fq_nmod.h – finite fields (word-size characteristic)¶
We represent an element of the finite field \(\mathbf{F}_{p^n} \cong
\mathbf{F}_p[X]/(f(X))\), where \(f(X) \in \mathbf{F}_p[X]\) is a monic,
irreducible polynomial of degree \(n\), as a polynomial in
\(\mathbf{F}_p[X]\) of degree less than \(n\). The underlying data
structure is an nmod_poly_t
.
The default choice for \(f(X)\) is the Conway polynomial for the pair \((p,n)\),
enabled by Frank Lübeck’s data base of Conway polynomials using the
_nmod_poly_conway()
function. If a Conway polynomial is not available,
then a random irreducible polynomial will be chosen for \(f(X)\). Additionally,
the user is able to supply their own \(f(X)\).
Types, macros and constants¶
-
type fq_nmod_ctx_struct¶
-
type fq_nmod_ctx_t¶
-
type fq_nmod_struct¶
-
type fq_nmod_t¶
Context Management¶
-
void fq_nmod_ctx_init_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
Initialises the context for prime \(p\) and extension degree \(d\), with name
var
for the generator. By default, it will try use a Conway polynomial; if one is not available, a random irreducible polynomial will be used.Assumes that \(p\) is a prime.
Assumes that the string
var
is a null-terminated string of length at least one.
-
int _fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
Attempts to initialise the context for prime \(p\) and extension degree \(d\), with name
var
for the generator using a Conway polynomial for the modulus.Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\).
Assumes that \(p\) is a prime.
Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_nmod_ctx_init_conway_ui(fq_nmod_ctx_t ctx, ulong p, slong d, const char *var)¶
Initialises the context for prime \(p\) and extension degree \(d\), with name
var
for the generator using a Conway polynomial for the modulus.Assumes that \(p\) is a prime.
Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_nmod_ctx_init_modulus(fq_nmod_ctx_t ctx, const nmod_poly_t modulus, const char *var)¶
Initialises the context for given
modulus
with namevar
for the generator.Assumes that
modulus
is an irreducible polynomial over \(\mathbf{F}_{p}\).Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_nmod_ctx_init_randtest(fq_nmod_ctx_t ctx, flint_rand_t state, int type)¶
Initialises
ctx
to a random finite field, where the prime and degree is set according totype
. To see what prime and degrees may be output, seetype
in_nmod_poly_conway_rand()
.
-
void fq_nmod_ctx_init_randtest_reducible(fq_nmod_ctx_t ctx, flint_rand_t state, int type)¶
Initializes
ctx
to a random extension of a word-sized prime field, where the prime and degree is set according totype
. Iftype
is \(0\) the prime and degree may be large, else iftype
is \(1\) the degree is small but the prime may be large, else iftype
is \(2\) the prime is small but the degree may be large, else iftype
is \(3\) both prime and degree are small.The modulus may or may not be irreducible.
-
void fq_nmod_ctx_clear(fq_nmod_ctx_t ctx)¶
Clears all memory that has been allocated as part of the context.
-
const nmod_poly_struct *fq_nmod_ctx_modulus(const fq_nmod_ctx_t ctx)¶
Returns a pointer to the modulus in the context.
-
slong fq_nmod_ctx_degree(const fq_nmod_ctx_t ctx)¶
Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\).
-
ulong fq_nmod_ctx_prime(const fq_nmod_ctx_t ctx)¶
Returns the prime \(p\) of the context.
-
void fq_nmod_ctx_order(fmpz_t f, const fq_nmod_ctx_t ctx)¶
Sets \(f\) to be the size of the finite field.
-
int fq_nmod_ctx_fprint(FILE *file, const fq_nmod_ctx_t ctx)¶
Prints the context information to
file
. Returns 1 for a success and a negative number for an error.
-
void fq_nmod_ctx_print(const fq_nmod_ctx_t ctx)¶
Prints the context information to
stdout
.
Memory management¶
-
void fq_nmod_init(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Initialises the element
rop
, setting its value to \(0\). Currently, the behaviour is identical tofq_nmod_init2
, as it also ensuresrop
has enough space for it to be an element ofctx
, this may change in the future.
-
void fq_nmod_init2(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Initialises
rop
with at least enough space for it to be an element ofctx
and sets it to \(0\).
-
void fq_nmod_clear(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Clears the element
rop
.
-
void _fq_nmod_sparse_reduce(ulong *R, slong lenR, const fq_nmod_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
.
-
void _fq_nmod_dense_reduce(ulong *R, slong lenR, const fq_nmod_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
using Newton division.
-
void _fq_nmod_reduce(ulong *r, slong lenR, const fq_nmod_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
. Does either sparse or dense reduction based onctx->sparse_modulus
.
-
void fq_nmod_reduce(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Reduces the polynomial
rop
as an element of \(\mathbf{F}_p[X] / (f(X))\).
Basic arithmetic¶
-
void fq_nmod_add(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the sum ofop1
andop2
.
-
void fq_nmod_sub(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the difference ofop1
andop2
.
-
void fq_nmod_sub_one(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the difference ofop1
and \(1\).
-
void fq_nmod_neg(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the negative ofop
.
-
void fq_nmod_mul(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the product ofop1
andop2
, reducing the output in the given context.
-
void fq_nmod_mul_fmpz(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t x, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_nmod_mul_si(fq_nmod_t rop, const fq_nmod_t op, slong x, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_nmod_mul_ui(fq_nmod_t rop, const fq_nmod_t op, ulong x, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_nmod_sqr(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the square ofop
, reducing the output in the given context.
-
void _fq_nmod_inv(nn_ptr *rop, nn_srcptr *op, slong len, const fq_nmod_ctx_t ctx)¶
Sets
(rop, d)
to the inverse of the non-zero element(op, len)
.
-
void fq_nmod_inv(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the inverse of the non-zero elementop
.
-
void fq_nmod_gcdinv(fq_nmod_t f, fq_nmod_t inv, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
inv
to be the inverse ofop
modulo the modulus ofctx
. Ifop
is not invertible, thenf
is set to a factor of the modulus; otherwise, it is set to one.
-
void _fq_nmod_pow(ulong *rop, const ulong *op, slong len, const fmpz_t e, const fq_nmod_ctx_t ctx)¶
Sets
(rop, 2*d-1)
to(op,len)
raised to the power \(e\), reduced modulo \(f(X)\), the modulus ofctx
.Assumes that \(e \geq 0\) and that
len
is positive and at most \(d\).Although we require that
rop
provides space for \(2d - 1\) coefficients, the output will be reduced modulo \(f(X)\), which is a polynomial of degree \(d\).Does not support aliasing.
-
void fq_nmod_pow(fq_nmod_t rop, const fq_nmod_t op, const fmpz_t e, const fq_nmod_ctx_t ctx)¶
Sets
rop
toop
raised to the power \(e\).Currently assumes that \(e \geq 0\).
Note that for any input
op
,rop
is set to \(1\) whenever \(e = 0\).
-
void fq_nmod_pow_ui(fq_nmod_t rop, const fq_nmod_t op, const ulong e, const fq_nmod_ctx_t ctx)¶
Sets
rop
toop
raised to the power \(e\).Currently assumes that \(e \geq 0\).
Note that for any input
op
,rop
is set to \(1\) whenever \(e = 0\).
Roots¶
-
int fq_nmod_sqrt(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the square root ofop1
if it is a square, and return \(1\), otherwise return \(0\).
-
void fq_nmod_pth_root(fq_nmod_t rop, const fq_nmod_t op1, const fq_nmod_ctx_t ctx)¶
Sets
rop
to a \(p^{\textrm{th}}\) root ofop1
. Currently, this computes the root by raisingop1
to \(p^{d-1}\) where \(d\) is the degree of the extension.
-
int fq_nmod_is_square(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Return
1
ifop
is a square.
Output¶
-
int fq_nmod_fprint_pretty(FILE *file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Prints a pretty representation of
op
tofile
.In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
void fq_nmod_print_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Prints a pretty representation of
op
tostdout
.In case of success, returns a positive value. In case of failure, returns a non-positive value.
-
int fq_nmod_fprint(FILE *file, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Prints a representation of
op
tofile
.For further details on the representation used, see
nmod_poly_fprint()
.
-
void fq_nmod_print(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Prints a representation of
op
tostdout
.For further details on the representation used, see
nmod_poly_print()
.
-
char *fq_nmod_get_str(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns the plain FLINT string representation of the element
op
.
-
char *fq_nmod_get_str_pretty(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns a pretty representation of the element
op
using the null-terminated stringx
as the variable name.
Randomisation¶
-
void fq_nmod_randtest(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
Generates a random element of \(\mathbf{F}_q\).
-
void fq_nmod_randtest_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
Generates a random non-zero element of \(\mathbf{F}_q\).
-
void fq_nmod_randtest_dense(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
Generates a random element of \(\mathbf{F}_q\) which has an underlying polynomial with dense coefficients.
-
void fq_nmod_rand(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
Generates a high quality random element of \(\mathbf{F}_q\).
-
void fq_nmod_rand_not_zero(fq_nmod_t rop, flint_rand_t state, const fq_nmod_ctx_t ctx)¶
Generates a high quality non-zero random element of \(\mathbf{F}_q\).
Assignments and conversions¶
-
void fq_nmod_set(fq_nmod_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
rop
toop
.
-
void fq_nmod_set_si(fq_nmod_t rop, const slong x, const fq_nmod_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_nmod_set_ui(fq_nmod_t rop, const ulong x, const fq_nmod_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_nmod_set_fmpz(fq_nmod_t rop, const fmpz_t x, const fq_nmod_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_nmod_swap(fq_nmod_t op1, fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
Swaps the two elements
op1
andop2
.
-
void fq_nmod_zero(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Sets
rop
to zero.
-
void fq_nmod_one(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Sets
rop
to one, reduced in the given context.
-
void fq_nmod_gen(fq_nmod_t rop, const fq_nmod_ctx_t ctx)¶
Sets
rop
to a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field.
-
int fq_nmod_get_fmpz(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
If
op
has a lift to the integers, return \(1\) and setrop
to the lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.
-
void fq_nmod_get_nmod_poly(nmod_poly_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)¶
Set
a
to a representative ofb
inctx
. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial inctx
.
-
void fq_nmod_set_nmod_poly(fq_nmod_t a, const nmod_poly_t b, const fq_nmod_ctx_t ctx)¶
Set
a
to the element inctx
with representativeb
. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial inctx
.
-
void fq_nmod_get_nmod_mat(nmod_mat_t col, const fq_nmod_t a, const fq_nmod_ctx_t ctx)¶
Convert
a
to a column vector of lengthdegree(ctx)
.
-
void fq_nmod_set_nmod_mat(fq_nmod_t a, const nmod_mat_t col, const fq_nmod_ctx_t ctx)¶
Convert a column vector
col
of lengthdegree(ctx)
to an element ofctx
.
Comparison¶
-
int fq_nmod_is_zero(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns whether
op
is equal to zero.
-
int fq_nmod_is_one(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns whether
op
is equal to one.
-
int fq_nmod_equal(const fq_nmod_t op1, const fq_nmod_t op2, const fq_nmod_ctx_t ctx)¶
Returns whether
op1
andop2
are equal.
-
int fq_nmod_is_invertible(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns whether
op
is an invertible element.
-
int fq_nmod_is_invertible_f(fq_nmod_t f, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns whether
op
is an invertible element. If it is not, thenf
is set to a factor of the modulus.
-
int fq_nmod_cmp(const fq_nmod_t a, const fq_nmod_t b, const fq_nmod_ctx_t ctx)¶
Return
1
(resp.-1
, or0
) ifa
is after (resp. before, same as)b
in some arbitrary but fixed total ordering of the elements.
Special functions¶
-
void _fq_nmod_trace(fmpz_t rop, const ulong *op, slong len, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the trace of the non-zero element(op, len)
in \(\mathbf{F}_{q}\).
-
void fq_nmod_trace(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the trace ofop
.For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \log_{p} q\).
-
void _fq_nmod_norm(fmpz_t rop, const ulong *op, slong len, const fq_nmod_ctx_t ctx)¶
Sets
rop
to the norm of the non-zero element(op, len)
in \(\mathbf{F}_{q}\).
-
void fq_nmod_norm(fmpz_t rop, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Computes the norm of
op
.For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\).
Algorithm selection is automatic depending on the input.
-
void _fq_nmod_frobenius(ulong *rop, const ulong *op, slong len, slong e, const fq_nmod_ctx_t ctx)¶
Sets
(rop, 2d-1)
to the image of(op, len)
under the Frobenius operator raised to the e-th power, assuming that neitherop
nore
are zero.
-
void fq_nmod_frobenius(fq_nmod_t rop, const fq_nmod_t op, slong e, const fq_nmod_ctx_t ctx)¶
Evaluates the homomorphism \(\Sigma^e\) at
op
.Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\).
-
int fq_nmod_multiplicative_order(fmpz *ord, const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Computes the order of
op
as an element of the multiplicative group ofctx
.Returns 0 if
op
is 0, otherwise it returns 1 ifop
is a generator of the multiplicative group, and -1 if it is not.This function can also be used to check primitivity of a generator of a finite field whose defining polynomial is not primitive.
-
int fq_nmod_is_primitive(const fq_nmod_t op, const fq_nmod_ctx_t ctx)¶
Returns whether
op
is primitive, i.e., whether it is a generator of the multiplicative group ofctx
.
Bit packing¶
-
void fq_nmod_bit_pack(fmpz_t f, const fq_nmod_t op, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)¶
Packs
op
into bitfields of sizebit_size
, writing the result tof
.
-
void fq_nmod_bit_unpack(fq_nmod_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_nmod_ctx_t ctx)¶
Unpacks into
rop
the element with coefficients packed into fields of sizebit_size
as represented by the integerf
.