's data base of Conway polynomials using the :func:`_nmod_poly_conway` function. If a Conway polynomial is not available, then a random irreducible polynomial will be chosen for `f(X)`. Additionally, the user is able to supply their own `f(X)`. We required that the order of the field fits inside of an ``mp_limb_t``; however, it is recommended that `p^n < 2^{20}` due to the time and memory needed to compute the Zech logarithm table. Types, macros and constants ------------------------------------------------------------------------------- .. type:: fq_zech_ctx_struct .. type:: fq_zech_ctx_t .. type:: fq_zech_struct .. type:: fq_zech_t Context Management -------------------------------------------------------------------------------- .. function:: void fq_zech_ctx_init_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char * var) Initialises the context for prime `p` and extension degree `d`, with name ``var`` for the generator. By default, it will try use a Conway polynomial; if one is not available, a random primitive polynomial will be used. Assumes that `p` is a prime and :math:`p^d < 2^{\mathtt{FLINT\_BITS}}`. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: int _fq_zech_ctx_init_conway_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char * var) Attempts to initialise the context for prime `p` and extension degree `d`, with name ``var`` for the generator using a Conway polynomial for the modulus. Returns `1` if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns `0`. Assumes that `p` is a prime and `p^d < 2^\mathtt{FLINT\_BITS}`. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_zech_ctx_init_conway_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char * var) Initialises the context for prime `p` and extension degree `d`, with name ``var`` for the generator using a Conway polynomial for the modulus. Assumes that `p` is a prime and `p^d < 2^\mathtt{FLINT\_BITS}`. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_zech_ctx_init_random_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char * var) Initialises the context for prime `p` and extension degree `d`, with name ``var`` for the generator using a random primitive polynomial. Assumes that `p` is a prime and `p^d < 2^\mathtt{FLINT\_BITS}`. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: void fq_zech_ctx_init_modulus(fq_zech_ctx_t ctx, const nmod_poly_t modulus, const char * var) Initialises the context for given ``modulus`` with name ``var`` for the generator. Assumes that ``modulus`` is an primitive polynomial over `\mathbf{F}_{p}`. An exception is raised if a non-primitive modulus is detected. Assumes that the string ``var`` is a null-terminated string of length at least one. .. function:: int fq_zech_ctx_init_modulus_check(fq_zech_ctx_t ctx, const nmod_poly_t modulus, const char * var) As per the previous function, but returns `0` if the modulus was not primitive and `1` if the context was successfully initialised with the given modulus. No exception is raised. .. function:: void fq_zech_ctx_init_fq_nmod_ctx(fq_zech_ctx_t ctx, fq_nmod_ctx_t ctxn) Initializes the context ``ctx`` to be the Zech representation for the finite field given by ``ctxn``. .. function:: int fq_zech_ctx_init_fq_nmod_ctx_check(fq_zech_ctx_t ctx, fq_nmod_ctx_t ctxn) As per the previous function but returns `0` if a non-primitive modulus is detected. Returns `0` if the Zech representation was successfully initialised. .. function:: void fq_zech_ctx_init_randtest(fq_zech_ctx_t ctx, flint_rand_t state, int type) Initialises ``ctx`` to a random finite field, where the prime and degree is set according to ``type``. If ``type`` is `0` the prime and degree may be large, else if ``type`` is `1` the degree is small but the prime may be large, else if ``type`` is `2` the prime is small but the degree may be large, else if ``type`` is `3` both prime and degree are small. .. function:: void fq_zech_ctx_init_randtest_reducible(fq_zech_ctx_t ctx, flint_rand_t state, int type) Since the Zech logarithm representation does not work with a non-irreducible modulus, this function does the same as :func:`fq_zech_ctx_init_randtest`. .. function:: void fq_zech_ctx_clear(fq_zech_ctx_t ctx) Clears all memory that has been allocated as part of the context. .. function:: const nmod_poly_struct * fq_zech_ctx_modulus(const fq_zech_ctx_t ctx) Returns a pointer to the modulus in the context. .. function:: slong fq_zech_ctx_degree(const fq_zech_ctx_t ctx) Returns the degree of the field extension `[\mathbf{F}_{q} : \mathbf{F}_{p}]`, which is equal to `\log_{p} q`. .. function:: ulong fq_zech_ctx_prime(const fq_zech_ctx_t ctx) Returns the prime `p` of the context. .. function:: void fq_zech_ctx_order(fmpz_t f, const fq_zech_ctx_t ctx) Sets `f` to be the size of the finite field. .. function:: mp_limb_t fq_zech_ctx_order_ui(const fq_zech_ctx_t ctx) Returns the size of the finite field. .. function:: int fq_zech_ctx_fprint(FILE * file, const fq_zech_ctx_t ctx) Prints the context information to {\tt{file}}. Returns 1 for a success and a negative number for an error. .. function:: void fq_zech_ctx_print(const fq_zech_ctx_t ctx) Prints the context information to {\tt{stdout}}. Memory management -------------------------------------------------------------------------------- .. function:: void fq_zech_init(fq_zech_t rop, const fq_zech_ctx_t ctx) Initialises the element ``rop``, setting its value to `0`. .. function:: void fq_zech_init2(fq_zech_t rop, const fq_zech_ctx_t ctx) Initialises ``poly`` with at least enough space for it to be an element of ``ctx`` and sets it to `0`. .. function:: void fq_zech_clear(fq_zech_t rop, const fq_zech_ctx_t ctx) Clears the element ``rop``. .. function:: void _fq_zech_sparse_reduce(mp_ptr R, slong lenR, const fq_zech_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx``. .. function:: void _fq_zech_dense_reduce(mp_ptr R, slong lenR, const fq_zech_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx`` using Newton division. .. function:: void _fq_zech_reduce(mp_ptr r, slong lenR, const fq_zech_ctx_t ctx) Reduces ``(R, lenR)`` modulo the polynomial `f` given by the modulus of ``ctx``. Does either sparse or dense reduction based on ``ctx->sparse_modulus``. .. function:: void fq_zech_reduce(fq_zech_t rop, const fq_zech_ctx_t ctx) Reduces the polynomial ``rop`` as an element of `\mathbf{F}_p[X] / (f(X))`. Basic arithmetic -------------------------------------------------------------------------------- .. function:: void fq_zech_add(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets ``rop`` to the sum of ``op1`` and ``op2``. .. function:: void fq_zech_sub(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets ``rop`` to the difference of ``op1`` and ``op2``. .. function:: void fq_zech_sub_one(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx) Sets ``rop`` to the difference of ``op1`` and `1`. .. function:: void fq_zech_neg(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the negative of ``op``. .. function:: void fq_zech_mul(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets ``rop`` to the product of ``op1`` and ``op2``, reducing the output in the given context. .. function:: void fq_zech_mul_fmpz(fq_zech_t rop, const fq_zech_t op, const fmpz_t x, const fq_zech_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_zech_mul_si(fq_zech_t rop, const fq_zech_t op, slong x, const fq_zech_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_zech_mul_ui(fq_zech_t rop, const fq_zech_t op, ulong x, const fq_zech_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `x`, reducing the output in the given context. .. function:: void fq_zech_sqr(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the square of ``op``, reducing the output in the given context. .. function:: void fq_zech_div(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets ``rop`` to the quotient of ``op1`` and ``op2``, reducing the output in the given context. .. function:: void _fq_zech_inv(mp_ptr * rop, mp_srcptr * op, slong len, const fq_zech_ctx_t ctx) Sets ``(rop, d)`` to the inverse of the non-zero element ``(op, len)``. .. function:: void fq_zech_inv(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the inverse of the non-zero element ``op``. .. function:: void fq_zech_gcdinv(fq_zech_t f, fq_zech_t inv, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``inv`` to be the inverse of ``op`` modulo the modulus of ``ctx`` and sets ``f`` to one. Since the modulus for ``ctx`` is always irreducible, ``op`` is always invertible. .. function:: void _fq_zech_pow(fmpz * rop, const fmpz * op, slong len, const fmpz_t e, const fmpz * a, const slong * j, slong lena, const fmpz_t p) Sets ``(rop, 2*d-1)`` to ``(op,len)`` raised to the power `e`, reduced modulo `f(X)`, the modulus of ``ctx``. Assumes that `e \geq 0` and that ``len`` is positive and at most `d`. Although we require that ``rop`` provides space for `2d - 1` coefficients, the output will be reduced modulo `f(X)`, which is a polynomial of degree `d`. Does not support aliasing. .. function:: void fq_zech_pow(fq_zech_t rop, const fq_zech_t op, const fmpz_t e, const fq_zech_ctx_t ctx) Sets ``rop`` the ``op`` raised to the power `e`. Currently assumes that `e \geq 0`. Note that for any input ``op``, ``rop`` is set to `1` whenever `e = 0`. .. function:: void fq_zech_pow_ui(fq_zech_t rop, const fq_zech_t op, const ulong e, const fq_zech_ctx_t ctx) Sets ``rop`` the ``op`` raised to the power `e`. Currently assumes that `e \geq 0`. Note that for any input ``op``, ``rop`` is set to `1` whenever `e = 0`. Roots -------------------------------------------------------------------------------- .. function:: int fq_zech_sqrt(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx) Sets ``rop`` to the square root of ``op1`` if it is a square, and return `1`, otherwise return `0`. .. function:: void fq_zech_pth_root(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx) Sets ``rop`` to a `p^{th}` root root of ``op1``. Currently, this computes the root by raising ``op1`` to `p^{d-1}` where `d` is the degree of the extension. .. function:: int fq_zech_is_square(const fq_zech_t op, const fq_zech_ctx_t ctx) Return ``1`` if ``op`` is a square. Output -------------------------------------------------------------------------------- .. function:: int fq_zech_fprint_pretty(FILE * file, const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a pretty representation of ``op`` to ``file``. In the current implementation, always returns `1`. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. .. function:: void fq_zech_print_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a pretty representation of ``op`` to ``stdout``. In the current implementation, always returns `1`. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. .. function:: int fq_zech_fprint(FILE * file, const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a representation of ``op`` to ``file``. .. function:: void fq_zech_print(const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a representation of ``op`` to ``stdout``. .. function:: char * fq_zech_get_str(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns the plain FLINT string representation of the element ``op``. .. function:: char * fq_zech_get_str_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns a pretty representation of the element ``op`` using the null-terminated string ``x`` as the variable name. Randomisation -------------------------------------------------------------------------------- .. function:: void fq_zech_randtest(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random element of `\mathbf{F}_q`. .. function:: void fq_zech_randtest_not_zero(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random non-zero element of `\mathbf{F}_q`. .. function:: void fq_zech_randtest_dense(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random element of `\mathbf{F}_q` which has an underlying polynomial with dense coefficients. .. function:: void fq_zech_rand(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a high quality random element of `\mathbf{F}_q`. .. function:: void fq_zech_rand_not_zero(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a high quality non-zero random element of `\mathbf{F}_q`. Assignments and conversions -------------------------------------------------------------------------------- .. function:: void fq_zech_set(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to ``op``. .. function:: void fq_zech_set_si(fq_zech_t rop, const slong x, const fq_zech_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_zech_set_ui(fq_zech_t rop, const ulong x, const fq_zech_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_zech_set_fmpz(fq_zech_t rop, const fmpz_t x, const fq_zech_ctx_t ctx) Sets ``rop`` to ``x``, considered as an element of `\mathbf{F}_p`. .. function:: void fq_zech_swap(fq_zech_t op1, fq_zech_t op2, const fq_zech_ctx_t ctx) Swaps the two elements ``op1`` and ``op2``. .. function:: void fq_zech_zero(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets ``rop`` to zero. .. function:: void fq_zech_one(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets ``rop`` to one, reduced in the given context. .. function:: void fq_zech_gen(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets ``rop`` to a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field. .. function:: int fq_zech_get_fmpz(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) If ``op`` has a lift to the integers, return `1` and set ``rop`` to the lift in `[0,p)`. Otherwise, return `0` and leave `rop` undefined. .. function:: void fq_zech_get_fq_nmod(fq_nmod_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the ``fq_nmod_t`` element corresponding to ``op``. .. function:: void fq_zech_set_fq_nmod(fq_zech_t rop, const fq_nmod_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the ``fq_zech_t`` element corresponding to ``op``. .. function:: void fq_zech_get_nmod_poly(nmod_poly_t a, const fq_zech_t b, const fq_zech_ctx_t ctx) Set ``a`` to a representative of ``b`` in ``ctx``. The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``. .. function:: void fq_zech_set_nmod_poly(fq_zech_t a, const nmod_poly_t b, const fq_zech_ctx_t ctx) Set ``a`` to the element in ``ctx`` with representative ``b``. The representatives are taken in `(\mathbb{Z}/p\mathbb{Z})[x]/h(x)` where `h(x)` is the defining polynomial in ``ctx``. .. function:: void fq_zech_get_nmod_mat(nmod_mat_t col, const fq_zech_t a, const fq_zech_ctx_t ctx) Convert ``a`` to a column vector of length ``degree(ctx)``. .. function:: void fq_zech_set_nmod_mat(fq_zech_t a, const nmod_mat_t col, const fq_zech_ctx_t ctx) Convert a column vector ``col`` of length ``degree(ctx)`` to an element of ``ctx``. Comparison -------------------------------------------------------------------------------- .. function:: int fq_zech_is_zero(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether ``op`` is equal to zero. .. function:: int fq_zech_is_one(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether ``op`` is equal to one. .. function:: int fq_zech_equal(const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Returns whether ``op1`` and ``op2`` are equal. .. function:: int fq_zech_is_invertible(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether ``op`` is an invertible element. .. function:: int fq_zech_is_invertible_f(fq_zech_t f, const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether ``op`` is an invertible element. If it is not, then ``f`` is set of a factor of the modulus. Since the modulus for an ``fq_zech_ctx_t`` is always irreducible, then any non-zero ``op`` will be invertible. Special functions -------------------------------------------------------------------------------- .. function:: void fq_zech_trace(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets ``rop`` to the trace of ``op``. For an element `a \in \mathbf{F}_q`, multiplication by `a` defines a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the trace of `a` as the trace of this map. Equivalently, if `\Sigma` generates `\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of `a` is equal to `\sum_{i=0}^{d-1} \Sigma^i (a)`, where `d = \log_{p} q`. .. function:: void fq_zech_norm(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Computes the norm of ``op``. For an element `a \in \mathbf{F}_q`, multiplication by `a` defines a `\mathbf{F}_p`-linear map on `\mathbf{F}_q`. We define the norm of `a` as the determinant of this map. Equivalently, if `\Sigma` generates `\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)` then the trace of `a` is equal to `\prod_{i=0}^{d-1} \Sigma^i (a)`, where `d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)`. Algorithm selection is automatic depending on the input. .. function:: void fq_zech_frobenius(fq_zech_t rop, const fq_zech_t op, slong e, const fq_zech_ctx_t ctx) Evaluates the homomorphism `\Sigma^e` at ``op``. Recall that `\mathbf{F}_q / \mathbf{F}_p` is Galois with Galois group `\langle \sigma \rangle`, which is also isomorphic to `\mathbf{Z}/d\mathbf{Z}`, where `\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)` is the Frobenius element `\sigma \colon x \mapsto x^p`. .. function:: int fq_zech_multiplicative_order(fmpz * ord, const fq_zech_t op, const fq_zech_ctx_t ctx) Computes the order of ``op`` as an element of the multiplicative group of ``ctx``. Returns 0 if ``op`` is 0, otherwise it returns 1 if ``op`` is a generator of the multiplicative group, and -1 if it is not. Note that ``ctx`` must already correspond to a finite field defined by a primitive polynomial and so this function cannot be used to check primitivity of the generator, but can be used to check that other elements are primitive. .. function:: int fq_zech_is_primitive(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether ``op`` is primitive, i.e., whether it is a generator of the multiplicative group of ``ctx``. Bit packing -------------------------------------------------------------------------------- .. function:: void fq_zech_bit_pack(fmpz_t f, const fq_zech_t op, flint_bitcnt_t bit_size, const fq_zech_ctx_t ctx) Packs ``op`` into bitfields of size ``bit_size``, writing the result to ``f``. .. function:: void fq_zech_bit_unpack(fq_zech_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_zech_ctx_t ctx) Unpacks into ``rop`` the element with coefficients packed into fields of size ``bit_size`` as represented by the integer ``f``.