dlog.h – discrete logarithms mod ulong primes

This module implements discrete logarithms, with the application to Dirichlet characters in mind.

In particular, this module defines a dlog_precomp_t structure permitting to describe a discrete log problem in some subgroup of \((\mathbb Z/p^e \mathbb Z)^\times\) for primepower moduli \(p^e\), and store precomputed data for faster computation of several such discrete logarithms.

When initializing this data, the user provides both a group description and the expected number of subsequent discrete logarithms calls. The choice of algorithm and the amount of stored data depend both on the structure of the group and this number.

No particular effort has been made towards single discrete logarithm computation. Currently only machine size primepower moduli are supported.

Types, macros and constants

DLOG_NONE

Return value when the discrete logarithm does not exist

type dlog_precomp_struct
type dlog_precomp_t

Structure for discrete logarithm precomputed data.

A dlog_precomp_t is defined as an array of length one of type dlog_precomp_struct, permitting a dlog_precomp_t to be passed by reference.

Single evaluation

ulong dlog_once(ulong b, ulong a, const nmod_t mod, ulong n)

Return \(x\) such that \(b = a^x\) in \((\mathbb Z/mod \mathbb Z)^\times\), where a is known to have order n.

Precomputations

void dlog_precomp_n_init(dlog_precomp_t pre, ulong a, ulong mod, ulong n, ulong num)

Precompute data for num discrete logarithms evaluations in the subgroup generated by a modulo mod, where a is known to have order n.

ulong dlog_precomp(const dlog_precomp_t pre, ulong b)

Return \(\log(b)\) for the group described in pre.

void dlog_precomp_clear(dlog_precomp_t pre)

Clears t.

Specialized versions of dlog_precomp_n_init() are available when specific information is known about the group:

void dlog_precomp_modpe_init(dlog_precomp_t pre, ulong a, ulong p, ulong e, ulong pe, ulong num)

Assume that a generates the group of residues modulo pe equal \(p^e\) for prime p.

void dlog_precomp_p_init(dlog_precomp_t pre, ulong a, ulong mod, ulong p, ulong num)

Assume that a has prime order p.

void dlog_precomp_pe_init(dlog_precomp_t pre, ulong a, ulong mod, ulong p, ulong e, ulong pe, ulong num)

Assume that a has primepower order pe \(p^e\).

void dlog_precomp_small_init(dlog_precomp_t pre, ulong a, ulong mod, ulong n, ulong num)

Make a complete lookup table of size n. If mod is small, this is done using an element-indexed array (see dlog_table_t), otherwise with a sorted array allowing binary search.

Vector evaluations

These functions compute all logarithms of successive integers \(1\dots n\).

void dlog_vec_fill(ulong *v, ulong nv, ulong x)

Sets values v[k] to x for all k less than nv.

void dlog_vec_set_not_found(ulong *v, ulong nv, nmod_t mod)

Sets values v[k] to DLOG_NONE for all k not coprime to mod.

void dlog_vec(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)

Sets v[k] to \(\log(k,a)\) times value va for \(0\leq k < nv\), where a has order na. va should be 1 for usual log computation.

void dlog_vec_add(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)

Same parameters as before, but adds \(\log(k,a)\times v_a\) to v[k] and reduce modulo order instead of replacing the value. Indices k such that v[k] equals DLOG_NONE are ignored.

Depending on the relative size of nv and na, these two dlog_vec functions call one of the following functions.

void dlog_vec_loop(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
void dlog_vec_loop_add(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)

Perform a complete loop of size na on powers of a to fill the logarithm values, discarding powers outside the bounds of v. This requires no discrete logarithm computation.

void dlog_vec_eratos(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
void dlog_vec_eratos_add(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)

Compute discrete logarithms of prime numbers less than nv and propagate to composite numbers.

void dlog_vec_sieve_add(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)
void dlog_vec_sieve(ulong *v, ulong nv, ulong a, ulong va, nmod_t mod, ulong na, nmod_t order)

Compute the discrete logarithms of the first few prime numbers, then use them as a factor base to obtain the logarithms of larger primes by sieving techniques.

In the the present implementation, the full index-calculus method is not implemented.

Internal discrete logarithm strategies

Several discrete logarithms strategies are implemented:

  • Complete lookup table for small groups.

  • Baby-step giant-step table.

combined with mathematical reductions:

  • Pohlig-Hellman decomposition (Chinese remainder decomposition on the order of the group and base \(p\) decomposition for primepower order).

  • p-adic log for primepower modulus \(p^e\).

The dlog_precomp structure makes recursive use of the following method-specific structures.

Complete table

type dlog_table_struct
type dlog_table_t

Structure for complete lookup table.

ulong dlog_table_init(dlog_table_t t, ulong a, ulong mod)

Initialize a table of powers of a modulo mod, storing all elements in an array of size mod.

void dlog_table_clear(dlog_table_t t)

Clears t.

ulong dlog_table(const dlog_table_t t, ulong b)

Return \(\log(b,a)\) using the precomputed data t.

Baby-step giant-step table

type dlog_bsgs_struct
type dlog_bsgs_t

Structure for Baby-Step Giant-Step decomposition.

ulong dlog_bsgs_init(dlog_bsgs_t t, ulong a, ulong mod, ulong n, ulong m)

Initialize t and store the first m powers of a in a sorted array. The return value is a rought measure of the cost of each logarithm using this table. The user should take \(m\approx\sqrt{kn}\) to compute k logarithms in a group of size n.

void dlog_bsgs_clear(dlog_bsgs_t t)

Clears t.

ulong dlog_bsgs(const dlog_bsgs_t t, ulong b)

Return \(\log(b,a)\) using the precomputed data t.

Prime-power modulus decomposition

type dlog_modpe_struct
type dlog_modpe_t

Structure for discrete logarithm modulo primepower \(p^e\).

A dlog_modpe_t is defined as an array of length one of type dlog_modpe_struct, permitting a dlog_modpe_t to be passed by reference.

ulong dlog_modpe_init(dlog_modpe_t t, ulong a, ulong p, ulong e, ulong pe, ulong num)
void dlog_modpe_clear(dlog_modpe_t t)

Clears t.

ulong dlog_modpe(const dlog_modpe_t t, ulong b)

Return \(\log(b,a)\) using the precomputed data t.

CRT decomposition

type dlog_crt_struct
type dlog_crt_t

Structure for discrete logarithm for groups of composite order. A dlog_crt_t is defined as an array of length one of type dlog_crt_struct, permitting a dlog_crt_t to be passed by reference.

ulong dlog_crt_init(dlog_crt_t t, ulong a, ulong mod, ulong n, ulong num)

Precompute data for num evaluations of discrete logarithms in base a modulo mod, where a has composite order n, using chinese remainder decomposition.

void dlog_crt_clear(dlog_crt_t t)

Clears t.

ulong dlog_crt(const dlog_crt_t t, ulong b)

Return \(\log(b,a)\) using the precomputed data t.

padic decomposition

type dlog_power_struct
type dlog_power_t

Structure for discrete logarithm for groups of primepower order. A dlog_power_t is defined as an array of length one of type dlog_power_struct, permitting a dlog_power_t to be passed by reference.

ulong dlog_power_init(dlog_power_t t, ulong a, ulong mod, ulong p, ulong e, ulong num)

Precompute data for num evaluations of discrete logarithms in base a modulo mod, where a has prime power order pe equals \(p^e\), using decomposition in base p.

void dlog_power_clear(dlog_power_t t)

Clears t.

ulong dlog_power(const dlog_power_t t, ulong b)

Return \(\log(b,a)\) using the precomputed data t.

Pollard rho method

type dlog_rho_struct
type dlog_rho_t

Structure for discrete logarithm using Pollard rho. A dlog_rho_t is defined as an array of length one of type dlog_rho_struct, permitting a dlog_rho_t to be passed by reference.

void dlog_rho_init(dlog_rho_t t, ulong a, ulong mod, ulong n)

Initialize random walks for evaluations of discrete logarithms in base a modulo mod, where a has order n.

void dlog_rho_clear(dlog_rho_t t)

Clears t.

ulong dlog_rho(const dlog_rho_t t, ulong b)

Return \(\log(b,a)\) by the rho method in the group described by t.