.. _padic: **padic.h** -- p-adic numbers =============================================================================== Introduction -------------------------------------------------------------------------------- The ``padic_t`` data type represents elements of `\mathbf{Q}_p` to precision `N`, stored in the form `x = p^v u` with `u, v \in \mathbf{Z}`. Arithmetic operations can be carried out with respect to a context containing the prime number `p` and various pieces of pre-computed data. Independent of the context, we consider a `p`-adic number `x = u p^v` to be in canonical form whenever either `p \nmid u` or `u = v = 0`, and we say it is reduced if, in addition, for non-zero `u`, `u \in (0, p^{N-v})`. We briefly describe the interface: The functions in this module expect arguments of type ``padic_t``, and each variable carries its own precision. The functions have an interface that is similar to the MPFR functions. In particular, they have the same semantics, specified as follows: Compute the requested operation exactly and then reduce the result to the precision of the output variable. Data structures -------------------------------------------------------------------------------- A `p`-adic number of type ``padic_t`` comprises a unit `u`, a valuation `v`, and a precision `N`. We provide the following macros to access these fields, so that code can be developed somewhat independently from the underlying data layout. .. function:: fmpz * padic_unit(const padic_t op) Returns the unit part of the `p`-adic number as a FLINT integer, which can be used as an operand for the ``fmpz`` functions. .. function:: slong padic_val(const padic_t op) Returns the valuation part of the `p`-adic number. Note that this function is implemented as a macro and that the expression ``padic_val(op)`` can be used as both an *lvalue* and an *rvalue*. .. function:: slong padic_get_val(const padic_t op) Returns the valuation part of the `p`-adic number. .. function:: slong padic_prec(const padic_t op) Returns the precision of the `p`-adic number. Note that this function is implemented as a macro and that the expression ``padic_prec(op)`` can be used as both an *lvalue* and an *rvalue*. .. function:: slong padic_get_prec(const padic_t op) Returns the precision of the `p`-adic number. Context -------------------------------------------------------------------------------- A context object for `p`-adic arithmetic contains data pertinent to `p`-adic computations, but which we choose not to store with each element individually. Currently, this includes the prime number `p`, its ``double`` inverse in case of word-sized primes, precomputed powers of `p` in the range given by ``min`` and ``max``, and the printing mode. .. function:: void padic_ctx_init(padic_ctx_t ctx, const fmpz_t p, slong min, slong max, enum padic_print_mode mode) Initialises the context ``ctx`` with the given data. Assumes that `p` is a prime. This is not verified but the subsequent behaviour is undefined if `p` is a composite number. Assumes that ``min`` and ``max`` are non-negative and that ``min`` is at most ``max``, raising an ``abort`` signal otherwise. Assumes that the printing mode is one of ``PADIC_TERSE``, ``PADIC_SERIES``, or ``PADIC_VAL_UNIT``. Using the example `x = 7^{-1} 12` in `\mathbf{Q}_7`, these behave as follows: In ``PADIC_TERSE`` mode, a `p`-adic number is printed in the same way as a rational number, e.g. ``12/7``. In ``PADIC_SERIES`` mode, a `p`-adic number is printed digit by digit, e.g. ``5*7^-1 + 1``. In ``PADIC_VAL_UNIT`` mode, a `p`-adic number is printed showing the valuation and unit parts separately, e.g. ``12*7^-1``. .. function:: void padic_ctx_clear(padic_ctx_t ctx) Clears all memory that has been allocated as part of the context. .. function:: int _padic_ctx_pow_ui(fmpz_t rop, ulong e, const padic_ctx_t ctx) Sets ``rop`` to `p^e` as efficiently as possible, where ``rop`` is expected to be an uninitialised ``fmpz_t``. If the return value is non-zero, it is the responsibility of the caller to clear the returned integer. Memory management -------------------------------------------------------------------------------- .. function:: void padic_init(padic_t rop) Initialises the `p`-adic number with the precision set to ``PADIC_DEFAULT_PREC``, which is defined as `20`. .. function:: void padic_init2(padic_t rop, slong N) Initialises the `p`-adic number ``rop`` with precision `N`. .. function:: void padic_clear(padic_t rop) Clears all memory used by the `p`-adic number ``rop``. .. function:: void _padic_canonicalise(padic_t rop, const padic_ctx_t ctx) Brings the `p`-adic number ``rop`` into canonical form. That is to say, ensures that either `u = v = 0` or `p \nmid u`. There is no reduction modulo a power of `p`. .. function:: void _padic_reduce(padic_t rop, const padic_ctx_t ctx) Given a `p`-adic number ``rop`` in canonical form, reduces it modulo `p^N`. .. function:: void padic_reduce(padic_t rop, const padic_ctx_t ctx) Ensures that the `p`-adic number ``rop`` is reduced. Randomisation -------------------------------------------------------------------------------- .. function:: void padic_randtest(padic_t rop, flint_rand_t state, const padic_ctx_t ctx) Sets ``rop`` to a random `p`-adic number modulo `p^N` with valuation in the range `[- \lceil N/10\rceil, N)`, `[N - \lceil -N/10\rceil, N)`, or `[-10, 0)` as `N` is positive, negative or zero, whenever ``rop`` is non-zero. .. function:: void padic_randtest_not_zero(padic_t rop, flint_rand_t state, const padic_ctx_t ctx) Sets ``rop`` to a random non-zero `p`-adic number modulo `p^N`, where the range of the valuation is as for the function :func:`padic_randtest`. .. function:: void padic_randtest_int(padic_t rop, flint_rand_t state, const padic_ctx_t ctx) Sets ``rop`` to a random `p`-adic integer modulo `p^N`. Note that whenever `N \leq 0`, ``rop`` is set to zero. Assignments and conversions -------------------------------------------------------------------------------- All assignment functions set the value of ``rop`` from ``op``, reduced to the precision of ``rop``. .. function:: void padic_set(padic_t rop, const padic_t op, const padic_ctx_t ctx) Sets ``rop`` to the `p`-adic number ``op``. .. function:: void padic_set_si(padic_t rop, slong op, const padic_ctx_t ctx) Sets the `p`-adic number ``rop`` to the ``slong`` integer ``op``. .. function:: void padic_set_ui(padic_t rop, ulong op, const padic_ctx_t ctx) Sets the `p`-adic number ``rop`` to the ``ulong`` integer ``op``. .. function:: void padic_set_fmpz(padic_t rop, const fmpz_t op, const padic_ctx_t ctx) Sets the `p`-adic number ``rop`` to the integer ``op``. .. function:: void padic_set_fmpq(padic_t rop, const fmpq_t op, const padic_ctx_t ctx) Sets ``rop`` to the rational ``op``. .. function:: void padic_set_mpz(padic_t rop, const mpz_t op, const padic_ctx_t ctx) Sets the `p`-adic number ``rop`` to the GMP integer ``op``. .. function:: void padic_set_mpq(padic_t rop, const mpq_t op, const padic_ctx_t ctx) Sets ``rop`` to the GMP rational ``op``. .. function:: void padic_get_fmpz(fmpz_t rop, const padic_t op, const padic_ctx_t ctx) Sets the integer ``rop`` to the exact `p`-adic integer ``op``. If ``op`` is not a `p`-adic integer, raises an ``abort`` signal. .. function:: void padic_get_fmpq(fmpq_t rop, const padic_t op, const padic_ctx_t ctx) Sets the rational ``rop`` to the `p`-adic number ``op``. .. function:: void padic_get_mpz(mpz_t rop, const padic_t op, const padic_ctx_t ctx) Sets the GMP integer ``rop`` to the `p`-adic integer ``op``. If ``op`` is not a `p`-adic integer, raises an ``abort`` signal. .. function:: void padic_get_mpq(mpq_t rop, const padic_t op, const padic_ctx_t ctx) Sets the GMP rational ``rop`` to the value of ``op``. .. function:: void padic_swap(padic_t op1, padic_t op2) Swaps the two `p`-adic numbers ``op1`` and ``op2``. Note that this includes swapping the precisions. In particular, this operation is not equivalent to swapping ``op1`` and ``op2`` using :func:`padic_set` and an auxiliary variable whenever the precisions of the two elements are different. .. function:: void padic_zero(padic_t rop) Sets the `p`-adic number ``rop`` to zero. .. function:: void padic_one(padic_t rop) Sets the `p`-adic number ``rop`` to one, reduced modulo the precision of ``rop``. Comparison -------------------------------------------------------------------------------- .. function:: int padic_is_zero(const padic_t op) Returns whether ``op`` is equal to zero. .. function:: int padic_is_one(const padic_t op) Returns whether ``op`` is equal to one, that is, whether `u = 1` and `v = 0`. .. function:: int padic_equal(const padic_t op1, const padic_t op2) Returns whether ``op1`` and ``op2`` are equal, that is, whether `u_1 = u_2` and `v_1 = v_2`. Arithmetic operations -------------------------------------------------------------------------------- .. function:: slong * _padic_lifts_exps(slong * n, slong N) Given a positive integer `N` define the sequence `a_0 = N, a_1 = \lceil a_0/2\rceil, \dotsc, a_{n-1} = \lceil a_{n-2}/2\rceil = 1`. Then `n = \lceil\log_2 N\rceil + 1`. This function sets `n` and allocates and returns the array `a`. .. function:: void _padic_lifts_pows(fmpz * pow, const slong * a, slong n, const fmpz_t p) Given an array `a` as computed above, this function computes the corresponding powers of `p`, that is, ``pow[i]`` is equal to `p^{a_i}`. .. function:: void padic_add(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx) Sets ``rop`` to the sum of ``op1`` and ``op2``. .. function:: void padic_sub(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx) Sets ``rop`` to the difference of ``op1`` and ``op2``. .. function:: void padic_neg(padic_t rop, const padic_t op, const padic_ctx_t ctx) Sets ``rop`` to the additive inverse of ``op``. .. function:: void padic_mul(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx) Sets ``rop`` to the product of ``op1`` and ``op2``. .. function:: void padic_shift(padic_t rop, const padic_t op, slong v, const padic_ctx_t ctx) Sets ``rop`` to the product of ``op`` and `p^v`. .. function:: void padic_div(padic_t rop, const padic_t op1, const padic_t op2, const padic_ctx_t ctx) Sets ``rop`` to the quotient of ``op1`` and ``op2``. .. function:: void _padic_inv_precompute(padic_inv_t S, const fmpz_t p, slong N) Pre-computes some data and allocates temporary space for `p`-adic inversion using Hensel lifting. .. function:: void _padic_inv_clear(padic_inv_t S) Frees the memory used by `S`. .. function:: void _padic_inv_precomp(fmpz_t rop, const fmpz_t op, const padic_inv_t S) Sets ``rop`` to the inverse of ``op`` modulo `p^N`, assuming that ``op`` is a unit and `N \geq 1`. In the current implementation, allows aliasing, but this might change in future versions. Uses some data `S` precomputed by calling the function :func:`_padic_inv_precompute`. Note that this object is not declared ``const`` and in fact it carries a field providing temporary work space. This allows repeated calls of this function to avoid repeated memory allocations, as used e.g. by the function :func:`padic_log`. .. function:: void _padic_inv(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N) Sets ``rop`` to the inverse of ``op`` modulo `p^N`, assuming that ``op`` is a unit and `N \geq 1`. In the current implementation, allows aliasing, but this might change in future versions. .. function:: void padic_inv(padic_t rop, const padic_t op, const padic_ctx_t ctx) Computes the inverse of ``op`` modulo `p^N`. Suppose that ``op`` is given as `x = u p^v`. Raises an ``abort`` signal if `v < -N`. Otherwise, computes the inverse of `u` modulo `p^{N+v}`. This function employs Hensel lifting of an inverse modulo `p`. .. function:: int padic_sqrt(padic_t rop, const padic_t op, const padic_ctx_t ctx) Returns whether ``op`` is a `p`-adic square. If this is the case, sets ``rop`` to one of the square roots; otherwise, the value of ``rop`` is undefined. We have the following theorem: Let `u \in \mathbf{Z}^{\times}`. Then `u` is a square if and only if `u \bmod p` is a square in `\mathbf{Z} / p \mathbf{Z}`, for `p > 2`, or if `u \bmod 8` is a square in `\mathbf{Z} / 8 \mathbf{Z}`, for `p = 2`. .. function:: void padic_pow_si(padic_t rop, const padic_t op, slong e, const padic_ctx_t ctx) Sets ``rop`` to ``op`` raised to the power `e`, which is defined as one whenever `e = 0`. Assumes that some computations involving `e` and the valuation of ``op`` do not overflow in the ``slong`` range. Note that if the input `x = p^v u` is defined modulo `p^N` then `x^e = p^{ev} u^e` is defined modulo `p^{N + (e - 1) v}`, which is a precision loss in case `v < 0`. Exponential -------------------------------------------------------------------------------- .. function:: slong _padic_exp_bound(slong v, slong N, const fmpz_t p) Returns an integer `i` such that for all `j \geq i` we have `\operatorname{ord}_p(x^j / j!) \geq N`, where `\operatorname{ord}_p(x) = v`. When `p` is a word-sized prime, returns `\left\lceil \frac{(p-1)N - 1}{(p-1)v - 1}\right\rceil`. Otherwise, returns `\lceil N/v\rceil`. Assumes that `v < N`. Moreover, `v` has to be at least `2` or `1`, depending on whether `p` is `2` or odd. .. function:: void _padic_exp_rectangular(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N) void _padic_exp_balanced(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N) void _padic_exp(fmpz_t rop, const fmpz_t u, slong v, const fmpz_t p, slong N) Sets ``rop`` to the `p`-exponential function evaluated at `x = p^v u`, reduced modulo `p^N`. Assumes that `x \neq 0`, that `\operatorname{ord}_p(x) < N` and that `\exp(x)` converges, that is, that `\operatorname{ord}_p(x)` is at least `2` or `1` depending on whether the prime `p` is `2` or odd. Supports aliasing between ``rop`` and `u`. .. function:: int padic_exp(padic_t y, const padic_t x, const padic_ctx_t ctx) Returns whether the `p`-adic exponential function converges at the `p`-adic number `x`, and if so sets `y` to its value. The `p`-adic exponential function is defined by the usual series .. math:: \exp_p(x) = \sum_{i = 0}^{\infty} \frac{x^i}{i!} but this only converges only when `\operatorname{ord}_p(x) > 1 / (p - 1)`. For elements `x \in \mathbf{Q}_p`, this means that `\operatorname{ord}_p(x) \geq 1` when `p \geq 3` and `\operatorname{ord}_2(x) \geq 2` when `p = 2`. .. function:: int padic_exp_rectangular(padic_t y, const padic_t x, const padic_ctx_t ctx) Returns whether the `p`-adic exponential function converges at the `p`-adic number `x`, and if so sets `y` to its value. Uses a rectangular splitting algorithm to evaluate the series expression of `\exp(x) \bmod{p^N}`. .. function:: int padic_exp_balanced(padic_t y, const padic_t x, const padic_ctx_t ctx) Returns whether the `p`-adic exponential function converges at the `p`-adic number `x`, and if so sets `y` to its value. Uses a balanced approach, balancing the size of chunks of `x` with the valuation and hence the rate of convergence, which results in a quasi-linear algorithm in `N`, for fixed `p`. Logarithm -------------------------------------------------------------------------------- .. function:: slong _padic_log_bound(slong v, slong N, const fmpz_t p) Returns `b` such that for all `i \geq b` we have .. math:: i v - \operatorname{ord}_p(i) \geq N where `v \geq 1`. Assumes that `1 \leq v < N` or `2 \leq v < N` when `p` is odd or `p = 2`, respectively, and also that `N < 2^{f-2}` where `f` is ``FLINT_BITS``. .. function:: void _padic_log(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N) void _padic_log_rectangular(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N) void _padic_log_satoh(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N) void _padic_log_balanced(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N) Computes .. math:: z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}, reduced modulo `p^N`. Note that this can be used to compute the `p`-adic logarithm via the equation .. math:: \log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\ & = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}. Assumes that `y = 1 - x` is non-zero and that `v = \operatorname{ord}_p(y)` is at least `1` when `p` is odd and at least `2` when `p = 2` so that the series converges. Assumes that `v < N`, and hence in particular `N \geq 2`. Does not support aliasing between `y` and `z`. .. function:: int padic_log(padic_t rop, const padic_t op, const padic_ctx_t ctx) Returns whether the `p`-adic logarithm function converges at the `p`-adic number ``op``, and if so sets ``rop`` to its value. The `p`-adic logarithm function is defined by the usual series .. math:: \log_p(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} but this only converges when `\operatorname{ord}_p(x - 1)` is at least `2` or `1` when `p = 2` or `p > 2`, respectively. .. function:: int padic_log_rectangular(padic_t rop, const padic_t op, const padic_ctx_t ctx) Returns whether the `p`-adic logarithm function converges at the `p`-adic number ``op``, and if so sets ``rop`` to its value. Uses a rectangular splitting algorithm to evaluate the series expression of `\log(x) \bmod{p^N}`. .. function:: int padic_log_satoh(padic_t rop, const padic_t op, const padic_ctx_t ctx) Returns whether the `p`-adic logarithm function converges at the `p`-adic number ``op``, and if so sets ``rop`` to its value. Uses an algorithm based on a result of Satoh, Skjernaa and Taguchi that `\operatorname{ord}_p\bigl(a^{p^k} - 1\bigr) > k`, which implies that .. math:: \log(a) \equiv p^{-k} \Bigl( \log\bigl(a^{p^k}\bigr) \pmod{p^{N+k}} \Bigr) \pmod{p^N}. .. function:: int padic_log_balanced(padic_t rop, const padic_t op, const padic_ctx_t ctx) Returns whether the `p`-adic logarithm function converges at the `p`-adic number ``op``, and if so sets ``rop`` to its value. Special functions -------------------------------------------------------------------------------- .. function:: void _padic_teichmuller(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N) Computes the Teichm\"uller lift of the `p`-adic unit ``op``, assuming that `N \geq 1`. Supports aliasing between ``rop`` and ``op``. .. function:: void padic_teichmuller(padic_t rop, const padic_t op, const padic_ctx_t ctx) Computes the Teichm\"uller lift of the `p`-adic unit ``op``. If ``op`` is a `p`-adic integer divisible by `p`, sets ``rop`` to zero, which satisfies `t^p - t = 0`, although it is clearly not a `(p-1)`-st root of unity. If ``op`` has negative valuation, raises an ``abort`` signal. .. function:: ulong padic_val_fac_ui_2(ulong n) Computes the `2`-adic valuation of `n!`. Note that since `n` fits into an ``ulong``, so does `\operatorname{ord}_2(n!)` since `\operatorname{ord}_2(n!) \leq (n - 1) / (p - 1) = n - 1`. .. function:: ulong padic_val_fac_ui(ulong n, const fmpz_t p) Computes the `p`-adic valuation of `n!`. Note that since `n` fits into an ``ulong``, so does `\operatorname{ord}_p(n!)` since `\operatorname{ord}_p(n!) \leq (n - 1) / (p - 1)`. .. function:: void padic_val_fac(fmpz_t rop, const fmpz_t op, const fmpz_t p) Sets ``rop`` to the `p`-adic valuation of the factorial of ``op``, assuming that ``op`` is non-negative. Input and output -------------------------------------------------------------------------------- .. function:: char * padic_get_str(char * str, const padic_t op, const padic_ctx_t ctx) Returns the string representation of the `p`-adic number ``op`` according to the printing mode set in the context. If ``str`` is ``NULL`` then a new block of memory is allocated and a pointer to this is returned. Otherwise, it is assumed that the string ``str`` is large enough to hold the representation and it is also the return value. .. function:: int _padic_fprint(FILE * file, const fmpz_t u, slong v, const padic_ctx_t ctx) int padic_fprint(FILE * file, const padic_t op, const padic_ctx_t ctx) Prints the string representation of the `p`-adic number ``op`` to the stream ``file``. In the current implementation, always returns `1`. .. function:: int _padic_print(const fmpz_t u, slong v, const padic_ctx_t ctx) int padic_print(const padic_t op, const padic_ctx_t ctx) Prints the string representation of the `p`-adic number ``op`` to the stream ``stdout``. In the current implementation, always returns `1`. .. function:: void padic_debug(const padic_t op) Prints debug information about ``op`` to the stream ``stdout``, in the format ``"(u v N)"``.