References¶
(In the PDF edition, this section is empty. See the bibliography listing at the end of the document.)
Fast deterministic computation of determinants of dense matrices, ACM International Symposium on Symbolic and Algebraic Computation (1999)
Apostol, Tom : Modular functions and Dirichlet series in number theory, Springer (1997)
J. Arias de Reyna, “High precision computation of Riemann’s zeta function by the Riemann-Siegel formula, I”, Mathematics of Computation 80 (2011), 995-1009
J. Arias de Reyna, “Programs for Riemann’s zeta function”, (J. A. J. van Vonderen, Ed.) Leven met getallen : liber amicorum ter gelegenheid van de pensionering van Herman te Riele CWI (2012) 102-112, https://ir.cwi.nl/pub/19724
J. Arndt, Matters Computational, Springer (2010), https://www.jjj.de/fxt/#fxtbook
J. Arndt, “On computing the generalized Lambert series”, https://arxiv.org/abs/1202.6525
Arnold, Andrew and Monagan, Michael : Calculating cyclotomic polynomials, Mathematics of Computation 80:276 (2011) 2359–2379
D. H. Bailey, J. M. Borwein and R. E. Crandall, “On the Khintchine constant”, Mathematics of Computation 66 (1997) 417-431
J. Borwein, D. M. Bradley and R. E. Crandall, “Computational strategies for the Riemann zeta function”, Journal of Computational and Applied Mathematics 121 (2000) 247-296
D. H. Bailey, J. M. Borwein and A. D. Kaiser. “Automated simplification of large symbolic expressions”. Journal of Symbolic Computation Volume 60, January 2014, Pages 120-136. https://doi.org/10.1016/j.jsc.2013.09.001
D. Buchmann and S. Düllmann. “Distributed class group computation.” Informatik: Festschrift zum 60. Geburtstag von Günter Hotz (1992): 69-79.
F. Beukers and J. Forsgård. “Gamma-evaluations of hypergeometric series”. Preprint, 2020. https://arxiv.org/abs/2004.08117
A. Bostan, P. Flajolet, B. Salvy and É. Schost. “Fast computation of special resultants”. Journal of Symbolic Computation, 41(1):1–29, January 2006. https://doi.org/10.1016/j.jsc.2005.07.001
R. P. Brent and F. Johansson, “A bound for the error term in the Brent-McMillan algorithm”, preprint (2013), https://arxiv.org/abs/1312.0039
R. P. Brent and E. M. McMillan, “Some new algorithms for high-precision computation of Euler’s constant”, Mathematics of Computation 34 (1980) 305-312.
J. Borwein and I. Zucker, “Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind”, IMA Journal of Numerical Analysis 12 (1992) 519-526
R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University Press (2011), http://www.loria.fr/~zimmerma/mca/pub226.html
Robert Baillie; Samuel S. Wagstaff, Jr. (October 1980). “Lucas Pseudoprimes”. Mathematics of Computation. 35 (152): 1391–1417.
D. Berend and T. Tassa : Improved bounds on Bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics vol. 30 (2010) 185–205
D. A. Bini, “Numerical computation of polynomial zeros by means of Aberth’s method”. Numerical algorithms 13 (1996): 179-200. https://doi.org/10.1007/BF02207694
R. Bloemen, “Even faster zeta(2n) calculation!”, https://web.archive.org/web/20141101133659/http://xn–2-umb.com/09/11/even-faster-zeta-calculation
Bodrato, Marco : A Strassen-like Matrix Multiplication Suited for Squaring and Higher Power Computation. Proceedings of the ISSAC 2010 München, Germany, 25-28 July, 2010
H. Boehm. “Towards an API for the real numbers”. PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, June 2020, Pages 562-576. https://doi.org/10.1145/3385412.3386037
I. Bogaert, B. Michiels and J. Fostier, “O(1) computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing”, SIAM Journal on Scientific Computing 34:3 (2012), C83-C101
O. Bolza, “Darstellung der rationalen ganzen Invarianten der Binärform sechsten Grades durch die Nullwerthe der zugehörigen Theta-Functionen”, Math. Ann. 30:4 (1887), 478–495. https://doi.org/10.1007/BF01444091
P. Borwein, “Reduced complexity evaluation of hypergeometric functions”, Journal of Approximation Theory 50:3 (1987)
P. Borwein, “An Efficient Algorithm for the Riemann Zeta Function”, Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000) 29-34, http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
R. P. Brent, “A Fortran multiple-precision arithmetic package”, ACM Transactions on Mathematical Software, 4(1):57–70, March 1978.
R. P. Brent, “On the Zeros of the Riemann Zeta Function in the Critical Strip”, Mathematics of Computation 33 (1979), 1361-1372, https://doi.org/10.1090/S0025-5718-1979-0537983-2
R. P. Brent, “Ramanujan and Euler’s Constant”, http://wwwmaths.anu.edu.au/~brent/pd/Euler_CARMA_10.pdf
Brent, R. P. and Kung, H. T. : Fast Algorithms for Manipulating Formal Power Series, J. ACM 25:4 (1978) 581–595
Buhler, J.P. and Crandall, R.E. and Sompolski, R.W. : Irregular primes to one million : Math. Comp. 59:2000 (1992) 717–722
F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and vector-valued Siegel modular forms of genus two”, Math. Ann. 369 (2017), 1649–1669. https://doi.org/10.1007/s00208-016-1510-2
F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and modular forms of degree 2 with character”, Math. Comp. 88 (2019), 2423–2441. https://doi.org/10.1090/mcom/3412
R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey and D. E. Knuth, “On the Lambert W function”, Advances in Computational Mathematics, 5(1) (1996), 329-359
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, second edition, Springer (2005).
B. C. Carlson, “Numerical computation of real or complex elliptic integrals”. Numerical Algorithms, 10(1):13-26 (1995).
J. Carette. “Understanding expression simplification.” ISSAC ‘04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation, pp. 72-79. 2004. https://doi.org/10.1145/1005285.1005298
Zhuo Chen and John Greene : Some Comments on Baillie–PSW Pseudoprimes, The Fibonacci Quarterly 41:4 (2003) 334–344
T. Chow. “What is a closed-form number?”. The American Mathematical Monthly Volume 106, 1999 - Issue 5. https://doi.org/10.1080/00029890.1999.12005066
Cohen, Henri : A course in computational algebraic number theory, Springer, 1996
H. Cohen. Advanced topics in computational number theory. Springer, 2000. https://doi.org/10.1007/978-1-4419-8489-0
Collins, George E. : The Calculation of Multivariate Polynomial Resultants, SYMSAC ‘71, ACM 1971 212–222
Richard Crandall and Carl Pomerance: Prime numbers: a computational perspective. 2005.
B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies, “Computing Riemann theta functions”, Math. Comp. 73:247 (2004), 1417–1442. https://arxiv.org/abs/nlin/0206009
A. Dzieciol, S. Yngve and P. O. Fröman, “Coulomb wave functions with complex values of the variable and the parameters”, J. Math. Phys. 40, 6145 (1999), https://doi.org/10.1063/1.533083
Deleglise, Marc and Niclas, Jean-Louis and Zimmermann, Paul : Landau’s function for one million billions, J. Théor. Nombres Bordeaux 20:3 (2009) 625–671
Domich, P. D. and Kannan, R. and Trotter, L. E. Jr. : Hermite Normal Form Computation Using Modulo Determinant Arithmetic, Math. Operations Res. (12) 1987 50-59
R. Dupont. “Moyenne arithmético-géométrique, suites de Borchardt et applications.” These de doctorat, École polytechnique, Palaiseau (2006). http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
P. Dusart, “The \(k^{th}\) prime is greater than \(k(\ln k+\ln \ln k-1)\) for \(k \ge 2\),” Math. Comp., 68:225 (January 1999) 411–415.
A. Enge, W. Hart and F. Johansson, “Short addition sequences for theta functions”, preprint (2016), https://arxiv.org/abs/1608.06810
O. Espinosa and V. Moll, “A generalized polygamma function”, Integral Transforms and Special Functions (2004), 101-115.
N. D. Elkies and J. Kieffer, “A uniform quasi-linear time algorithm for evaluating theta functions in any dimension”, in preparation.
C. Fieker, “Sparse representation for cyclotomic fields”. Experiment. Math. Volume 16, Issue 4 (2007), 493-500. https://doi.org/10.1080/10586458.2007.10129012
Fieker C. and Hofmann T.: “Computing in quotients of rings of integers” LMS Journal of Computation and Mathematics, 17(A), 349-365
S. Fillebrown, “Faster Computation of Bernoulli Numbers”, Journal of Algorithms 13 (1992) 431-445
K. O. Geddes, S. R. Czapor and G. Labahn. Algorithms for computer algebra. Springer, 1992. https://doi.org/10.1007/b102438
J. von zur Gathen and J. Gerhard, Modern Computer Algebra, second edition, Cambridge University Press (2003)
X. Gourdon and P. Sebah, “Numerical evaluation of the Riemann Zeta-function” (2003), http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
G. H. Golub and C. F. Van Loan, Matrix Computations, third edition, Johns Hopkins University Press (1996).
D. Gaspard, “Connection formulas between Coulomb wave functions” (2018), https://arxiv.org/abs/1804.10976
R. W. Gosper, “Acceleration of series”, MIT AI Memo no.304, (March-1974). https://dspace.mit.edu/handle/1721.1/6088
E. Gottschling, “Explizite Bestimmung der Randflächen es Fundamentalbereiches der Modulgruppe zweiten Grades’’, Math. Annalen 138 (1959), 103–124. https://doi.org/10.1007/BF01342938
Jason Gower and Sam Wagstaff : “Square form factoring” Math. Comp. 77, 2008, pp 551-588, https://doi.org/10.1090/S0025-5718-07-02010-8
Torbjörn Granlund and Niels Möller : Improved Division by Invariant Integers, https://gmplib.org/~tege/division-paper.pdf
Törbjorn Granlund and Peter L. Montgomery : Division by Invariant Integers using Multiplication https://gmplib.org/~tege/divcnst-pldi94.pdf
J. van der Hoeven and B. Mourrain. “Efficient certification of numeric solutions to eigenproblems”, MACIS 2017, 81-94, (2017), https://hal.archives-ouvertes.fr/hal-01579079
E. Hansen and R. Smith, “Interval Arithmetic in Matrix Computations, Part II”, SIAM Journal of Numerical Analysis, 4(1):1-9 (1967). https://doi.org/10.1137/0704001
G. Hanrot and P. Zimmermann, “Newton Iteration Revisited” (2004), http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
Guillaume Hanrot and Paul Zimmermann : Newton Iteration Revisited (2004) https://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
D. Harvey, “A multimodular algorithm for computing Bernoulli numbers” (2010), Mathematics of Computation 79.272: 2361-2370
D. Harvey and P. Zimmermann, “Short division of long integers” (2011), Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20), July 25-27, 2011, pages 7-14. https://web.maths.unsw.edu.au/~davidharvey/research/shortdiv.pdf
Hart, William B.. (2012) A one line factoring algorithm. Journal of the Australian Mathematical Society, Volume 92 (Number 1). pp. 61-69.
W. B. Hart. “ANTIC: Algebraic number theory in C”. Computeralgebra-Rundbrief: Vol. 56, 2015
W. B. Hart. “Algebraic number theory”. Unpublished manuscript, 2018.
W. B. Hart. “Fast library for number theory: an introduction.” International Congress on Mathematical Software. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-15582-6_18
Peter Henrici : “A Subroutine for Computations with Rational Numbers” J. ACM (1956), https://doi.org/10.1145/320815.320818
J. van der Hoeven. “Fast evaluation of holonomic functions near and in regular singularities”, Journal of Symbolic Computation, 31(6):717-743 (2001).
J. van der Hoeven, “Ball arithmetic”, Technical Report, HAL 00432152 (2009), http://www.texmacs.org/joris/ball/ball-abs.html
Ellis Horowitz : “Algorithms for Rational Function Arithmetic Operations” Annual ACM Symposium on Theory of Computing: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing (Denver) (1972), https://doi.org/10.1145/800152.804903
Iliopoulos, C. S., Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix : SIAM J. Computation 18:4 (1989) 658
J.-I. Igusa. Theta functions, Springer, 1972. https://doi.org/10.1007/978-3-642-65315-5
J.-I. Igusa, “On the ring of modular forms of degree two over Z”, Amer. J. Math. 101:1 (1979), 149–183. https://doi.org/10.2307/2373943
F. Johansson and I. Blagouchine. “Computing Stieltjes constants using complex integration”, preprint (2018), https://arxiv.org/abs/1804.01679
F. Johansson and M. Mezzarobba, “Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights”, preprint (2018), https://arxiv.org/abs/1802.03948
D. Jeffrey and A. D. Rich. “Simplifying square roots of square roots by denesting”. Computer Algebra Systems: A Practical Guide, M.J. Wester, Ed., Wiley 1999.
F. Johansson, “Efficient implementation of the Hardy-Ramanujan-Rademacher formula”, LMS Journal of Computation and Mathematics, Volume 15 (2012), 341-359, http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8710297
F. Johansson, “Rigorous high-precision computation of the Hurwitz zeta function and its derivatives”, Numerical Algorithms, http://arxiv.org/abs/1309.2877 https://doi.org/10.1007/s11075-014-9893-1
F. Johansson, Fast and rigorous computation of special functions to high precision, PhD thesis, RISC, Johannes Kepler University, Linz, 2014. https://fredrikj.net/thesis/
F. Johansson, “Evaluating parametric holonomic sequences using rectangular splitting”, ISSAC 2014, 256-263. https://doi.org/10.1145/2608628.2608629
F. Johansson, “Efficient implementation of elementary functions in the medium-precision range”, https://arxiv.org/abs/1410.7176
F. Johansson, “Computing Bell numbers”, https://fredrikj.net/blog/2015/08/computing-bell-numbers/
F. Johansson, “A fast algorithm for reversion of power series”, Math. Comp. 84 (2015), 475-484, http://doi.org/10.1090/S0025-5718-2014-02857-3
F. Johansson, “Computing hypergeometric functions rigorously”, preprint (2016), https://arxiv.org/abs/1606.06977
F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”. IEEE Transactions on Computers, vol 66, issue 8, 2017, pp. 1281-1292. https://doi.org/10.1109/TC.2017.2690633
F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”, IEEE Transactions on Computers, 66(8):1281-1292 (2017). https://doi.org/10.1109/TC.2017.2690633
F. Johansson, “Computing the Lambert W function in arbitrary-precision complex interval arithmetic”, preprint (2017), https://arxiv.org/abs/1705.03266
F. Johansson, “Numerical integration in arbitrary-precision ball arithmetic”, preprint (2018), https://arxiv.org/abs/1802.07942
F. Johansson and others, “mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.1.0)”, December 2018. https://mpmath.org/
M. J. Jacobson Jr. and A. J. van der Poorten. “Computational aspects of NUCOMP.” In International Algorithmic Number Theory Symposium, pp. 120-133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Kahan, William: Computing a Real Cube Root. https://csclub.uwaterloo.ca/~pbarfuss/qbrt.pdf
Kannan, R. and Bachem, A. : Polynomial algorithms for computing and the Smith and Hermite normal forms of an integer matrix, SIAM J. Computation vol. 9 (1979) 499–507
E. A. Karatsuba, “Fast evaluation of the Hurwitz zeta function and Dirichlet L-series”, Problems of Information Transmission 34:4 (1998), 342-353, http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=425&option_lang=eng
Knuth, D. E. The Art of Computer Programming, volume 2: Seminumerical algorithms, 1997
A. Kobel, “Certified Complex Numerical Root Finding”, Seminar on Computational Geometry and Geometric Computing (2010), http://www.mpi-inf.mpg.de/departments/d1/teaching/ss10/Seminar_CGGC/Slides/02_Kobel_NRS.pdf
A. Krishnamoorthy and D. Menon, “Matrix Inversion Using Cholesky Decomposition” Proc. of the International Conference on Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA-2013), pp. 70-72, 2013.
H. Labrande and E. Thomé, “Computing theta functions in quasi-linear time in genus 2 and above”, ANTS XII, Kaiserslautern, LMS J. Comp. Math 19 (2016), 163–177. https://doi.org/10.1112/S1461157016000309
R. S. Lehman, “On the Distribution of Zeros of the Riemann Zeta-Function”, Proc. of the London Mathematical Society 20(3) (1970), 303-320, https://doi.org/10.1112/plms/s3-20.2.303
R. F. Lukes and C. D. Patterson and H. C. Williams “Some results on pseudosquares” Math. Comp. 1996, no. 65, 361–372
F. Lübeck, “Conway polynomials for finite fields”, RTWH Aachen, https://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html, (accessed 2024-01-12)
P. Molin and C. Neurohr, “Computing period matrices and the Abel–Jacobi map of superelliptic curves”, Math. Comp. 88:316 (2019), 847–888.
M. Monagan and R. Pearce. “Rational simplification modulo a polynomial ideal”. Proceedings of the 2006 international symposium on Symbolic and algebraic computation - ISSAC ‘06. https://doi.org/10.1145/1145768.1145809
The MPFR team, “MPFR Algorithms” (2012), https://www.mpfr.org/algo.html
J. Massias and G. Robin, “Bornes effectives pour certaines fonctions concernant les nombres premiers,” J. Theorie Nombres Bordeaux, 8 (1996) 215-242.
N. Michel, “Precise Coulomb wave functions for a wide range of complex l, eta and z”, Computer Physics Communications, Volume 176, Issue 3, (2007), 232-249, https://doi.org/10.1016/j.cpc.2006.10.004
S. Miyajima, “Fast enclosure for all eigenvalues in generalized eigenvalue problems”, Journal of Computational and Applied Mathematics, 233 (2010), 2994-3004, https://doi.org/10.1016/j.cam.2009.11.048
J. Moses. “Algebraic simplification - a guide for the perplexed”. Proceedings of the second ACM symposium on Symbolic and algebraic manipulation (1971), 282-304. https://doi.org/10.1145/362637.362648
Thom Mulders : On Short Multiplications and Divisions, AAECC vol. 11 (2000) 69–88
D. Mumford, Tata Lectures on Theta I, Birkhäuser, 1983. https://doi.org/10.1007/978-1-4899-2843-6
D. Mumford, Tata Lectures on Theta II, Birkhäuser, 1984. https://doi.org/10.1007/978-0-8176-4578-6
National Institute of Standards and Technology, Digital Library of Mathematical Functions (2012), https://dlmf.nist.gov/
Nakos, George and Turner, Peter and Williams, Robert : Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM Bull. 31 (1997) 3 11–19
F. Olver, Asymptotics and special functions, AKP Classics, AK Peters Ltd., Wellesley, MA, 1997. Reprint of the 1974 original.
K. H. Pilehrood and T. H. Pilehrood. “Series acceleration formulas for beta values”, Discrete Mathematics and Theoretical Computer Science, DMTCS, 12 (2) (2010), 223-236, https://hal.inria.fr/hal-00990465/
M. S. Paterson and L. J. Stockmeyer, “On the number of nonscalar multiplications necessary to evaluate polynomials”, SIAM J. Comput (1973)
G. Pittaluga and L. Sacripante, “Inequalities for the zeros of the Airy functions”, SIAM J. Math. Anal. 22:1 (1991), 260-267.
Michael S. Paterson and Larry J. Stockmeyer : On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM Journal on Computing (1973)
Pernet, C. and Stein, W. : Fast computation of Hermite normal forms of random integer matrices ,J. Number Theory 130:17 (2010) 1675–1683
K. Petras, “On the computation of the Gauss-Legendre quadrature formula with a given precision”, Journal of Computational and Applied Mathematics 112 (1999), 253-267
D. J. Platt, “Computing degree 1 L-functions rigorously”, Ph.D. Thesis, University of Bristol (2011), https://people.maths.bris.ac.uk/~madjp/thesis5.pdf
D. J. Platt, “Isolating some non-trivial zeros of zeta”, Mathematics of Computation 86 (2017), 2449-2467, https://doi.org/10.1090/mcom/3198
D. Richardson and J. Fitch. “The identity problem for elementary functions and constants”. ISSAC ‘94: Proceedings of the international symposium on Symbolic and algebraic computation, August 1994, 285-290. https://doi.org/10.1145/190347.190429
H. Rademacher, Topics in analytic number theory, Springer, 1973.
Rademacher, Hans : On the partition function \(p(n)\) Proc. London Math. Soc vol. 43 (1937) 241–254
D. Richardson. “The elementary constant problem”. ISSAC ‘92: Papers from the international symposium on Symbolic and algebraic computation, August 1992, 108-116. https://doi.org/10.1145/143242.143284
D. Richardson. “A simplified method of recognizing zero among elementary constants”. ISSAC ‘95: Proceedings of the 1995 international symposium on Symbolic and algebraic computation, April 1995, 104-109. https://doi.org/10.1145/220346.220360
D. Richardson. “How to recognize zero”. Journal of Symbolic Computation 24.6 (1997): 627-645. https://doi.org/10.1006/jsco.1997.0157
D. Richardson. “Zero tests for constants in simple scientific computation”. Mathematics in Computer Science volume 1, pages 21-37 (2007). https://doi.org/10.1007/s11786-007-0002-x
D. Richardson. “Recognising zero among implicitly defined elementary numbers”. Preprint, 2009.
Rosser, J. Barkley; Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), no. 1, 64–94.
S. M. Rump, “Verification methods: Rigorous results using floating-point arithmetic”, Acta Numerica 19 (2010), 287-449.
D. M. Smith, “Algorithm: Fortran 90 Software for Floating-Point Multiple Precision Arithmetic, Gamma and Related Functions”, Transactions on Mathematical Software 27 (2001) 377-387, http://myweb.lmu.edu/dmsmith/toms2001.pdf
Sorenson, Jonathan and Webster, Jonathan : Strong pseudoprimes to twelve prime bases. Math. Comp. 86 (2017), 985-1003, https://doi.org/10.1090/mcom/3134
A. Steel. “A new scheme for computing with algebraically closed fields”. In: Fieker C., Kohel D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_38
A. Steel. “Computing with algebraically closed fields”. Journal of Symbolic Computation 45 (2010) 342-372. https://doi.org/10.1016/j.jsc.2009.09.005
Stehlé, Damien : Floating-Point LLL: Theoretical and Practical Aspects, in Nguyen, Phong Q. and Vallée, Brigitte : The LLL Algorithm: Survey and Applications (2010) 179–213
Stein, William A.: Modular forms, a computational approach. American Mathematical Society. 2007
Storjohann, Arne and Mulders, Thom : Fast algorithms for linear algebra modulo \(N\) : Algorithms—{ESA} ‘98 (Venice), Lecture Notes in Comput. Sci. 1461 139–150
M. Streng, “Computing Igusa class polynomials”, Math. Comp. 83:285 (2014), 275–309. https://doi.org/10.1090/S0025-5718-2013-02712-3
A. Strzebonski. “Computing in the field of complex algebraic numbers”. Journal of Symbolic Computation (1997) 24, 647-656. https://doi.org/10.1006/jsco.1997.0158
A. Strzebonski. “Real root isolation for exp-log-arctan functions”. Journal of Symbolic Computation 47 (2012) 282–314. https://doi.org/10.1016/j.jsc.2011.11.004
A. V. Sutherland. “Order computations in generic groups.” PhD diss., Massachusetts Institute of Technology, 2007.
D. Takahashi, “A fast algorithm for computing large Fibonacci numbers”, Information Processing Letters 75 (2000) 243-246, http://www.ii.uni.wroc.pl/~lorys/IPL/article75-6-1.pdf
Thull, K. and Yap, C. : A Unified Approach to HGCD Algorithms for Polynomials and Integers, (1990)
L. N. Trefethen, “Is Gauss Quadrature Better than Clenshaw-Curtis?”, SIAM Review, 50:1 (2008), 67-87, https://doi.org/10.1137/060659831
T. S. Trudgian, “Improvements to Turing’s method”, Mathematics of Computation 80 (2011), 2259-2279, https://doi.org/10.1090/S0025-5718-2011-02470-1
T. S. Trudgian, “An improved upper bound for the argument of the Riemann zeta-function on the critical line II”, Journal of Number Theory 134 (2014), 280-292, https://doi.org/10.1016/j.jnt.2013.07.017
A. M. Turing, “Some Calculations of the Riemann Zeta-Function”, Proc. of the London Mathematical Society 3(3) (1953), 99-117, https://doi.org/10.1112/plms/s3-3.1.99
Villard, Gilles : Certification of the QR Factor R and of Lattice Basis Reducedness, In proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2007) 361–368 ACM Press.
Watkins, W. and Zeitlin, J. : The minimal polynomial of \(\cos(2\pi/n)\) The American Mathematical Monthly 100:5 (1993) 471–474
A. Weilert, “(1+i)-ary GCD computation in Z[i] as an analogue to the binary GCD algorithm”, Journal of Symbolic Computation 30.5 (2000): 605-617, https://doi.org/10.1006/jsco.2000.0422
Whiteman, A. L. : A sum connected with the series for the partition function, Pacific Journal of Mathematics 6:1 (1956) 159–176
R. Zippel. “Simplification of expressions involving radicals”. Journal of Symbolic Computation (1985) 1, 189-210. https://doi.org/10.1016/S0747-7171(85)80014-6
J. Zuniga, “Catalan’s constant fast convergent series”, https://mathoverflow.net/q/424055
J. Zuniga, “Are these fast convergent series for log(2) and log(3) already known and proven?”, https://math.stackexchange.com/q/4854073
M. van Hoeij and V. Pal. “Isomorphisms of algebraic number fields”. Journal de Théorie des Nombres de Bordeaux, Vol. 24, No. 2 (2012), pp. 293-305. https://doi.org/10.2307/43973105
J. van der Hoeven, “Automatic numerical expansions”. Proc. of the conference Real numbers and computers (1995), 261-274. https://www.texmacs.org/joris/ane/ane-abs.html
J. van der Hoeven, “Computations with effective real numbers”. Theoretical Computer Science, Volume 351, Issue 1, 14 February 2006, Pages 52-60. https://doi.org/10.1016/j.tcs.2005.09.060
All referenced works: [AbbottBronsteinMulders1999], [Apostol1997], [Ari2011], [Ari2012], [Arn2010], [Arn2012], [ArnoldMonagan2011], [BBC1997], [BBC2000], [BBK2014], [BD1992], [BF2020], [BFSS2006], [BJ2013], [BM1980], [BZ1992], [BZ2011], [BaiWag1980], [BerTas2010], [Bin1996], [Blo2009], [Bodrato2010], [Boe2020], [Bog2012], [Bol1887], [Bor1987], [Bor2000], [Bre1978], [Bre1979], [Bre2010], [BrentKung1978], [BuhlerCrandallSompolski1992], [CFG2017], [CFG2019], [CGHJK1996], [CP2005], [Car1995], [Car2004], [Chen2003], [Cho1999], [Coh1996], [Coh2000], [Col1971], [CraPom2005], [DHBHS2004], [DYF1999], [DelegliseNicolasZimmermann2009], [DomKanTro1987], [Dup2006], [Dus1999], [EHJ2016], [EM2004], [EK2023], [Fie2007], [FieHof2014], [Fil1992], [GCL1992], [GG2003], [GS2003], [GVL1996], [Gas2018], [Gos1974], [GowWag2008], [GraMol2010], [HM2017], [HS1967], [HZ2004], [HanZim2004], [Har2010], [HZ2011], [Har2012], [Har2015], [Har2018], [Hart2010], [Hen1956], [Hoe2001], [Hoe2009], [Hor1972], [Iliopoulos1989], [Igu1972], [Igu1979], [JB2018], [JM2018], [JR1999], [Joh2012], [Joh2013], [Joh2014a], [Joh2014b], [Joh2014c], [Joh2015], [Joh2015b], [Joh2016], [Joh2017], [Joh2017a], [Joh2017b], [Joh2018a], [Joh2018b], [JvdP2002], [Kahan1991], [KanBac1979], [Kar1998], [Knu1997], [Kob2010], [Kri2013], [LT2016], [Leh1970], [LukPatWil1996], [MN2019], [MP2006], [MPFR2012], [MasRob1996], [Mic2007], [Miy2010], [Mos1971], [Mul2000], [Mum1983], [Mum1984], [NIST2012], [NakTurWil1997], [Olv1997], [PP2010], [PS1973], [PS1991], [Paterson1973], [PernetStein2010], [Pet1999], [Pla2011], [Pla2017], [RF1994], [Rad1973], [Rademacher1937], [Ric1992], [Ric1995], [Ric1997], [Ric2007], [Ric2009], [RosSch1962], [Rum2010], [Smi2001], [SorWeb2016], [Ste2002], [Ste2010], [Stehle2010], [Stein2007], [Sut2007], [StoMul1998], [Str2014], [Str1997], [Str2012], [Tak2000], [ThullYap1990], [Tre2008], [Tru2011], [Tru2014], [Tur1953], [Villard2007], [WaktinsZeitlin1993], [Wei2000], [Whiteman1956], [Zip1985], [Zun2023], [Zun2023b], [vHP2012], [vdH1995], [vdH2006]