fq_nmod.h – finite fields (word-size characteristic)¶
We represent an element of the finite field \(\mathbf{F}_{p^n} \cong
\mathbf{F}_p[X]/(f(X))\), where \(f(X) \in \mathbf{F}_p[X]\) is a monic,
irreducible polynomial of degree \(n\), as a polynomial in
\(\mathbf{F}_p[X]\) of degree less than \(n\). The underlying data
structure is an nmod_poly_t.
The default choice for \(f(X)\) is the Conway polynomial for the pair \((p,n)\),
enabled by Frank Lübeck’s data base of Conway polynomials using the
_nmod_poly_conway() function. If a Conway polynomial is not available,
then a random irreducible polynomial will be chosen for \(f(X)\). Additionally,
the user is able to supply their own \(f(X)\).
Types, macros and constants¶
- 
type fq_nmod_ctx_struct¶
- 
type fq_nmod_ctx_t¶
- 
type fq_nmod_struct¶
- 
type fq_nmod_t¶
Context Management¶
- 
void fq_nmod_ctx_init_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
- Initialises the context for prime \(p\) and extension degree \(d\), with name - varfor the generator. By default, it will try use a Conway polynomial; if one is not available, a minimal weight irreducible polynomial will be used.- Assumes that \(p\) is a prime. - Assumes that the string - varis a null-terminated string of length at least one.
- 
void fq_nmod_ctx_init_minimal_weight_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
- Initialises the context for prime \(p\) and extension degree \(d\), with name - varfor the generator, choosing a modulus polynomial with minimal number of nonzero terms for efficient arithmetic.- Assumes that \(p\) is a prime. - Assumes that the string - varis a null-terminated string of length at least one.
- 
int _fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
- Attempts to initialise the context for prime \(p\) and extension degree \(d\), with name - varfor the generator using a Conway polynomial for the modulus.- Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\). - Assumes that \(p\) is a prime. - Assumes that the string - varis a null-terminated string of length at least one.
- 
void fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
- Initialises the context for prime \(p\) and extension degree \(d\), with name - varfor the generator using a Conway polynomial for the modulus.- Assumes that \(p\) is a prime. - Assumes that the string - varis a null-terminated string of length at least one.
- 
void fq_nmod_ctx_init_modulus(fq_nmod_ctx_t ctx, const nmod_poly_t modulus, const char *var)¶
- Initialises the context for given - moduluswith name- varfor the generator.- Assumes that - modulusis an irreducible polynomial over \(\mathbf{F}_{p}\).- Assumes that the string - varis a null-terminated string of length at least one.
- 
void fq_nmod_ctx_init_randtest(fq_nmod_ctx_t ctx, flint_rand_t state, int type)¶
- Initialises - ctxto a random finite field, where the prime and degree is set according to- type. To see what prime and degrees may be output, see- typein- _nmod_poly_conway_rand().
- 
void fq_nmod_ctx_init_randtest_reducible(fq_nmod_ctx_t ctx, flint_rand_t state, int type)¶
- Initializes - ctxto a random extension of a word-sized prime field, where the prime and degree is set according to- type. If- typeis \(0\) the prime and degree may be large, else if- typeis \(1\) the degree is small but the prime may be large, else if- typeis \(2\) the prime is small but the degree may be large, else if- typeis \(3\) both prime and degree are small.- The modulus may or may not be irreducible. 
- 
void fq_nmod_ctx_clear(fq_nmod_ctx_t ctx)¶
- Clears all memory that has been allocated as part of the context. 
- 
const nmod_poly_struct *fq_nmod_ctx_modulus(const fq_nmod_ctx_t ctx)¶
- Returns a pointer to the modulus in the context. 
- 
slong fq_nmod_ctx_degree(const fq_nmod_ctx_t ctx)¶
- Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\). 
- 
ulong fq_nmod_ctx_prime(const fq_nmod_ctx_t ctx)¶
- Returns the prime \(p\) of the context. 
- 
void fq_nmod_ctx_order(fmpz_t f, const fq_nmod_ctx_t ctx)¶
- Sets \(f\) to be the size of the finite field. 
- 
int fq_nmod_ctx_fprint(FILE *file, const fq_nmod_ctx_t ctx)¶
- Prints the context information to - file. Returns 1 for a success and a negative number for an error.
- 
void fq_nmod_ctx_print(const fq_nmod_ctx_t ctx)¶
- Prints the context information to - stdout.
Memory management¶
- 
void fq_nmod_init(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Initialises the element - rop, setting its value to \(0\). Currently, the behaviour is identical to- fq_nmod_init2, as it also ensures- rophas enough space for it to be an element of- ctx, this may change in the future.
- 
void fq_nmod_init2(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Initialises - ropwith at least enough space for it to be an element of- ctxand sets it to \(0\).
- 
void fq_nmod_clear(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Clears the element - rop.
- 
void _fq_nmod_sparse_reduce(ulong *R, slong lenR, const fq_nmod_ctx_t ctx)¶
- Reduces - (R, lenR)modulo the polynomial \(f\) given by the modulus of- ctx.
- 
void _fq_nmod_dense_reduce(ulong *R, slong lenR, const fq_nmod_ctx_t ctx)¶
- Reduces - (R, lenR)modulo the polynomial \(f\) given by the modulus of- ctxusing Newton division.
- 
void _fq_nmod_reduce(ulong *r, slong lenR, const fq_nmod_ctx_t ctx)¶
- Reduces - (R, lenR)modulo the polynomial \(f\) given by the modulus of- ctx. Does either sparse or dense reduction based on- ctx->sparse_modulus.
- 
void fq_nmod_reduce(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Reduces the polynomial - ropas an element of \(\mathbf{F}_p[X] / (f(X))\).
Basic arithmetic¶
- 
void fq_nmod_add(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the sum of- op1and- op2.
- 
void fq_nmod_sub(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the difference of- op1and- op2.
- 
void fq_nmod_sub_one(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the difference of- op1and \(1\).
- 
void fq_nmod_neg(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the negative of- op.
- 
void fq_nmod_mul(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the product of- op1and- op2, reducing the output in the given context.
- 
void fq_nmod_mul_fmpz(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the product of- opand \(x\), reducing the output in the given context.
- 
void fq_nmod_mul_si(fq_nmod_t rop, const fq_nmod_t op, slong x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the product of- opand \(x\), reducing the output in the given context.
- 
void fq_nmod_mul_ui(fq_nmod_t rop, const fq_nmod_t op, ulong x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the product of- opand \(x\), reducing the output in the given context.
- 
void fq_nmod_sqr(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the square of- op, reducing the output in the given context.
- 
void _fq_nmod_inv(nn_ptr *rop, nn_srcptr *op, slong len, const fq_nmod_ctx_t ctx)¶
- Sets - (rop, d)to the inverse of the non-zero element- (op, len).
- 
void fq_nmod_inv(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the inverse of the non-zero element- op.
- 
void fq_nmod_gcdinv(fq_nmod_t f, fq_nmod_t inv, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - invto be the inverse of- opmodulo the modulus of- ctx. If- opis not invertible, then- fis set to a factor of the modulus; otherwise, it is set to one.
- 
void _fq_nmod_pow(ulong *rop, const ulong *op, slong len, const fmpz_t e, const fq_nmod_ctx_t ctx)¶
- Sets - (rop, 2*d-1)to- (op,len)raised to the power \(e\), reduced modulo \(f(X)\), the modulus of- ctx.- Assumes that \(e \geq 0\) and that - lenis positive and at most \(d\).- Although we require that - ropprovides space for \(2d - 1\) coefficients, the output will be reduced modulo \(f(X)\), which is a polynomial of degree \(d\).- Does not support aliasing. 
- 
void fq_nmod_pow(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t e, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- opraised to the power \(e\).- Currently assumes that \(e \geq 0\). - Note that for any input - op,- ropis set to \(1\) whenever \(e = 0\).
- 
void fq_nmod_pow_ui(fq_nmod_t rop, const fq_nmod_t op, const ulong e, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- opraised to the power \(e\).- Currently assumes that \(e \geq 0\). - Note that for any input - op,- ropis set to \(1\) whenever \(e = 0\).
Roots¶
- 
int fq_nmod_sqrt(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the square root of- op1if it is a square, and return \(1\), otherwise return \(0\).
- 
void fq_nmod_pth_root(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
- Sets - ropto a \(p^{\textrm{th}}\) root of- op1. Currently, this computes the root by raising- op1to \(p^{d-1}\) where \(d\) is the degree of the extension.
- 
int fq_nmod_is_square(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Return - 1if- opis a square.
Output¶
- 
int fq_nmod_fprint_pretty(FILE *file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Prints a pretty representation of - opto- file.- In case of success, returns a positive value. In case of failure, returns a non-positive value. 
- 
void fq_nmod_print_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Prints a pretty representation of - opto- stdout.- In case of success, returns a positive value. In case of failure, returns a non-positive value. 
- 
int fq_nmod_fprint(FILE *file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Prints a representation of - opto- file.- For further details on the representation used, see - nmod_poly_fprint().
- 
void fq_nmod_print(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Prints a representation of - opto- stdout.- For further details on the representation used, see - nmod_poly_print().
- 
char *fq_nmod_get_str(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns the plain FLINT string representation of the element - op.
- 
char *fq_nmod_get_str_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns a pretty representation of the element - opusing the null-terminated string- xas the variable name.
Randomisation¶
- 
void fq_nmod_randtest(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
- Generates a random element of \(\mathbf{F}_q\). 
- 
void fq_nmod_randtest_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
- Generates a random non-zero element of \(\mathbf{F}_q\). 
- 
void fq_nmod_randtest_dense(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
- Generates a random element of \(\mathbf{F}_q\) which has an underlying polynomial with dense coefficients. 
- 
void fq_nmod_rand(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
- Generates a high quality random element of \(\mathbf{F}_q\). 
- 
void fq_nmod_rand_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
- Generates a high quality non-zero random element of \(\mathbf{F}_q\). 
Assignments and conversions¶
- 
void fq_nmod_set(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- op.
- 
void fq_nmod_set_si(fq_nmod_t rop, const slong x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- x, considered as an element of \(\mathbf{F}_p\).
- 
void fq_nmod_set_ui(fq_nmod_t rop, const ulong x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- x, considered as an element of \(\mathbf{F}_p\).
- 
void fq_nmod_set_fmpz(fq_nmod_t rop, const fmpz_t x, const fq_nmod_ctx_t ctx)¶
- Sets - ropto- x, considered as an element of \(\mathbf{F}_p\).
- 
void fq_nmod_swap(fq_nmod_t op1, fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
- Swaps the two elements - op1and- op2.
- 
void fq_nmod_zero(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Sets - ropto zero.
- 
void fq_nmod_one(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Sets - ropto one, reduced in the given context.
- 
void fq_nmod_gen(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
- Sets - ropto a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field.
- 
int fq_nmod_get_fmpz(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- If - ophas a lift to the integers, return \(1\) and set- ropto the lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.
- 
void fq_nmod_get_nmod_poly(nmod_poly_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)¶
- Set - ato a representative of- bin- ctx. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial in- ctx.
- 
void fq_nmod_set_nmod_poly(fq_nmod_t a, const nmod_poly_t b, const fq_nmod_ctx_t ctx)¶
- Set - ato the element in- ctxwith representative- b. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial in- ctx.
- 
void fq_nmod_get_nmod_mat(nmod_mat_t col, const fq_nmod_t a, const fq_nmod_ctx_t ctx)¶
- Convert - ato a column vector of length- degree(ctx).
- 
void fq_nmod_set_nmod_mat(fq_nmod_t a, const nmod_mat_t col, const fq_nmod_ctx_t ctx)¶
- Convert a column vector - colof length- degree(ctx)to an element of- ctx.
Comparison¶
- 
int fq_nmod_is_zero(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns whether - opis equal to zero.
- 
int fq_nmod_is_one(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns whether - opis equal to one.
- 
int fq_nmod_equal(const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
- Returns whether - op1and- op2are equal.
- 
int fq_nmod_is_invertible(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns whether - opis an invertible element.
- 
int fq_nmod_is_invertible_f(fq_nmod_t f, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns whether - opis an invertible element. If it is not, then- fis set to a factor of the modulus.
- 
int fq_nmod_cmp(const fq_nmod_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)¶
- Return - 1(resp.- -1, or- 0) if- ais after (resp. before, same as)- bin some arbitrary but fixed total ordering of the elements.
Special functions¶
- 
void _fq_nmod_trace(fmpz_t rop, const ulong *op, slong len, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the trace of the non-zero element- (op, len)in \(\mathbf{F}_{q}\).
- 
void fq_nmod_trace(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the trace of- op.- For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \log_{p} q\). 
- 
void _fq_nmod_norm(fmpz_t rop, const ulong *op, slong len, const fq_nmod_ctx_t ctx)¶
- Sets - ropto the norm of the non-zero element- (op, len)in \(\mathbf{F}_{q}\).
- 
void fq_nmod_norm(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Computes the norm of - op.- For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\). - Algorithm selection is automatic depending on the input. 
- 
void _fq_nmod_frobenius(ulong *rop, const ulong *op, slong len, slong e, const fq_nmod_ctx_t ctx)¶
- Sets - (rop, 2d-1)to the image of- (op, len)under the Frobenius operator raised to the e-th power, assuming that neither- opnor- eare zero.
- 
void fq_nmod_frobenius(fq_nmod_t rop, const fq_nmod_t op, slong e, const fq_nmod_ctx_t ctx)¶
- Evaluates the homomorphism \(\Sigma^e\) at - op.- Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\). 
- 
int fq_nmod_multiplicative_order(fmpz *ord, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Computes the order of - opas an element of the multiplicative group of- ctx.- Returns 0 if - opis 0, otherwise it returns 1 if- opis a generator of the multiplicative group, and -1 if it is not.- This function can also be used to check primitivity of a generator of a finite field whose defining polynomial is not primitive. 
- 
int fq_nmod_is_primitive(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
- Returns whether - opis primitive, i.e., whether it is a generator of the multiplicative group of- ctx.
Bit packing¶
- 
void fq_nmod_bit_pack(fmpz_t f, const fq_nmod_t op, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)¶
- Packs - opinto bitfields of size- bit_size, writing the result to- f.
- 
void fq_nmod_bit_unpack(fq_nmod_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)¶
- Unpacks into - ropthe element with coefficients packed into fields of size- bit_sizeas represented by the integer- f.