FLINT 1.0.2: Fast Library for Number Theory

William B. Hart and David Harvey

December 9, 2007

1 Introduction

FLINT is a C library of functions for doing number theory. It is highly optimised and can be compiled
on numerous platforms. FLINT also has the aim of providing support for multicore and multiprocessor
computer architectures, though we do not yet provide this facility.

FLINT is currently maintained by William Hart of Warwick University in the UK and David Harvey of
Harvard University in the US.

As of version 1.0, FLINT compiles on and supports 32 and 64 bit x86 processors, the G5 and Alpha
processors, though in theory it compiles on any machine with gcc version 3.4 or later and with GMP
version 4.2.1 or later.

FLINT is supplied as a set of modules, fmpz, fmpz_poly, etc., each of which can be linked to a C program
making use of their functionality.

All of the functions in FLINT have a corresponding test function provided in an appropriately named
test file, e.g: all the functions in the file fmpz_poly.c have test functions in the file fmpz_poly-test.c.

2 Building and using FLINT

The easiest way to use FLINT is to build a shared library. Simply download the FLINT tarball and
untar it on your system.

Next, set the environment variables FLINT_GMP_LIB_DIR and FLINT_GMP_INCLUDE_DIR to point to your
GMP library and include directories respectively.

Next type:

source flint_env

in the main directory of the FLINT directory tree.
Finally type:

make library

Move the library file 1ibflint.so, 1ibflint.d1l1l or 1libflint.dylib (depending on your platform)
into your library path and move all the .h files in the main directory of FLINT into your include path.

Now to use FLINT, simply include the appropriate header files for the FLINT modules you wish to use
in your C program. Then compile your program, linking against the FLINT library and GMP with the
options -1flint -lgmp.



3 Test code

Each module of FLINT has an extensive associated test module. We strongly recommend running the
test programs before relying on results from FLINT on your system.

To make the test programs, simply type:
make test

in the main FLINT directory.

The following is a list of the test programs which should be run:
mpn_extras-test

fmpz_poly-test

fmpz-test

ZmodF-test

ZmodF_poly-test

mpz_poly-test

ZmodF_mul-test

long_extras-test

4 Reporting bugs

The maintainers wish to be made aware of any and all bugs. Please send an email with your bug report
to hart_wb@yahoo.com.

If possible please include details of your system, version of gcc, version of GMP and precise details of
how to replicate the bug.

Note that FLINT needs to be linked against version 4.2.1 or later of GMP and must be compiled with
gce version 3.4 or later.

5 Example programs

FLINT comes with a number of example programs to demonstrate current and future FLINT features.
To make the example programs, type:

make examples
The current example programs are:

delta_qgexp Compute the first n terms of the delta function, e.g. delta_gexp 1000000 will compute
the first one million terms of the g-expansion of delta.

BPTJCubes Implements the algorithm of Beck, Pine, Tarrant and Jensen for finding solutions to the
equation x® + 3 + 22 = k.

bernoulli Compute bernoulli numbers modulo a large number of primes.

expmod Computes a very large modular exponentiation.



6 FLINT macros

In the file flint.h are various useful macros.

The macro constant FLINT_BITS is set at compile time to be the number of bits per limb on the machine.
FLINT requires it to be either 32 or 64 bits. Other architectures are not currently supported.

FLINT_ABS(x) returns the absolute value of a long x.
FLINT_MIN(x, y) returns the minimum of two long or two unsigned long values x and y.
FLINT_MAX(x, y) returns the maximum of two long or two unsigned long values x and y.

FLINT_BIT_COUNT(x) retuns the number of binary bits required to represent an unsigned long x.

7 The fmpz_poly module

The fmpz_poly_t data type represents elements of Z[z]. The fmpz_poly module provides routines for
memory management, basic arithmetic, and conversions to/from other types.

Each coefficient of an fmpz_poly_t is an integer of the FLINT fmpz_t type. Each coefficient of an
fmpz_poly_t has the same number of limbs allocated for it, thus fmpz_poly_t polynomials are useful
for dense polynomial arithmetic where the coefficients are not wildly different sizes.

Unless otherwise specified, all functions in this section permit aliasing between their input and output
arguments.

7.1 Simple example

The following example computes the square of the polynomial 523 — 1.

#include "fmpz_poly.h"

fmpz_poly_t x, y;
fmpz_poly_init(x);
fmpz_poly_init (y);
fmpz_poly_set_coeff_ui(x, 3, 5);
fmpz_poly_set_coeff_si(x, 0, -1);
fmpz_poly_mul(y, x, x);
fmpz_poly_print(x); printf ("\n");
fmpz_poly_print(y); printf ("\n");
fmpz_poly_clear(x);
fmpz_poly_clear (y);

The output is:

4 -1 005
7 100 -10 0 0 25



7.2 Definition of the fmpz polynomial type

The fmpz_poly_t type is a typedef for an array of length 1 of fmpz_poly_struct’s. This permits passing
parameters of type fmpz_poly_t ‘by reference’ in a manner similar to the way GMP integers of type
mpz_t can be passed by reference.

In reality one never deals directly with the struct and simply deals with objects of type fmpz_poly_t.
For simplicity we will think of an fmpz_poly_t as a struct, though in practice to access fields of this
struct, one needs to dereference first, e.g. to access the limbs field of an fmpz_poly_t called polyl one
writes polyl->1limbs.

With this way of thinking, fmpz_poly_t then has four fields:

e mp_limb_t* coeffs. This array contains all the fmpz_t’s representing the coefficients of the
polynomial, consecutively. The first coefficient represents the constant coefficient of the polynomial.

e unsigned long limbs. The number of limbs allocated for the absolute value of each coefficient.
An additional limb per coefficient is also allocated to store the sign/size of the coefficient.

e unsigned long alloc. The maximum number of coefficients which can be stored in coeffs. The
total amount of space allocated in coeffs is thus alloc*(limbs+1).

e unsigned long length. The current length of the polynomial, i.e. the number of coefficients
which contain actual data. Always length <= alloc. The polynomial is the zero polynomial if
and only if length ==

An fmpz_poly_t is said to be normalised if either length == 0, or if the final coefficient is nonzero. All
fmpz_poly functions expect their inputs to be normalised, and unless otherwise specified they produce
output that is normalised.

It is permissible to access the coefficients directly by modifying the limbs in coeffs, however if you
modify the coefficients in this way, you must ensure that the polynomial is subsequently normalised by
calling fmpz_poly_normalise().

7.3 Managed versus unmanaged layer

The module fmpz_poly has two layers, a ‘managed’ and an ‘unmanaged’ layer. Functions in the unman-
aged layer are differentiated by having a leading underscore, e.g. _fmpz_poly_add.

Functions in the managed layer do all the memory management for the user. One does not need to
specify the maximum length or number of limbs per coefficient in advance before using a polynomial
object. FLINT reallocates space automatically as the computation proceeds, if more space is required.

As aresult of the possible need to reallocate, polynomials modified by functions in the managed layer must
have been allocated using the FLINT heap memory manager, i.e. only functions such as fmpz_poly_init,
without the leading underscore, can be used to allocate polynomials for use as outputs of managed
functions.

On the other hand, the unmanaged layer does no memory management for the user. Each polynomial
must have its coefficient limb size and maximum length set in advance. Both the memory management
functions in the unmanaged and the managed layer can be used to this end. In particular the unmanaged
layer offers stack based memory management options, though note that no reallocation can occur if this
option is used.

A final benefit of the unmanaged layer is that one can operate on a range of coefficients of a polynomial.
Functions are provided for attaching an fmpz_poly_t object to part of an existing polynomial and acting



on that part, as though it were a separate polynomial. This can avoid making unnecessary copies of data
and increase the performance of code.

Some functions are available in either the managed or unmanaged layer but not in both.

We now describe the functions available in fmpz_poly.

7.4 Initialisation and memory management

void fmpz_poly_init(fmpz_poly_t poly)

Initialise an fmpz_poly_t for use. All the fields alloc, length and limbs of poly are set
to zero. A corresponding call to fmpz_poly_clear must be made after finishing with the
fmpz_poly_t to free the memory used by the polynomial.

For efficiency reasons, a call to fmpz_poly_init does not actually allocate any memory for
coefficients. Each of the managed functions will automatically allocate any space needed for
coeflicients and in fact the easiest way to use the managed layer is to let FLINT do all the
allocation automatically.

To this end, a user need only ever make calls to the fmpz_poly_init and fmpz_poly_clear
memory management functions if they so wish. Naturally, more efficient code may result if
the other memory management functions are also used.

void fmpz_poly_init2(fmpz_poly_t poly, unsigned long alloc,
unsigned long limbs)

Initialise an fmpz_poly_t for use, allocating space for alloc coefficients each with the given
number of limbs of space (plus an additional limb for the sign/size limb for each coefficient).
The length field is set to zero.

This function should be used when the maximum length of the polynomial and the size of the
coefficients is roughly known in advance. It may be faster than having FLINT automatically
increase the size of the polynomial as the computation proceeds.

void fmpz_poly_realloc(fmpz_poly_t poly, unsigned long alloc)

Shrink or expand the polynomial so that it has space for precisely alloc coefficients. If alloc
is less than the current length, the polynomial is truncated (and then normalised), otherwise
the coefficients and current length remain unaffected.

If the parameter alloc is zero, any space currently allocated for coefficients in poly is freed.
A subsequent call to fmpz_poly_clear is still permitted and does nothing.

For performance reasons, if poly->limbs is currently zero, this function does not do any
allocation. A subsequent call to fmpz_poly_fit_limbs will do the actual allocation.

void fmpz_poly_fit_length(fmpz_poly_t poly, unsigned long alloc)



Expand the polynomial (if necessary) so that it has space for at least alloc coeflicients.
This function will never shrink the memory allocated for coefficients and the contents of the
existing coefficients and the current length remain unaffected.

If the 1limbs field of poly is currently zero, then for performance reasons this function does
not actually allocate any space. A subsequent call to fmpz_poly_fit_limbs will do any
actual allocation.

void fmpz_poly_resize_limbs (fmpz_poly_t poly, unsigned long limbs)

Shrink or expand the coefficients so that each of them has space for the given number of
limbs. It is required that either the existing coefficients still fit into the new limb size or the
parameter 1imbs is set to zero. Given the former, the contents of the existing coefficients and
the current length will remain unaffected.

If the parameter 1imbs is zero then any space currently allocated for coeflicients in poly is
freed. A subsequent call to fmpz_poly_clear is still permitted and does nothing.

If poly->alloc is currently zero, this function does no allocation.
void fmpz_poly_fit_limbs(fmpz_poly_t poly, unsigned long limbs)

Expand (if necessary) the coefficients so that each of them has space for the given number of
limbs. This function will never shrink coefficients, thus existing coefficients and the current
length are always preserved.

For performance reasons, no space is allocated if poly->alloc is currently zero. A subsequent
call to fmpz_poly_fit_length will do the actual allocation.

void fmpz_poly_clear (fmpz_poly_t poly)

Free all memory used by the coefficients of poly. The polynomial object poly cannot be used
again until a subsequent call to an initialisation function is made.

void _fmpz_poly_stack_init(fmpz_poly_t poly, unsigned long alloc,
unsigned long limbs)

Initialise a polynomial, allocating space for alloc coefficients each taking no more than the
given number of limbs of space (plus an additional limb for the sign/size).

Space is allocated on the FLINT stack, and can only be released by a corresponding call to
_fmpz_poly_stack_clear.

Polynomials initialised and cleared in this way can only be used by unmanaged functions
(with a leading underscore) and as inputs to managed functions. Reallocation or changing
the number of limbs per coefficient is not permitted.

The alloc and limbs parameters of this function may be zero, in which case no memory
is actually allocated. A subsequent call to _fmpz_poly_stack_clear is still permitted, but
does nothing.

void _fmpz_poly_stack_clear (fmpz_poly_t poly)

Release any space allocated for poly back to the stack. The stack based memory manager re-
quires that polynomials be released in the opposite order to that in which they were initialised
with _fmpz_poly_stack_init.



7.5 Setting/retrieving coefficients

void fmpz_poly_get_coeff_mpz(mpz_t x, const fmpz_poly_t poly,
unsigned long n)
void _fmpz_poly_get_coeff_mpz(mpz_t x, const fmpz_poly_t poly,
unsigned long n)
Retrieve coefficient n as an mpz_t.
Coefficients are numbered from zero, starting with the constant coefficient.

The managed version returns zero when n >= poly->length.

void fmpz_poly_set_coeff _mpz(fmpz_poly_t poly, unsigned long n,

mpz_t x)

void _fmpz_poly_set_coeff_mpz (fmpz_poly_t poly, unsigned long n,

mpz_t x)

Set coefficient n to the value of the given mpz_t.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the

existing coefficients and the new coefficient, if required.

void fmpz_poly_get_coeff_fmpz(fmpz_t x, const fmpz_poly_t poly,
unsigned long n)

void _fmpz_poly_get_coeff_fmpz(fmpz_t x, const fmpz_poly_t poly,
unsigned long n)

Retrieve coefficient n as an fmpz_t.

Coeflicients are numbered from zero, starting with the constant coefficient.

It is assumed that the fmpz_t supplied has already been allocated with sufficient space for

the coefficient being retrieved.

The managed version returns zero when n >= poly->length.

void fmpz_poly_set_coeff_fmpz (fmpz_poly_t poly, unsigned long n,

fmpz_t x)

void _fmpz_poly_set_coeff_fmpz(fmpz_poly_t poly, unsigned long n,

fmpz_t x)

Set coefficient n to the value of the given fmpz_t.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the

existing coeflicients and the new coefficient, if required.

unsigned long fmpz_poly_get_coeff_ui(const fmpz_poly_t poly,
unsigned long n)

unsigned long _fmpz_poly_get_coeff_ui(const fmpz_poly_t poly,
unsigned long n)



Return the absolute value of coeflicient n as an unsigned long.

Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient
is longer than a single limb, the first limb is returned.

The managed version returns zero when n >= poly->length.

void fmpz_poly_set_coeff_ui(fmpz_poly_t poly, unsigned long n,
unsigned long x)

void _fmpz_poly_set_coeff_ui(fmpz_poly_t poly, unsigned long n,
unsigned long x)

Set coefficient n to the value of the given unsigned long.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

long fmpz_poly_get_coeff_si(const fmpz_poly_t poly, unsigned long n)
long _fmpz_poly_get_coeff_si(const fmpz_poly_t poly, unsigned long n)

Return the value of coefficient n as a long.

Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient
will not fit into a long, i.e. if its absolute value takes up more than FLINT_BITS - 1 bits
then the result is undefined.

The managed version returns zero when n >= poly->length.

void fmpz_poly_set_coeff_si(fmpz_poly_t poly, unsigned long n, long x)
void _fmpz_poly_set_coeff_si(fmpz_poly_t poly, unsigned long n, long x)

Set coefficient n to the value of the given long.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

fmpz_t fmpz_poly_get_coeff_ptr (fmpz_poly_t poly, unsigned long n)
fmpz_t _fmpz_poly_get_coeff_ptr(fmpz_poly_t poly, unsigned long n)

Return a pointer to coefficient n of poly, cast as an fmpz_t. This function is provided so
that individual coefficients can be operated on by functions in the fmpz module.

Coefficients are numbered from zero, starting with the constant coefficient.

The managed version returns NULL when n >= poly->length.



7.6 String conversions and I/0

The functions in this section are not intended to be particularly fast. They are intended mainly as a
debugging aid.

All of the functions use the same string representation of polynomials. It is given by a sequence of integers,
in decimal notation, separated by whitespace. The first integer gives the length of the polynomial; the
remaining length integers are the coefficients. For example 523 — 2 4 1 is represented by the string
“4 1 -1 0 5”7, and the zero polynomial is represented by “0”. The coefficients may be signed and
arbitrary precision (provided they fit in the given polynomial).

int fmpz_poly_from_string(fmpz_poly_t poly, const char* s)

Import a polynomial from a string. If the string represents a valid polynomial the function
returns 1, otherwise it returns 0.

char* fmpz_poly_to_string(const fmpz_poly_t poly)

Convert a polynomial to a string and return a pointer to the string. Space is allocated for
the string by this function and must be freed when it is no longer used, by a call to free.

void fmpz_poly_fprint(const fmpz_poly_t poly, FILEx* f)
Convert a polynomial to a string and write it to the given stream.
void fmpz_poly_print(const fmpz_poly_t poly)
Convert a polynomial to a string and write it to stdout.
void fmpz_poly_fread(fmpz_poly_t poly, FILE*x f)

Read a polynomial from the given stream. Return 1 if the data from the stream represented
a valid polynomial, otherwise return 0.

void fmpz_poly_read (fmpz_poly_t poly)

Read a polynomial from stdin. Return 1 if the data read from stdin represented a valid
polynomial, otherwise return 0.



7.7 Polynomial parameters (length, degree, limbs, etc.)

long fmpz_poly_degree(const fmpz_poly_t poly)
long _fmpz_poly_degree(const fmpz_poly_t poly)

Return poly->length - 1. The zero polynomial is defined to have degree —1.

unsigned long fmpz_poly_length(const fmpz_poly_t poly)
unsigned long _fmpz_poly_length(const fmpz_poly_t poly)

Return poly->length. The zero polynomial is defined to have length 0.

unsigned long fmpz_poly_limbs(const fmpz_poly_t poly)
unsigned long _fmpz_poly_limbs(const fmpz_poly_t poly)

Return poly->limbs.

Each coefficient of poly is allowed up to this many limbs to store its absolute value, plus
an additional limb to store its sign/size. Thus the total memory currently allocated for the
storage of coefficients is poly->allocx(poly->1limbs+1).

unsigned long fmpz_poly_max_limbs(const fmpz_poly_t poly)
unsigned long _fmpz_poly_max_limbs (const fmpz_poly_t poly)

Returns the maximum number of limbs required to store the absolute value of coefficients of
poly. This may be less than poly->limbs.

long fmpz_poly_max_bits(const fmpz_poly_t poly)
long _fmpz_poly_max_bits(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of
poly. If all the coefficients of poly are non-negative, b is returned, otherwise —b is returned.

long fmpz_poly_max_bitsl(const fmpz_poly_t poly)
long _fmpz_poly_max_bitsl(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of
poly. If all the coefficients of poly are non-negative, b is returned, otherwise —b is returned.

The assumption is made that the absolute value of each coefficient fits into an unsigned
long. This function will be more efficient than the more general fmpz_poly_max_bits in this
situation.

10



7.8 Assignment and basic manipulation

void fmpz_poly_set(fmpz_poly_t polyl, const fmpz_poly_t poly2)
void _fmpz_poly_set(fmpz_poly_t polyl, const fmpz_poly_t poly2)

Set polynomial x equal to the polynomial y.

void fmpz_poly_swap(fmpz_poly_t polyl, fmpz_poly_t poly2)
void _fmpz_poly_swap(fmpz_poly_t polyl, fmpz_poly_t poly2)

Efficiently swap two polynomials. The coefficients are not moved in memory, pointers are
simply switched. The unmanaged version does not swap the alloc fields of the polynomials.

void fmpz_poly_zero(fmpz_poly_t poly)
void _fmpz_poly_zero(fmpz_poly_t poly)

Set the polynomial to the zero polynomial.

void fmpz_poly_zero_coeffs(fmpz_poly_t poly, unsigned long n)
void _fmpz_poly_zero_coeffs(fmpz_poly_t poly, unsigned long n)

Set the first n coefficients of poly to zero.

The unmanaged versiom of this function requires that poly have space allocated for at least
n coeflicients.

void fmpz_poly_neg(fmpz_poly_t poly)
void _fmpz_poly_neg(fmpz_poly_t poly)

Negate the polynomial, i.e. set it to —-poly.

void fmpz_poly_truncate(fmpz_poly_t poly, const unsigned long trunc)
void _fmpz_poly_truncate(fmpz_poly_t poly, const unsigned long trunc)

If trunc is less than the current length of the polynomial, truncate the polynomial to that
length. Note that as the function normalises its output, the eventual length of the polynomial
may be less than trunc.

void fmpz_poly_reverse(fmpz_poly_t output, const fmpz_poly_t poly,

unsigned long length)

void _fmpz_poly_reverse(fmpz_poly_t output, const fmpz_poly_t poly,

unsigned long length)

This function considers the polynomial poly to be of length n, notionally truncating and
zero padding if required, and reverses the result. Since this function normalises its result the
eventual length of output may be less than length.

The unmanaged version of this function requires that output have space allocated for at least
length coeflicients and that output->1limbs is at least poly->1limbs.

11



7.9 Subpolynomials

A number of functions are provided for attaching an fmpz_poly_t object to an existing polynomial or
to a range of coefficients of an existing polynomial providing an alias for the original polynomial or part
thereof.

Each of the functions in this section normalise the aliases.

One must take care when manipulating the alias, since manipulating it may leave the original polynomial
unnormalised.

One must also be careful that one does not pass a polynomial and an alias for that polynomial to the
same function since that function will have no way to tell it is dealing with aliases of the same polynomial.

void _fmpz_poly_attach(fmpz_poly_t output, const fmpz_poly_t poly)

Attach the fmpz_poly_t object output to the polynomial poly. Any changes made to the
length field of output then do not affect poly.

void _fmpz_poly_attach_shift(fmpz_poly_t output,
const fmpz_poly_t input, unsigned long n)

Attach the fmpz_poly_t object output to poly but shifted to the left by n coefficients.
This is equivalent to notionally shifting the original polynomial right (dividing by z™) then
attaching to the result.

void _fmpz_poly_attach_truncate(fmpz_poly_t output,
const fmpz_poly_t input, unsigned long n)

Attach the fmpz_poly_t object output to the first n coefficients of the polynomial poly. This
is equivalent to notionally truncating the original polynomial to n coefficients then attaching
to the result.

void _fmpz_poly_normalise(fmpz_poly_t poly)

Normalise the polynomial so that either the polynomial is the zero polynomial or the leading
coefficient is not zero.

Since all other functions in fmpz_poly assume that input and output polynomials are nor-
malised, this function is only used when manipulating the internals of a polynomial directly
or when using subpolynomials.

7.10 Comparison

int fmpz_poly_equal(const fmpz_poly_t polyl, const fmpz_poly_t poly2)
int _fmpz_poly_equal (const fmpz_poly_t polyl, const fmpz_poly_t poly2)

Return 1 if the two polynomials are equal, 0 otherwise.

12



7.11 Shifting

void fmpz_poly_left_shift(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long n)
void _fmpz_poly_left_shift(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long n)

Shift poly to the left by n coefficients (multiply by z™) and write the result to output. Zero
coeflicients are inserted.

The unmanaged version of this function requires that output have space allocated for at least
n + poly->length coeflicients.

The parameter n must be non-negative, but can be zero.

void fmpz_poly_right_shift(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long n)
void _fmpz_poly_right_shift(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long n)

Shift poly to the right by n coefficients (divide by ™ and discard the remainder) and write
the result to output.

The parameter n must be non-negative, but can be zero. Shifting right by more than the
current length of the polynomial results in the zero polynomial.

7.12 Addition/subtraction

void fmpz_poly_add (fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)
void _fmpz_poly_add(fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)

Set the output to the sum of the input polynomials.

Note that if polyl and poly2 have the same length, cancellation may occur (if the leading
coefficients have the same absolute values but opposite signs) and so the result may have
less coefficients than either of the inputs. However, the unmanaged version of this function
requires that the output have space allocated for the number of coefficients of the longest of
the input polynomials.

When using the unmanaged version, note that overflow may occur when adding coefficients
together and so one additional bit may be required to store the output coefficients than was
required in either of the input polynomials. The additional bit is only required in the case
that overflow occurs.

void fmpz_poly_sub(fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)
void _fmpz_poly_sub(fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)

13



Set the output to polyl - poly2.

Note that if polyl and poly2 have the same length, cancellation may occur (if the leading
coefficients have the same values) and so the result may have less coefficients than either of
the inputs. However, the unmanaged version of this function requires that the output have
space allocated for the number of coefficients of the longest of the input polynomials.

When using the unmanaged version, note that overflow may occur when subtracting co-
efficients of opposite signs and so one additional bit may be required to store the output
coeflicients than was required in either of the input polynomials. The additional bit is only
required in the case that overflow occurs.

7.13 Scalar multiplication and division

void fmpz_poly_scalar_mul_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long
void _fmpz_poly_scalar_mul_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long

Multiply poly by the unsigned long x and write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
output coefficient, i.e. the sum of the number of bits of the absolute values of x and the largest
coefficient of poly.

void fmpz_poly_scalar_mul_si(fmpz_poly_t output,

const fmpz_poly_t poly, long
void _fmpz_poly_scalar_mul_si(fmpz_poly_t output,

const fmpz_poly_t poly, long

Multiply poly by the long x and write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
output coefficient, i.e. the sum of the number of bits of the absolute values of x and the largest
coefficient of poly.

void fmpz_poly_scalar_mul_fmpz(fmpz_poly_t output,

const fmpz_poly_t poly, const fmpz_t
void _fmpz_poly_scalar_mul_fmpz (fmpz_poly_t output,

const fmpz_poly_t poly, const fmpz_t

Multiply poly by the fmpz_t x and write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
output coefficient, i.e. the sum of the number of bits of the absolute values of x and the largest
coefficient of poly.

void fmpz_poly_scalar_mul_mpz (fmpz_poly_t output,

x)

x)

x)

x)

x)

x)

const fmpz_poly_t poly, const mpz_t x)

14



Multiply poly by the mpz_t x and write the result to output.

void fmpz_poly_scalar_div_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)
void _fmpz_poly_scalar_div_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)

Divide poly by the unsigned long x, round quotients towards minus infinity, discard re-
mainders and write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_div_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)
void _fmpz_poly_scalar_div_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)

Divide poly by the long x, round quotients towards minus infinity, discard remainders and
write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_tdiv_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)
void _fmpz_poly_scalar_tdiv_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)

Divide poly by the unsigned long x, round quotients towards zero, discard remainders and
write the result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_tdiv_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)
void _fmpz_poly_scalar_tdiv_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)

Divide poly by the long x, round quotients towards zero, discard remainders and write the
result to output.

When using the unmanaged version, the coefficients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_div_exact_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)
void _fmpz_poly_scalar_div_exact_ui(fmpz_poly_t output,

const fmpz_poly_t poly, unsigned long x)

15



Divide poly by the unsigned long x. Division is assumed to be exact and the result is
undefined otherwise.

When using the unmanaged version, the coeflicients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_div_exact_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)
void _fmpz_poly_scalar_div_exact_si(fmpz_poly_t output,

const fmpz_poly_t poly, long x)

Divide poly by the long x. Division is assumed to be exact and the result is undefined
otherwise.

When using the unmanaged version, the coefficients of output must have space for the largest
input coefficient.

void fmpz_poly_scalar_div_fmpz(fmpz_poly_t output,

const fmpz_poly_t poly, const fmpz_t x)
void _fmpz_poly_scalar_div_fmpz(fmpz_poly_t output,

const fmpz_poly_t poly, const fmpz_t x)

Divide poly by the fmpz_t x, round quotients towards minus infinity, discard remainders,
and write the result to output.

When using the unmanaged version, the coefficients of the polynomial output must have
sufficient space allocated for limbsl - limbs2 + 1 limbs, where limbs1 is the maximum
number of limbs of the coefficients in poly and 1imbs2 is the number of limbs required to
store the absolute value of z.

void fmpz_poly_scalar_div_mpz(fmpz_poly_t output,
const fmpz_poly_t poly, const mpz_t x)

Divide poly by the mpz_t x, round quotients towards minus infinity, discard remainders, and
write the result to output.

7.14 Polynomial multiplication

void fmpz_poly_mul (fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)
void _fmpz_poly_mul (fmpz_poly_t output, const fmpz_poly_t polyl,

const fmpz_poly_t poly2)

Multiply the two given polynomials and return the result in output.

When using the unmanaged version, the coefficients of the output polynomial may be as large
asbitsl + bits2 + bits(length2) where bits1 is the number of bits of the absolute value
of the largest coefficient of poly1, bits2 is the corresponding thing for poly2, bits(length2)
is the number of bits in the binary representation of the length of the shortest polynomial.

The length of the output polynomial will be polyl->length + poly2->length - 1.

16



void fmpz_poly_mul_trunc_n(fmpz_poly_t output,

const fmpz_poly_t polyl, const fmpz_poly_t poly2, unsigned long n)
void _fmpz_poly_mul_trunc_n(fmpz_poly_t output,

const fmpz_poly_t polyl, const fmpz_poly_t poly2, unsigned long n)

Multiply the two given polynomials and truncate the result to n coefficients, storing the result
in output. This is sometimes known as a short product.

See _fmpz_poly_mul for a discussion of how big the output coefficients can be.

The length of the output polynomial will be at most the minimum of n and the value
polyl->length + poly2->length - 1. It is permissible to set n to any non-negative value,
however the function is optimised for n about half of polyl->length + poly2->length.

This function is more efficient than multiplying the two polynomials then truncating. It is
the operation used when multiplying power series.

void fmpz_poly_mul_trunc_left_n(fmpz_poly_t output,

const fmpz_poly_t polyl, const fmpz_poly_t poly2, unsigned long n)
void _fmpz_poly_mul_trunc_left_n(fmpz_poly_t output,

const fmpz_poly_t polyl, const fmpz_poly_t poly2, unsigned long n)

Multiply the two given polynomials storing the result in output. This function guarantees
all the coefficients except the first n, which may be arbitrary. This is sometimes known as an
opposite short product.

See _fmpz_poly_mul for a discussion of how big the output coeflicients can be.

The length of the output polynomial will be polyl->length + poly2->length - 1 unless
n is greater than or equal to this value, in which case it will return the zero polynomial. It is
permissible to set n to any non-negative value, however the function is optimised for n about
half of polyl->length + poly2->length.

For short polynomials, this function is more efficient than computing the full product.

7.15 Polynomial division

void fmpz_poly_divrem(fmpz_poly_t Q, fmpz_poly_t R,
const fmpz_poly_t A, const fmpz_poly_t B)

Performs division with remainder in Z[z]. Computes polynomials Q and R in Z[x] such that
the equation A = B*Q + R, holds. All but the final B->length - 1 coefficients of R will be
positive and less than the absolute value of the lead coefficient of B.

Note that in the special cases where the leading coefficient of B is =1 or A = B#*Q for some
polynomial Q, the result of this function is the same as if the computation had been done
over Q.

void fmpz_poly_div(fmpz_poly_t Q, const fmpz_poly_t A,
const fmpz_poly_t B)

17



Performs division without remainder in Z[z]. The computation returns the same result as
fmpz_poly_divrem, but no remainder is computed. This is in general faster than computing
quotient and remainder.

Note that in the special cases where the leading coefficient of B is =1 or A = B#*Q for some
polynomial Q, the result of this function is the same as if the computation had been done
over Q. In particular it can be used efficiently for exact division in Z[z].

void fmpz_poly_div_series(fmpz_poly_t Q, const fmpz_poly_t A,
const fmpz_poly_t B, unsigned long

Performs power series division in Z[[z]]. The function considers the polynomials A and B to
be power series of length n starting with the constant terms. The function assumes that B
is normalised, i.e. that the constant coefficient is 1. The result is truncated to length n
regardless of the inputs.

7.16 Pseudo division

void fmpz_poly_pseudo_divrem(fmpz_poly_t Q, fmpz_poly_t R,
unsigned long * d, const fmpz_poly_t A, const fmpz_poly_t

Performs division with remainder of two polynomials in Z[z], notionally returning the results
in Q[z] (actually in Z[z] with a single common denominator).

Computes polynomials Q and R such that lead(B) “d*A = B*Q + R where R has degree less
than that of B.

This function may be used to do division of polynomials in Q[x] as follows. Suppose polyno-
mials C and D are given in Qlx].

1) Write C = d1#A and D = d2*B for some polynomials A and B in Z[z] and integers d1 and
d2.

2) Use pseudo-division to compute Q and R in Z[z] so that 1°d*A = BxQ + R where 1 is the
leading coefficient of B.

3) We can now write C = (d1/d2#D*Q + d1*R)/1°d.

void fmpz_poly_pseudo_div(fmpz_poly_t Q, unsigned long * d,
const fmpz_poly_t A, const fmpz_poly_t

Performs division without remainder of two polynomials in Z[z], notionally returning the
results in Q[z] (actually in Z[x] with a single common denominator).

Notionally computes polynomials Q and R such that lead(B) “d*A = B*Q + R where R has
degree less than that of B, but returns only Q. This is slightly more efficient than computing
the quotient and remainder.

18



7.17 Powering

void fmpz_poly_power (fmpz_poly_t output, const fmpz_poly_t poly,
unsigned long exp)

Raises poly to the power exp and writes the result in output.

void fmpz_poly_power_trunc_n(fmpz_poly_t output,
const fmpz_poly_t poly, unsigned long exp, unsigned long n)

Notionally raises poly to the power exp, truncates the result to length n and writes the result
in output. This is computed much more efficiently than simply powering the polynomial and
truncating.

This function can be used to raise power series to a power in an efficient way.

8 The fmpz module

The fmpz module is designed for manipulation of the FLINT flat multiprecision integer format fmpz_t.
An fmpz_t is not a struct but merely a pointer to an array of limbs laid out in a certain way.

The first limb is a sign/size limb. If it is 0 the integer represented by the fmpz_t is 0. The absolute
value of the sign/size limb is the number of subsequent limbs that the absolute value of the integer being
represented, takes up. The absolute value of the integer is then stored as limbs, least significant limb
first, in the subsequent limbs after the sign/size limb. If the sign/size limb is positive, a positive integer
is intended and if the sign/size limb is negative the negative integer with the stored absolute value is
intended.

The fmpz_t type is not intended as a standalone integer type. It is intended to be used in composite
types such as polynomials and matrices which consist of many integer entries. All memory management
is then done by the composite type, not by the fmpz module itself. Thus, none of the functions in the
fmpz module do automatic memory management. It is up to the user to ensure that output fmpz_t’s
have sufficient space allocated for them.

8.1 A simple example

We start with a simple example of the use of the fmpz module.

This example sets = to 3 and adds 5 to it.

#include "fmpz.h"

fmpz_t x = fmpz_init(1); // Allocate 1 limb of space
fmpz_set_ui(x, 3);

fmpz_add_ui_inplace(x, 5);

printf ("3,+,54is,"); fmpz_print(x); printf("\n");
fmpz_clear (x);

We now discuss the functions available in the fmpz module.

19



8.2 Memory management

fmpz_t fmpz_init(unsigned long limbs)

Allocates space for an fmpz_t with the given number of limbs (plus an additional limb for
the sign/size) on the heap and return a pointer to the space.

fmpz_t fmpz_realloc(fmpz_t f, unsigned long limbs)

Reallocate the space used by the fmpz_t £ so that it has space for the given number of limbs
(plus a sign/size limb). The parameter limbs must be non-negative. The existing contents
of £ are not altered if they still fit in the new size.

void fmpz_clear(const fmpz_t f)

Free space used by the fmpz_t f.

fmpz_t fmpz_stack_init(unsigned long limbs)

Allocates space for an fmpz_t with the given number of limbs (plus an additional limb for
the sign/size) on the stack and return a pointer to the space.

void fmpz_stack_clear (const fmpz_t f)

Return space used by the fmpz_t £ to the stack.

8.3 String operations

void fmpz_print(const fmpz_t f)
Print the multiprecision integer f.

8.4 fmpz properties

unsigned long fmpz_size(const fmpz_t f)

Return the number of limbs used to store the absolute value of the multiprecision integer £.

unsigned long fmpz_bits(const fmpz_t f)

Return the number of bits required to store the absolute value of the multiprecision integer
f.

long fmpz_sgn(const fmpz_t f)

Return the sign/size limb of the multiprecision integer f£. The sign of the sign/size limb is
the sign of the multiprecision integer. The absolute value of the sign/size limb is the size in
limbs of the absolute value of the multiprecision integer f.

20



8.5 Assignment

void fmpz_set_ui(fmpz_t res, unsigned long x)

Set the multiprecision integer res to the unsigned long x.

void fmpz_set_si(fmpz_t res, long x)

Set the multiprecision integer res to the long x.
void fmpz_set(fmpz_t res, const fmpz_t f)

Set the multiprecision integer res to equal the multiprecision integer f.

8.6 Comparison

int fmpz_equal (const fmpz_t fl1, const fmpz_t £2)

Return 1 if £1 is equal to £2, otherwise return 0.

int fmpz_is_one(const fmpz_t f)

Return 1 if f is one, otherwise return 0.

int fmpz_is_zero(const fmpz_t f)
Return 1 if f is zero, otherwise return 0.

8.7 Conversion

void mpz_to_fmpz(fmpz_t res, const mpz_t x)

Convert the mpz_t x to the fmpz_t res.

void fmpz_to_mpz(mpz_t res, const fmpz_t f)

Convert the fmpz_t f to the mpz_t res.

21



8.8 Addition/subtraction

void fmpz_add (fmpz_t res, const fmpz_t fl1, const fmpz_t £2)

Set res to the sum of £1 and £2.

void fmpz_add_ui_inplace(fmpz_t res, unsigned long x)
Set res to the sum of res and the unsigned long x.

void fmpz_add_ui(fmpz_t res, const fmpz_t f, unsigned long x)
Set res to the sum of £ and the unsigned long x.

void fmpz_sub(fmpz_t res, const fmpz_t f1, const fmpz_t £f2)
Set res to £1 minus £2.

void fmpz_sub_ui_inplace(fmpz_t res, unsigned long x)
Set res to res minus the unsigned long x.

void fmpz_sub_ui(fmpz_t res, const fmpz_t f, unsigned long x)
Set res to £ minus the unsigned long x.

8.9 Multiplication

void fmpz_mul (fmpz_t res, const fmpz_t fl, const fmpz_t £2)

Set res to £1 times £2.

void fmpz_mul_ui(fmpz_t res, const fmpz_t fl1, unsigned long x)

Set res to £1 times the unsigned long x.

void fmpz_addmul (fmpz_t res, const fmpz_t fl1, const fmpz_t £2)

Set res tores + f1 * f2.

22



8.10 Division

void fmpz_tdiv(fmpz_t res, const fmpz_t f1, const fmpz_t £f2)

Set res to the quotient of £1 by £2. Round the quotient towards zero and discard the
remainder.

void fmpz_fdiv(fmpz_t res, const fmpz_t f1, const fmpz_t £2)

Set res to the quotient of £1 by £2. Round the quotient towards minus infinity and discard
the remainder.

void fmpz_tdiv_ui(fmpz_t res, const fmpz_t fl1, unsigned long x)

Set res to the quotient of £1 by the unsigned long x. Round the quotient towards zero and
discard the remainder.

8.11 Powering

void fmpz_pow_ui(fmpz_t res, const fmpz_t f, unsigned long exp)

Set res to f raised to the power exp. This requires exp to be non-negative.

8.12 Number theoretical

void fmpz_binomial_next (fmpz_t next, const fmpz_t prev, long n, long k)

Assuming prev is set to the binomial coefficient bin(n, k-1) this function returns the bino-
mial coefficient bin(n, k). For efficiency reasons, this function requires that next has space
for one more limb than the size of prev.

8.13 Miscellaneous

void fmpz_normalise(const fmpz_t f)

Normalise the multiprecision integer f.

Since all the functions in fmpz assume that all inputs are normalised and all outputs are
normalised, this function is usually used internally by FLINT or can be used when modifying
the internals of an fmpz_t.

9 The quadratic sieve

Currently the quadratic sieve is a standalone program which can be built by typing:

make QS

in the main FLINT directory.

The program is called mpQS. Upon running it, one enters the number to be factored at the prompt.

The quadratic sieve requires that the number entered not be a prime, not be a perfect power and it must
not have very small factors. Trial division and the elliptic curve method should be run before making a
call to the quadratic sieve, to remove small factors. The sieve may fail silently if the conditions are not
met.

23



10 Large integer multiplication

In the module mpn_extras and mpz_extras are functions F_mpn_mul and F_mpz_mul respectively which
are drop in replacements for GMP’s mpn_mul and mpz_mul respectively.

These replacement functions are substantially faster than GMP 4.2.1 when multiplying integers which
are thousands of limbs in size. For smaller multiplications these functions call their respective GMP

counterparts.

24



