References

[AbbottBronsteinMulders1999]Fast deterministic computation of determinants of dense matrices ACM International Symposium on Symbolic and Algebraic Computation 1999
[Apostol1997]Apostol, Tom : Modular functions and Dirichlet series in number theory, Springer (1997)
[ArnoldMonagan2011]Arnold, Andrew and Monagan, Michael : Calculating cyclotomic polynomials, Mathematics of Computation 80:276 (2011) 2359–2379
[BaiWag1980]Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). “Lucas Pseudoprimes”. Mathematics of Computation. 35 (152): 1391–1417.
[BerTas2010]
  1. Berend and T. Tassa : Improved bounds on Bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics vol. 30 (2010) 185–205
[Bodrato2010]Bodrato, Marco A Strassen-like Matrix Multiplication Suited for Squaring and Higher Power Computation. Proceedings of the ISSAC 2010 München, Germany, 25-28 July, 2010
[BrentKung1978]Brent, R. P. and Kung, H. T. : Fast Algorithms for Manipulating Formal Power Series, J. ACM 25:4 (1978) 581–595
[BuhlerCrandallSompolski1992]Buhler, J.P. and Crandall, R.E. and Sompolski, R.W. : Irregular primes to one million : Math. Comp. 59:2000 (1992) 717–722
[Chen2003]Zhuo Chen and John Greene : Some Comments on {Baillie–PSW} Pseudoprimes, The Fibonacci Quaterly 41:4 (2003) 334–344
[Coh1996]Cohen, Henri : A course in computational algebraic number theory, Springer, 1996
[Col1971]Collins, George E. : The Calculation of Multivariate Polynomial Resultants, SYMSAC ‘71, ACM 1971 212–222
[CraPom2005]Richard Crandall and Carl Pomerance: Prime numbers: a computational perspective. 2005.
[DelegliseNicolasZimmermann2009]Deleglise, Marc and Niclas, Jean-Louis and Zimmermann, Paul : Landau’s function for one million billions, J. Th’eor. Nombres Bordeaux 20:3 (2009) 625–671
[DomKanTro1987]Domich, P. D. and Kannan, R. and Trotter, L. E. Jr. : Hermite Normal Form Computation Using Modulo Determinant Arithmetic, Math. Operations Res. (12) 1987 50-59
[Dus1999]
  1. Dusart, “The kth prime is greater than k(ln k+ln ln k-1) for k> 2,” Math. Comp., 68:225 (January 1999) 411–415.
[FieHof2014]Fieker C. and Hofmann T.: “Computing in quotients of rings of integers” LMS Journal of Computation and Mathematics, 17(A), 349-365
[GraMol2010]Torbjorn Granlund and Niels Moller : Improved Division by Invariant Integers https://gmplib.org/~tege/division-paper.pdf
[GowWag2008]Jason Gower and Sam Wagstaff : “Square form factoring” Math. Comp. 77, 2008, pp 551-588, https://doi.org/10.1090/S0025-5718-07-02010-8
[HanZim2004]Guillaume Hanrot and Paul Zimmermann : Newton Iteration Revisited (2004) https://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
[Har2012]Hart, William B.. (2012) A one line factoring algorithm. Journal of the Australian Mathematical Society, Volume 92 (Number 1). pp. 61-69.
[Iliopoulos1989]Iliopoulos, C. S., Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix : SIAM J. Computation 18:4 (1989) 658
[KanBac1979]Kannan, R. and Bachem, A. : Polynomial algorithms for computing and the Smith and Hermite normal forms of an integer matrix, SIAM J. Computation vol. 9 (1979) 499–507
[Kahan1991]Kahan, William: Computing a Real Cube Root. https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf
[LukPatWil1996]
    1. Lukes and C. D. Patterson and H. C. Williams “Some results on pseudosquares” Math. Comp. 1996, no. 65, 361–372
[MasRob1996]
  1. Massias and G. Robin, “Bornes effectives pour certaines fonctions concernant les nombres premiers,” J. Theorie Nombres Bordeaux, 8 (1996) 215-242.
[NakTurWil1997]Nakos, George and Turner, Peter and Williams, Robert : Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM Bull. 31 (1997) 3 11–19
[Mul2000]Thom Mulders : On Short Multiplications and Divisions, AAECC vol. 11 (2000) 69–88
[Paterson1973]Michael S. Paterson and Larry J. Stockmeyer : On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM Journal on Computing (1973)
[PernetStein2010]Pernet, C. and Stein, W. : Fast computation of Hermite normal forms of random integer matrices ,J. Number Theory 130:17 (2010) 1675–1683
[Rademacher1937]Rademacher, Hans : On the partition function \(p(n)\) Proc. London Math. Soc vol. 43 (1937) 241–254
[RosSch1962]Rosser, J. Barkley; Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), no. 1, 64–94.
[SorWeb2016]Sorenson, Jonathan and Webster, Jonathan : Strong pseudoprimes to twelve prime bases. Math. Comp. 86 (2017), 985-1003, https://doi.org/10.1090/mcom/3134
[Stehle2010]Stehl’e, Damien : Floating-Point LLL: Theoretical and Practical Aspects, in Nguyen, Phong Q. and Vall’ee, Brigitte : The LLL Algorithm: Survey and Applications (2010) 179–213
[Stein2007]Stein, William A.: Modular forms, a computational approach. American Mathematical Society. 2007
[StoMul1998]Storjohann, Arne and Mulders, Thom : Fast algorithms for linear algebra modulo \(N\) : Algorithms—{ESA} ‘98 (Venice), Lecture Notes in Comput. Sci. 1461 139–150
[ThullYap1990]Thull, K. and Yap, C. : A Unified Approach to {HGCD} Algorithms for Polynomials and Integers, (1990)
[Villard2007]Villard, Gilles : Certification of the QR Factor R and of Lattice Basis Reducedness, In proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2007) 361–368 ACM Press.
[WaktinsZeitlin1993]Watkins, W. and Zeitlin, J. : The minimal polynomial of $cos(2pi/n)$ The American Mathematical Monthly 100:5 (1993) 471–474
[Whiteman1956]Whiteman, A. L. : A sum connected with the series for the partition function, Pacific Journal of Mathematics 6:1 (1956) 159–176