References

(In the PDF edition, this section is empty. See the bibliography listing at the end of the document.)

[AbbottBronsteinMulders1999]

Fast deterministic computation of determinants of dense matrices, ACM International Symposium on Symbolic and Algebraic Computation (1999)

[Apostol1997]

Apostol, Tom : Modular functions and Dirichlet series in number theory, Springer (1997)

[Ari2011]

J. Arias de Reyna, “High precision computation of Riemann’s zeta function by the Riemann-Siegel formula, I”, Mathematics of Computation 80 (2011), 995-1009

[Ari2012]

J. Arias de Reyna, “Programs for Riemann’s zeta function”, (J. A. J. van Vonderen, Ed.) Leven met getallen : liber amicorum ter gelegenheid van de pensionering van Herman te Riele CWI (2012) 102-112, https://ir.cwi.nl/pub/19724

[Arn2010]

J. Arndt, Matters Computational, Springer (2010), https://www.jjj.de/fxt/#fxtbook

[Arn2012]

J. Arndt, “On computing the generalized Lambert series”, https://arxiv.org/abs/1202.6525

[ArnoldMonagan2011]

Arnold, Andrew and Monagan, Michael : Calculating cyclotomic polynomials, Mathematics of Computation 80:276 (2011) 2359–2379

[BBC1997]

D. H. Bailey, J. M. Borwein and R. E. Crandall, “On the Khintchine constant”, Mathematics of Computation 66 (1997) 417-431

[BBC2000]

J. Borwein, D. M. Bradley and R. E. Crandall, “Computational strategies for the Riemann zeta function”, Journal of Computational and Applied Mathematics 121 (2000) 247-296

[BBK2014]

D. H. Bailey, J. M. Borwein and A. D. Kaiser. “Automated simplification of large symbolic expressions”. Journal of Symbolic Computation Volume 60, January 2014, Pages 120-136. https://doi.org/10.1016/j.jsc.2013.09.001

[BD1992]

D. Buchmann and S. Düllmann. “Distributed class group computation.” Informatik: Festschrift zum 60. Geburtstag von Günter Hotz (1992): 69-79.

[BF2020]

F. Beukers and J. Forsgård. “Gamma-evaluations of hypergeometric series”. Preprint, 2020. https://arxiv.org/abs/2004.08117

[BFSS2006]

A. Bostan, P. Flajolet, B. Salvy and É. Schost. “Fast computation of special resultants”. Journal of Symbolic Computation, 41(1):1–29, January 2006. https://doi.org/10.1016/j.jsc.2005.07.001

[BJ2013]

R. P. Brent and F. Johansson, “A bound for the error term in the Brent-McMillan algorithm”, preprint (2013), https://arxiv.org/abs/1312.0039

[BM1980]

R. P. Brent and E. M. McMillan, “Some new algorithms for high-precision computation of Euler’s constant”, Mathematics of Computation 34 (1980) 305-312.

[BZ1992]

J. Borwein and I. Zucker, “Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind”, IMA Journal of Numerical Analysis 12 (1992) 519-526

[BZ2011]

R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University Press (2011), http://www.loria.fr/~zimmerma/mca/pub226.html

[BaiWag1980]

Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). “Lucas Pseudoprimes”. Mathematics of Computation. 35 (152): 1391–1417.

[BerTas2010]

D. Berend and T. Tassa : Improved bounds on Bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics vol. 30 (2010) 185–205

[Bin1996]

D. A. Bini, “Numerical computation of polynomial zeros by means of Aberth’s method”. Numerical algorithms 13 (1996): 179-200. https://doi.org/10.1007/BF02207694

[Bodrato2010]

Bodrato, Marco : A Strassen-like Matrix Multiplication Suited for Squaring and Higher Power Computation. Proceedings of the ISSAC 2010 München, Germany, 25-28 July, 2010

[Boe2020]

H. Boehm. “Towards an API for the real numbers”. PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, June 2020, Pages 562-576. https://doi.org/10.1145/3385412.3386037

[Bog2012]

I. Bogaert, B. Michiels and J. Fostier, “O(1) computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing”, SIAM Journal on Scientific Computing 34:3 (2012), C83-C101

[Bol1887]

O. Bolza, “Darstellung der rationalen ganzen Invarianten der Binärform sechsten Grades durch die Nullwerthe der zugehörigen Theta-Functionen”, Math. Ann. 30:4 (1887), 478–495. https://doi.org/10.1007/BF01444091

[Bor1987]

P. Borwein, “Reduced complexity evaluation of hypergeometric functions”, Journal of Approximation Theory 50:3 (1987)

[Bor2000]

P. Borwein, “An Efficient Algorithm for the Riemann Zeta Function”, Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000) 29-34, http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf

[Bre1978]

R. P. Brent, “A Fortran multiple-precision arithmetic package”, ACM Transactions on Mathematical Software, 4(1):57–70, March 1978.

[Bre1979]

R. P. Brent, “On the Zeros of the Riemann Zeta Function in the Critical Strip”, Mathematics of Computation 33 (1979), 1361-1372, https://doi.org/10.1090/S0025-5718-1979-0537983-2

[Bre2010]

R. P. Brent, “Ramanujan and Euler’s Constant”, http://wwwmaths.anu.edu.au/~brent/pd/Euler_CARMA_10.pdf

[BrentKung1978]

Brent, R. P. and Kung, H. T. : Fast Algorithms for Manipulating Formal Power Series, J. ACM 25:4 (1978) 581–595

[BuhlerCrandallSompolski1992]

Buhler, J.P. and Crandall, R.E. and Sompolski, R.W. : Irregular primes to one million : Math. Comp. 59:2000 (1992) 717–722

[CFG2017]

F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and vector-valued Siegel modular forms of genus two”, Math. Ann. 369 (2017), 1649–1669. https://doi.org/10.1007/s00208-016-1510-2

[CFG2019]

F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and modular forms of degree 2 with character”, Math. Comp. 88 (2019), 2423–2441. https://doi.org/10.1090/mcom/3412

[CGHJK1996]

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey and D. E. Knuth, “On the Lambert W function”, Advances in Computational Mathematics, 5(1) (1996), 329-359

[CP2005]

R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, second edition, Springer (2005).

[Car1995]

B. C. Carlson, “Numerical computation of real or complex elliptic integrals”. Numerical Algorithms, 10(1):13-26 (1995).

[Car2004]

J. Carette. “Understanding expression simplification.” ISSAC ‘04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation, pp. 72-79. 2004. https://doi.org/10.1145/1005285.1005298

[Chen2003]

Zhuo Chen and John Greene : Some Comments on Baillie–PSW Pseudoprimes, The Fibonacci Quarterly 41:4 (2003) 334–344

[Cho1999]

T. Chow. “What is a closed-form number?”. The American Mathematical Monthly Volume 106, 1999 - Issue 5. https://doi.org/10.1080/00029890.1999.12005066

[Coh1996]

Cohen, Henri : A course in computational algebraic number theory, Springer, 1996

[Coh2000]

H. Cohen. Advanced topics in computational number theory. Springer, 2000. https://doi.org/10.1007/978-1-4419-8489-0

[Col1971]

Collins, George E. : The Calculation of Multivariate Polynomial Resultants, SYMSAC ‘71, ACM 1971 212–222

[CraPom2005]

Richard Crandall and Carl Pomerance: Prime numbers: a computational perspective. 2005.

[DHBHS2004]

B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies, “Computing Riemann theta functions”, Math. Comp. 73:247 (2004), 1417–1442. https://arxiv.org/abs/nlin/0206009

[DYF1999]

A. Dzieciol, S. Yngve and P. O. Fröman, “Coulomb wave functions with complex values of the variable and the parameters”, J. Math. Phys. 40, 6145 (1999), https://doi.org/10.1063/1.533083

[DelegliseNicolasZimmermann2009]

Deleglise, Marc and Niclas, Jean-Louis and Zimmermann, Paul : Landau’s function for one million billions, J. Théor. Nombres Bordeaux 20:3 (2009) 625–671

[DomKanTro1987]

Domich, P. D. and Kannan, R. and Trotter, L. E. Jr. : Hermite Normal Form Computation Using Modulo Determinant Arithmetic, Math. Operations Res. (12) 1987 50-59

[Dup2006]

R. Dupont. “Moyenne arithmético-géométrique, suites de Borchardt et applications.” These de doctorat, École polytechnique, Palaiseau (2006). http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf

[Dus1999]

P. Dusart, “The \(k^{th}\) prime is greater than \(k(\ln k+\ln \ln k-1)\) for \(k \ge 2\),” Math. Comp., 68:225 (January 1999) 411–415.

[EHJ2016]

A. Enge, W. Hart and F. Johansson, “Short addition sequences for theta functions”, preprint (2016), https://arxiv.org/abs/1608.06810

[EM2004]

O. Espinosa and V. Moll, “A generalized polygamma function”, Integral Transforms and Special Functions (2004), 101-115.

[EK2023]

N. D. Elkies and J. Kieffer, “A uniform quasi-linear time algorithm for evaluating theta functions in any dimension”, in preparation.

[Fie2007]

C. Fieker, “Sparse representation for cyclotomic fields”. Experiment. Math. Volume 16, Issue 4 (2007), 493-500. https://doi.org/10.1080/10586458.2007.10129012

[FieHof2014]

Fieker C. and Hofmann T.: “Computing in quotients of rings of integers” LMS Journal of Computation and Mathematics, 17(A), 349-365

[Fil1992]

S. Fillebrown, “Faster Computation of Bernoulli Numbers”, Journal of Algorithms 13 (1992) 431-445

[GCL1992]

K. O. Geddes, S. R. Czapor and G. Labahn. Algorithms for computer algebra. Springer, 1992. https://doi.org/10.1007/b102438

[GG2003]

J. von zur Gathen and J. Gerhard, Modern Computer Algebra, second edition, Cambridge University Press (2003)

[GS2003]

X. Gourdon and P. Sebah, “Numerical evaluation of the Riemann Zeta-function” (2003), http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf

[GVL1996]

G. H. Golub and C. F. Van Loan, Matrix Computations, third edition, Johns Hopkins University Press (1996).

[Gas2018]

D. Gaspard, “Connection formulas between Coulomb wave functions” (2018), https://arxiv.org/abs/1804.10976

[Gos1974]

R. W. Gosper, “Acceleration of series”, MIT AI Memo no.304, (March-1974). https://dspace.mit.edu/handle/1721.1/6088

[Got1959]

E. Gottschling, “Explizite Bestimmung der Randflächen es Fundamentalbereiches der Modulgruppe zweiten Grades’’, Math. Annalen 138 (1959), 103–124. https://doi.org/10.1007/BF01342938

[GowWag2008]

Jason Gower and Sam Wagstaff : “Square form factoring” Math. Comp. 77, 2008, pp 551-588, https://doi.org/10.1090/S0025-5718-07-02010-8

[GraMol2010]

Torbjörn Granlund and Niels Möller : Improved Division by Invariant Integers, https://gmplib.org/~tege/division-paper.pdf

[GraMon1994]

Törbjorn Granlund and Peter L. Montgomery : Division by Invariant Integers using Multiplication https://gmplib.org/~tege/divcnst-pldi94.pdf

[HM2017]

J. van der Hoeven and B. Mourrain. “Efficient certification of numeric solutions to eigenproblems”, MACIS 2017, 81-94, (2017), https://hal.archives-ouvertes.fr/hal-01579079

[HS1967]

E. Hansen and R. Smith, “Interval Arithmetic in Matrix Computations, Part II”, SIAM Journal of Numerical Analysis, 4(1):1-9 (1967). https://doi.org/10.1137/0704001

[HZ2004]

G. Hanrot and P. Zimmermann, “Newton Iteration Revisited” (2004), http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz

[HanZim2004]

Guillaume Hanrot and Paul Zimmermann : Newton Iteration Revisited (2004) https://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz

[Har2010]

D. Harvey, “A multimodular algorithm for computing Bernoulli numbers” (2010), Mathematics of Computation 79.272: 2361-2370

[HZ2011]

D. Harvey and P. Zimmermann, “Short division of long integers” (2011), Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20), July 25-27, 2011, pages 7-14. https://web.maths.unsw.edu.au/~davidharvey/research/shortdiv.pdf

[Har2012]

Hart, William B.. (2012) A one line factoring algorithm. Journal of the Australian Mathematical Society, Volume 92 (Number 1). pp. 61-69.

[Har2015]

W. B. Hart. “ANTIC: Algebraic number theory in C”. Computeralgebra-Rundbrief: Vol. 56, 2015

[Har2018]

W. B. Hart. “Algebraic number theory”. Unpublished manuscript, 2018.

[Hart2010]

W. B. Hart. “Fast library for number theory: an introduction.” International Congress on Mathematical Software. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-15582-6_18

[Hen1956]

Peter Henrici : “A Subroutine for Computations with Rational Numbers” J. ACM (1956), https://doi.org/10.1145/320815.320818

[Hoe2001]

J. van der Hoeven. “Fast evaluation of holonomic functions near and in regular singularities”, Journal of Symbolic Computation, 31(6):717-743 (2001).

[Hoe2009]

J. van der Hoeven, “Ball arithmetic”, Technical Report, HAL 00432152 (2009), http://www.texmacs.org/joris/ball/ball-abs.html

[Hor1972]

Ellis Horowitz : “Algorithms for Rational Function Arithmetic Operations” Annual ACM Symposium on Theory of Computing: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing (Denver) (1972), https://doi.org/10.1145/800152.804903

[Iliopoulos1989]

Iliopoulos, C. S., Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix : SIAM J. Computation 18:4 (1989) 658

[Igu1972]

J.-I. Igusa. Theta functions, Springer, 1972. https://doi.org/10.1007/978-3-642-65315-5

[Igu1979]

J.-I. Igusa, “On the ring of modular forms of degree two over Z”, Amer. J. Math. 101:1 (1979), 149–183. https://doi.org/10.2307/2373943

[JB2018]

F. Johansson and I. Blagouchine. “Computing Stieltjes constants using complex integration”, preprint (2018), https://arxiv.org/abs/1804.01679

[JM2018]

F. Johansson and M. Mezzarobba, “Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights”, preprint (2018), https://arxiv.org/abs/1802.03948

[JR1999]

D. Jeffrey and A. D. Rich. “Simplifying square roots of square roots by denesting”. Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.

[Joh2012]

F. Johansson, “Efficient implementation of the Hardy-Ramanujan-Rademacher formula”, LMS Journal of Computation and Mathematics, Volume 15 (2012), 341-359, http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8710297

[Joh2013]

F. Johansson, “Rigorous high-precision computation of the Hurwitz zeta function and its derivatives”, Numerical Algorithms, http://arxiv.org/abs/1309.2877 https://doi.org/10.1007/s11075-014-9893-1

[Joh2014a]

F. Johansson, Fast and rigorous computation of special functions to high precision, PhD thesis, RISC, Johannes Kepler University, Linz, 2014. https://fredrikj.net/thesis/

[Joh2014b]

F. Johansson, “Evaluating parametric holonomic sequences using rectangular splitting”, ISSAC 2014, 256-263. https://doi.org/10.1145/2608628.2608629

[Joh2014c]

F. Johansson, “Efficient implementation of elementary functions in the medium-precision range”, https://arxiv.org/abs/1410.7176

[Joh2015]

F. Johansson, “Computing Bell numbers”, https://fredrikj.net/blog/2015/08/computing-bell-numbers/

[Joh2015b]

F. Johansson, “A fast algorithm for reversion of power series”, Math. Comp. 84 (2015), 475-484, http://doi.org/10.1090/S0025-5718-2014-02857-3

[Joh2016]

F. Johansson, “Computing hypergeometric functions rigorously”, preprint (2016), https://arxiv.org/abs/1606.06977

[Joh2017]

F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”. IEEE Transactions on Computers, vol 66, issue 8, 2017, pp. 1281-1292. https://doi.org/10.1109/TC.2017.2690633

[Joh2017a]

F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”, IEEE Transactions on Computers, 66(8):1281-1292 (2017). https://doi.org/10.1109/TC.2017.2690633

[Joh2017b]

F. Johansson, “Computing the Lambert W function in arbitrary-precision complex interval arithmetic”, preprint (2017), https://arxiv.org/abs/1705.03266

[Joh2018a]

F. Johansson, “Numerical integration in arbitrary-precision ball arithmetic”, preprint (2018), https://arxiv.org/abs/1802.07942

[Joh2018b]

F. Johansson and others, “mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.1.0)”, December 2018. https://mpmath.org/

[JvdP2002]

M. J. Jacobson Jr. and A. J. van der Poorten. “Computational aspects of NUCOMP.” In International Algorithmic Number Theory Symposium, pp. 120-133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

[Kahan1991]

Kahan, William: Computing a Real Cube Root. https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf

[KanBac1979]

Kannan, R. and Bachem, A. : Polynomial algorithms for computing and the Smith and Hermite normal forms of an integer matrix, SIAM J. Computation vol. 9 (1979) 499–507

[Kar1998]

E. A. Karatsuba, “Fast evaluation of the Hurwitz zeta function and Dirichlet L-series”, Problems of Information Transmission 34:4 (1998), 342-353, http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=425&option_lang=eng

[Knu1997]

Knuth, D. E. The Art of Computer Programming, volume 2: Seminumerical algorithms, 1997

[Kob2010]

A. Kobel, “Certified Complex Numerical Root Finding”, Seminar on Computational Geometry and Geometric Computing (2010), http://www.mpi-inf.mpg.de/departments/d1/teaching/ss10/Seminar_CGGC/Slides/02_Kobel_NRS.pdf

[Kri2013]

A. Krishnamoorthy and D. Menon, “Matrix Inversion Using Cholesky Decomposition” Proc. of the International Conference on Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA-2013), pp. 70-72, 2013.

[LT2016]

H. Labrande and E. Thomé, “Computing theta functions in quasi-linear time in genus 2 and above”, ANTS XII, Kaiserslautern, LMS J. Comp. Math 19 (2016), 163–177. https://doi.org/10.1112/S1461157016000309

[Leh1970]

R. S. Lehman, “On the Distribution of Zeros of the Riemann Zeta-Function”, Proc. of the London Mathematical Society 20(3) (1970), 303-320, https://doi.org/10.1112/plms/s3-20.2.303

[LukPatWil1996]

R. F. Lukes and C. D. Patterson and H. C. Williams “Some results on pseudosquares” Math. Comp. 1996, no. 65, 361–372

[Lüb2004]

F. Lübeck, “Conway polynomials for finite fields”, RTWH Aachen, https://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html, (accessed 2024-01-12)

[MN2019]

P. Molin and C. Neurohr, “Computing period matrices and the Abel–Jacobi map of superelliptic curves”, Math. Comp. 88:316 (2019), 847–888.

[MP2006]

M. Monagan and R. Pearce. “Rational simplification modulo a polynomial ideal”. Proceedings of the 2006 international symposium on Symbolic and algebraic computation - ISSAC ‘06. https://doi.org/10.1145/1145768.1145809

[MPFR2012]

The MPFR team, “MPFR Algorithms” (2012), https://www.mpfr.org/algo.html

[MasRob1996]

J. Massias and G. Robin, “Bornes effectives pour certaines fonctions concernant les nombres premiers,” J. Theorie Nombres Bordeaux, 8 (1996) 215-242.

[Mic2007]

N. Michel, “Precise Coulomb wave functions for a wide range of complex l, eta and z”, Computer Physics Communications, Volume 176, Issue 3, (2007), 232-249, https://doi.org/10.1016/j.cpc.2006.10.004

[Miy2010]

S. Miyajima, “Fast enclosure for all eigenvalues in generalized eigenvalue problems”, Journal of Computational and Applied Mathematics, 233 (2010), 2994-3004, https://doi.org/10.1016/j.cam.2009.11.048

[Mos1971]

J. Moses. “Algebraic simplification - a guide for the perplexed”. Proceedings of the second ACM symposium on Symbolic and algebraic manipulation (1971), 282-304. https://doi.org/10.1145/362637.362648

[Mul2000]

Thom Mulders : On Short Multiplications and Divisions, AAECC vol. 11 (2000) 69–88

[Mum1983]

D. Mumford, Tata Lectures on Theta I, Birkhäuser, 1983. https://doi.org/10.1007/978-1-4899-2843-6

[Mum1984]

D. Mumford, Tata Lectures on Theta II, Birkhäuser, 1984. https://doi.org/10.1007/978-0-8176-4578-6

[NIST2012]

National Institute of Standards and Technology, Digital Library of Mathematical Functions (2012), https://dlmf.nist.gov/

[NakTurWil1997]

Nakos, George and Turner, Peter and Williams, Robert : Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM Bull. 31 (1997) 3 11–19

[Olv1997]

F. Olver, Asymptotics and special functions, AKP Classics, AK Peters Ltd., Wellesley, MA, 1997. Reprint of the 1974 original.

[PP2010]

K. H. Pilehrood and T. H. Pilehrood. “Series acceleration formulas for beta values”, Discrete Mathematics and Theoretical Computer Science, DMTCS, 12 (2) (2010), 223-236, https://hal.inria.fr/hal-00990465/

[PS1973]

M. S. Paterson and L. J. Stockmeyer, “On the number of nonscalar multiplications necessary to evaluate polynomials”, SIAM J. Comput (1973)

[PS1991]

G. Pittaluga and L. Sacripante, “Inequalities for the zeros of the Airy functions”, SIAM J. Math. Anal. 22:1 (1991), 260-267.

[Paterson1973]

Michael S. Paterson and Larry J. Stockmeyer : On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM Journal on Computing (1973)

[PernetStein2010]

Pernet, C. and Stein, W. : Fast computation of Hermite normal forms of random integer matrices ,J. Number Theory 130:17 (2010) 1675–1683

[Pet1999]

K. Petras, “On the computation of the Gauss-Legendre quadrature formula with a given precision”, Journal of Computational and Applied Mathematics 112 (1999), 253-267

[Pla2011]

D. J. Platt, “Computing degree 1 L-functions rigorously”, Ph.D. Thesis, University of Bristol (2011), https://people.maths.bris.ac.uk/~madjp/thesis5.pdf

[Pla2017]

D. J. Platt, “Isolating some non-trivial zeros of zeta”, Mathematics of Computation 86 (2017), 2449-2467, https://doi.org/10.1090/mcom/3198

[RF1994]

D. Richardson and J. Fitch. “The identity problem for elementary functions and constants”. ISSAC ‘94: Proceedings of the international symposium on Symbolic and algebraic computation, August 1994, 285-290. https://doi.org/10.1145/190347.190429

[Rad1973]

H. Rademacher, Topics in analytic number theory, Springer, 1973.

[Rademacher1937]

Rademacher, Hans : On the partition function \(p(n)\) Proc. London Math. Soc vol. 43 (1937) 241–254

[Ric1992]

D. Richardson. “The elementary constant problem”. ISSAC ‘92: Papers from the international symposium on Symbolic and algebraic computation, August 1992, 108-116. https://doi.org/10.1145/143242.143284

[Ric1995]

D. Richardson. “A simplified method of recognizing zero among elementary constants”. ISSAC ‘95: Proceedings of the 1995 international symposium on Symbolic and algebraic computation, April 1995, 104-109. https://doi.org/10.1145/220346.220360

[Ric1997]

D. Richardson. “How to recognize zero”. Journal of Symbolic Computation 24.6 (1997): 627-645. https://doi.org/10.1006/jsco.1997.0157

[Ric2007]

D. Richardson. “Zero tests for constants in simple scientific computation”. Mathematics in Computer Science volume 1, pages 21-37 (2007). https://doi.org/10.1007/s11786-007-0002-x

[Ric2009]

D. Richardson. “Recognising zero among implicitly defined elementary numbers”. Preprint, 2009.

[RosSch1962]

Rosser, J. Barkley; Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), no. 1, 64–94.

[Rum2010]

S. M. Rump, “Verification methods: Rigorous results using floating-point arithmetic”, Acta Numerica 19 (2010), 287-449.

[Smi2001]

D. M. Smith, “Algorithm: Fortran 90 Software for Floating-Point Multiple Precision Arithmetic, Gamma and Related Functions”, Transactions on Mathematical Software 27 (2001) 377-387, http://myweb.lmu.edu/dmsmith/toms2001.pdf

[SorWeb2016]

Sorenson, Jonathan and Webster, Jonathan : Strong pseudoprimes to twelve prime bases. Math. Comp. 86 (2017), 985-1003, https://doi.org/10.1090/mcom/3134

[Ste2002]

A. Steel. “A new scheme for computing with algebraically closed fields”. In: Fieker C., Kohel D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_38

[Ste2010]

A. Steel. “Computing with algebraically closed fields”. Journal of Symbolic Computation 45 (2010) 342-372. https://doi.org/10.1016/j.jsc.2009.09.005

[Stehle2010]

Stehlé, Damien : Floating-Point LLL: Theoretical and Practical Aspects, in Nguyen, Phong Q. and Vallée, Brigitte : The LLL Algorithm: Survey and Applications (2010) 179–213

[Stein2007]

Stein, William A.: Modular forms, a computational approach. American Mathematical Society. 2007

[StoMul1998]

Storjohann, Arne and Mulders, Thom : Fast algorithms for linear algebra modulo \(N\) : Algorithms—{ESA} ‘98 (Venice), Lecture Notes in Comput. Sci. 1461 139–150

[Str2014]

M. Streng, “Computing Igusa class polynomials”, Math. Comp. 83:285 (2014), 275–309. https://doi.org/10.1090/S0025-5718-2013-02712-3

[Str1997]

A. Strzebonski. “Computing in the field of complex algebraic numbers”. Journal of Symbolic Computation (1997) 24, 647-656. https://doi.org/10.1006/jsco.1997.0158

[Str2012]

A. Strzebonski. “Real root isolation for exp-log-arctan functions”. Journal of Symbolic Computation 47 (2012) 282–314. https://doi.org/10.1016/j.jsc.2011.11.004

[Sut2007]

A. V. Sutherland. “Order computations in generic groups.” PhD diss., Massachusetts Institute of Technology, 2007.

[Tak2000]

D. Takahashi, “A fast algorithm for computing large Fibonacci numbers”, Information Processing Letters 75 (2000) 243-246, http://www.ii.uni.wroc.pl/~lorys/IPL/article75-6-1.pdf

[ThullYap1990]

Thull, K. and Yap, C. : A Unified Approach to HGCD Algorithms for Polynomials and Integers, (1990)

[Tre2008]

L. N. Trefethen, “Is Gauss Quadrature Better than Clenshaw-Curtis?”, SIAM Review, 50:1 (2008), 67-87, https://doi.org/10.1137/060659831

[Tru2011]

T. S. Trudgian, “Improvements to Turing’s method”, Mathematics of Computation 80 (2011), 2259-2279, https://doi.org/10.1090/S0025-5718-2011-02470-1

[Tru2014]

T. S. Trudgian, “An improved upper bound for the argument of the Riemann zeta-function on the critical line II”, Journal of Number Theory 134 (2014), 280-292, https://doi.org/10.1016/j.jnt.2013.07.017

[Tur1953]

A. M. Turing, “Some Calculations of the Riemann Zeta-Function”, Proc. of the London Mathematical Society 3(3) (1953), 99-117, https://doi.org/10.1112/plms/s3-3.1.99

[Villard2007]

Villard, Gilles : Certification of the QR Factor R and of Lattice Basis Reducedness, In proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2007) 361–368 ACM Press.

[WaktinsZeitlin1993]

Watkins, W. and Zeitlin, J. : The minimal polynomial of \(\cos(2\pi/n)\) The American Mathematical Monthly 100:5 (1993) 471–474

[Wei2000]

A. Weilert, “(1+i)-ary GCD computation in Z[i] as an analogue to the binary GCD algorithm”, Journal of Symbolic Computation 30.5 (2000): 605-617, https://doi.org/10.1006/jsco.2000.0422

[Whiteman1956]

Whiteman, A. L. : A sum connected with the series for the partition function, Pacific Journal of Mathematics 6:1 (1956) 159–176

[Zip1985]

R. Zippel. “Simplification of expressions involving radicals”. Journal of Symbolic Computation (1985) 1, 189-210. https://doi.org/10.1016/S0747-7171(85)80014-6

[Zun2023]

J. Zuniga, “Catalan’s constant fast convergent series”, https://mathoverflow.net/q/424055

[Zun2023b]

J. Zuniga, “Are these fast convergent series for log(2) and log(3) already known and proven?”, https://math.stackexchange.com/q/4854073

[vHP2012]

M. van Hoeij and V. Pal. “Isomorphisms of algebraic number fields”. Journal de Théorie des Nombres de Bordeaux, Vol. 24, No. 2 (2012), pp. 293-305. https://doi.org/10.2307/43973105

[vdH1995]

J. van der Hoeven, “Automatic numerical expansions”. Proc. of the conference Real numbers and computers (1995), 261-274. https://www.texmacs.org/joris/ane/ane-abs.html

[vdH2006]

J. van der Hoeven, “Computations with effective real numbers”. Theoretical Computer Science, Volume 351, Issue 1, 14 February 2006, Pages 52-60. https://doi.org/10.1016/j.tcs.2005.09.060

All referenced works: [AbbottBronsteinMulders1999], [Apostol1997], [Ari2011], [Ari2012], [Arn2010], [Arn2012], [ArnoldMonagan2011], [BBC1997], [BBC2000], [BBK2014], [BD1992], [BF2020], [BFSS2006], [BJ2013], [BM1980], [BZ1992], [BZ2011], [BaiWag1980], [BerTas2010], [Bin1996], [Blo2009], [Bodrato2010], [Boe2020], [Bog2012], [Bol1887], [Bor1987], [Bor2000], [Bre1978], [Bre1979], [Bre2010], [BrentKung1978], [BuhlerCrandallSompolski1992], [CFG2017], [CFG2019], [CGHJK1996], [CP2005], [Car1995], [Car2004], [Chen2003], [Cho1999], [Coh1996], [Coh2000], [Col1971], [CraPom2005], [DHBHS2004], [DYF1999], [DelegliseNicolasZimmermann2009], [DomKanTro1987], [Dup2006], [Dus1999], [EHJ2016], [EM2004], [EK2023], [Fie2007], [FieHof2014], [Fil1992], [GCL1992], [GG2003], [GS2003], [GVL1996], [Gas2018], [Gos1974], [GowWag2008], [GraMol2010], [HM2017], [HS1967], [HZ2004], [HanZim2004], [Har2010], [HZ2011], [Har2012], [Har2015], [Har2018], [Hart2010], [Hen1956], [Hoe2001], [Hoe2009], [Hor1972], [Iliopoulos1989], [Igu1972], [Igu1979], [JB2018], [JM2018], [JR1999], [Joh2012], [Joh2013], [Joh2014a], [Joh2014b], [Joh2014c], [Joh2015], [Joh2015b], [Joh2016], [Joh2017], [Joh2017a], [Joh2017b], [Joh2018a], [Joh2018b], [JvdP2002], [Kahan1991], [KanBac1979], [Kar1998], [Knu1997], [Kob2010], [Kri2013], [LT2016], [Leh1970], [LukPatWil1996], [MN2019], [MP2006], [MPFR2012], [MasRob1996], [Mic2007], [Miy2010], [Mos1971], [Mul2000], [Mum1983], [Mum1984], [NIST2012], [NakTurWil1997], [Olv1997], [PP2010], [PS1973], [PS1991], [Paterson1973], [PernetStein2010], [Pet1999], [Pla2011], [Pla2017], [RF1994], [Rad1973], [Rademacher1937], [Ric1992], [Ric1995], [Ric1997], [Ric2007], [Ric2009], [RosSch1962], [Rum2010], [Smi2001], [SorWeb2016], [Ste2002], [Ste2010], [Stehle2010], [Stein2007], [Sut2007], [StoMul1998], [Str2014], [Str1997], [Str2012], [Tak2000], [ThullYap1990], [Tre2008], [Tru2011], [Tru2014], [Tur1953], [Villard2007], [WaktinsZeitlin1993], [Wei2000], [Whiteman1956], [Zip1985], [Zun2023], [Zun2023b], [vHP2012], [vdH1995], [vdH2006]