nmod_mpoly_factor.h – factorisation of multivariate polynomials over integers mod n (word-size n)¶
Types, macros and constants¶
-
type nmod_mpoly_factor_struct¶
A struct for holding a factored polynomial. There is a single constant and a product of bases to corresponding exponents.
-
type nmod_mpoly_factor_t¶
An array of length \(1\) of
nmod_mpoly_factor_struct
.
Memory management¶
-
void nmod_mpoly_factor_init(nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx)¶
Initialise f.
-
void nmod_mpoly_factor_clear(nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx)¶
Clear f.
Basic manipulation¶
-
void nmod_mpoly_factor_swap(nmod_mpoly_factor_t f, nmod_mpoly_factor_t g, const nmod_mpoly_ctx_t ctx)¶
Efficiently swap f and g.
-
slong nmod_mpoly_factor_length(const nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx)¶
Return the length of the product in f.
-
ulong nmod_mpoly_factor_get_constant_ui(const nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx)¶
Return the constant of f.
-
void nmod_mpoly_factor_get_base(nmod_mpoly_t p, const nmod_mpoly_factor_t f, slong i, const nmod_mpoly_ctx_t ctx)¶
-
void nmod_mpoly_factor_swap_base(nmod_mpoly_t p, nmod_mpoly_factor_t f, slong i, const nmod_mpoly_ctx_t ctx)¶
Set (resp. swap) B to (resp. with) the base of the term of index \(i\) in A.
-
slong nmod_mpoly_factor_get_exp_si(nmod_mpoly_factor_t f, slong i, const nmod_mpoly_ctx_t ctx)¶
Return the exponent of the term of index \(i\) in A. It is assumed to fit an
slong
.
-
void nmod_mpoly_factor_sort(nmod_mpoly_factor_t f, const nmod_mpoly_ctx_t ctx)¶
Sort the product of f first by exponent and then by base.
Factorisation¶
A return of \(1\) indicates that the function was successful. Otherwise, the return is \(0\) and f is undefined. None of these functions multiply f by A: f is simply set to a factorisation of A, and thus these functions should not depend on the initial value of the output f.
-
int nmod_mpoly_factor_squarefree(nmod_mpoly_factor_t f, const nmod_mpoly_t A, const nmod_mpoly_ctx_t ctx)¶
Set f to a factorization of A where the bases are primitive and pairwise relatively prime. If the product of all irreducible factors with a given exponent is desired, it is recommended to call
nmod_mpoly_factor_sort()
and then multiply the bases with the desired exponent.
-
int nmod_mpoly_factor(nmod_mpoly_factor_t f, const nmod_mpoly_t A, const nmod_mpoly_ctx_t ctx)¶
Set f to a factorization of A where the bases are irreducible.