[AbbottBronsteinMulders1999]Fast deterministic computation of determinants of dense matrices ACM International Symposium on Symbolic and Algebraic Computation 1999
[Apostol1997]Apostol, Tom : Modular functions and Dirichlet series in number theory, Springer (1997)
[ArnoldMonagan2011]Arnold, Andrew and Monagan, Michael : Calculating cyclotomic polynomials, Mathematics of Computation 80:276 (2011) 2359–2379
[BaiWag1980]Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). “Lucas Pseudoprimes”. Mathematics of Computation. 35 (152): 1391–1417.
  1. Berend and T. Tassa : Improved bounds on Bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics vol. 30 (2010) 185–205
[Bodrato2010]Bodrato, Marco A Strassen-like Matrix Multiplication Suited for Squaring and Higher Power Computation. Proceedings of the ISSAC 2010 München, Germany, 25-28 July, 2010
[BrentKung1978]Brent, R. P. and Kung, H. T. : Fast Algorithms for Manipulating Formal Power Series, J. ACM 25:4 (1978) 581–595
[BuhlerCrandallSompolski1992]Buhler, J.P. and Crandall, R.E. and Sompolski, R.W. : Irregular primes to one million : Math. Comp. 59:2000 (1992) 717–722
[Chen2003]Zhuo Chen and John Greene : Some Comments on {Baillie–PSW} Pseudoprimes, The Fibonacci Quaterly 41:4 (2003) 334–344
[Coh1996]Cohen, Henri : A course in computational algebraic number theory, Springer, 1996
[Col1971]Collins, George E. : The Calculation of Multivariate Polynomial Resultants, SYMSAC ‘71, ACM 1971 212–222
[CraPom2005]Richard Crandall and Carl Pomerance: Prime numbers: a computational perspective. 2005.
[DelegliseNicolasZimmermann2009]Deleglise, Marc and Niclas, Jean-Louis and Zimmermann, Paul : Landau’s function for one million billions, J. Th’eor. Nombres Bordeaux 20:3 (2009) 625–671
[DomKanTro1987]Domich, P. D. and Kannan, R. and Trotter, L. E. Jr. : Hermite Normal Form Computation Using Modulo Determinant Arithmetic, Math. Operations Res. (12) 1987 50-59
  1. Dusart, “The kth prime is greater than k(ln k+ln ln k-1) for k> 2,” Math. Comp., 68:225 (January 1999) 411–415.
[FieHof2014]Fieker C. and Hofmann T.: “Computing in quotients of rings of integers” LMS Journal of Computation and Mathematics, 17(A), 349-365
[GraMol2010]Torbjorn Granlund and Niels Moller : Improved Division by Invariant Integers
[GowWag2008]Jason Gower and Sam Wagstaff : “Square form factoring” Math. Comp. 77, 2008, pp 551-588,
[HanZim2004]Guillaume Hanrot and Paul Zimmermann : Newton Iteration Revisited (2004)
[Har2012]Hart, William B.. (2012) A one line factoring algorithm. Journal of the Australian Mathematical Society, Volume 92 (Number 1). pp. 61-69.
[Iliopoulos1989]Iliopoulos, C. S., Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix : SIAM J. Computation 18:4 (1989) 658
[KanBac1979]Kannan, R. and Bachem, A. : Polynomial algorithms for computing and the Smith and Hermite normal forms of an integer matrix, SIAM J. Computation vol. 9 (1979) 499–507
[Kahan1991]Kahan, William: Computing a Real Cube Root.
    1. Lukes and C. D. Patterson and H. C. Williams “Some results on pseudosquares” Math. Comp. 1996, no. 65, 361–372
  1. Massias and G. Robin, “Bornes effectives pour certaines fonctions concernant les nombres premiers,” J. Theorie Nombres Bordeaux, 8 (1996) 215-242.
[NakTurWil1997]Nakos, George and Turner, Peter and Williams, Robert : Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM Bull. 31 (1997) 3 11–19
[Mul2000]Thom Mulders : On Short Multiplications and Divisions, AAECC vol. 11 (2000) 69–88
[Paterson1973]Michael S. Paterson and Larry J. Stockmeyer : On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM Journal on Computing (1973)
[PernetStein2010]Pernet, C. and Stein, W. : Fast computation of Hermite normal forms of random integer matrices ,J. Number Theory 130:17 (2010) 1675–1683
[Rademacher1937]Rademacher, Hans : On the partition function \(p(n)\) Proc. London Math. Soc vol. 43 (1937) 241–254
[RosSch1962]Rosser, J. Barkley; Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), no. 1, 64–94.
[SorWeb2016]Sorenson, Jonathan and Webster, Jonathan : Strong pseudoprimes to twelve prime bases. Math. Comp. 86 (2017), 985-1003,
[Stehle2010]Stehl’e, Damien : Floating-Point LLL: Theoretical and Practical Aspects, in Nguyen, Phong Q. and Vall’ee, Brigitte : The LLL Algorithm: Survey and Applications (2010) 179–213
[Stein2007]Stein, William A.: Modular forms, a computational approach. American Mathematical Society. 2007
[StoMul1998]Storjohann, Arne and Mulders, Thom : Fast algorithms for linear algebra modulo \(N\) : Algorithms—{ESA} ‘98 (Venice), Lecture Notes in Comput. Sci. 1461 139–150
[ThullYap1990]Thull, K. and Yap, C. : A Unified Approach to {HGCD} Algorithms for Polynomials and Integers, (1990)
[Villard2007]Villard, Gilles : Certification of the QR Factor R and of Lattice Basis Reducedness, In proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2007) 361–368 ACM Press.
[WaktinsZeitlin1993]Watkins, W. and Zeitlin, J. : The minimal polynomial of $cos(2pi/n)$ The American Mathematical Monthly 100:5 (1993) 471–474
[Whiteman1956]Whiteman, A. L. : A sum connected with the series for the partition function, Pacific Journal of Mathematics 6:1 (1956) 159–176