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1 Introduction

FLINT is a C library of functions for doing number theory. It is highly optimised and can be compiled
on numerous platforms. FLINT also has the aim of providing support for multicore and multiprocessor
computer architectures, though we do not yet provide this facility.
FLINT is currently maintained by William Hart of Warwick University in the UK.
As of version 1.1.0 FLINT supports 32 and 64 bit processors including x86, PPC, Alpha and Itanium
processors, though in theory it compiles on any machine with GCC version 3.4 or later and with GMP
version 4.2.1 or MPIR 0.9.0 or later.
FLINT is supplied as a set of modules, fmpz, fmpz_poly, etc., each of which can be linked to a C program
making use of their functionality.
All of the functions in FLINT have a corresponding test function provided in an appropriately named
test file, e.g: all the functions in the file fmpz_poly.c have test functions in the file fmpz_poly-test.c.
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2 Building and using FLINT

The easiest way to use FLINT is to build a shared library. Simply download the FLINT tarball and
untar it on your system.
FLINT requires GMP version 4.2.1 or later or MPIR version 0.9.0 or later (in GMP compatibility mode).
Set the environment variables FLINT_GMP_LIB_DIR and FLINT_GMP_INCLUDE_DIR to point to your GMP
or MPIR library and include directories respectively. Alternatively you can set default values for these
environment variables in the flint_env file.
The NTL-interface module of FLINT requires NTL version 5.4.1 or later. However NTL is not required
to build FLINT if this interface module is not required. To build with NTL set the environment variables
FLINT_NTL_LIB_DIR and FLINT_NTL_INCLUDE_DIR to point to your NTL library and include directories
respectively.
Once the environment variables are set or defaults are set in flint_env simply type:
source flint_env

in the main directory of the FLINT directory tree.
Finally type:
make library

Move the library file libflint.so, libflint.dll or libflint.dylib (depending on your platform)
into your library path and move all the .h files in the main directory of FLINT into your include path.
Now to use FLINT, simply include the appropriate header files for the FLINT modules you wish to use
in your C program. Then compile your program, linking against the FLINT library and GMP/MPIR
with the options -lflint -lgmp.
If you are using the NTL-interface, you will also need to link against NTL with the -lntl linker option.

3 Test code

Each module of FLINT has an extensive associated test module. We strongly recommend running the
test programs before relying on results from FLINT on your system.
To make and run the test programs, simply type:
make check

in the main FLINT directory.
To test the NTL-interface module simply:
make NTL-interface-test

./NTL-interface-test

4 Reporting bugs

The maintainer wishes to be made aware of any and all bugs. Please send an email with your bug report
to hart wb@yahoo.com.
If possible please include details of your system, version of gcc, version of GMP/MPIR and precise details
of how to replicate the bug.
Note that FLINT needs to be linked against version 4.2.1 or later of GMP or version 0.9.0 or later of
MPIR (in GMP compatibility mode) and must be compiled with gcc version 3.4 or later. In particular
the compiler must be fully C99 compatible.
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5 Example programs

FLINT comes with a number of example programs to demonstrate current and future FLINT features.
To make the example programs, type:

make examples

The current example programs are:

delta_qexp Compute the first n terms of the delta function, e.g. delta_qexp 1000000 will compute
the first one million terms of the q-expansion of delta.

BPTJCubes Implements the algorithm of Beck, Pine, Tarrant and Jensen for finding solutions to the
equation x3+y3+z3 = k. This program outputs a file output.log containing parameters for reconstructing
the first solution it finds, and then aborts.

bernoulli_zmod Compute many bernoulli numbers modulo a prime. If no command line input is supplied
it merely checks that the bernoulli zmod function works for the first 2000 primes. If you specify an integer
argument n on the command line, it computes the Bernoulli numbers B0, B2, ..., Bp−1 modulo p, where
p is the next prime from n.

expmod Computes a very large modular exponentiation. This is actually a basic pseudo primality test.

Zmul Compares the output of the FLINT FFT with that of GMP for ever larger operands.

thetaproduct Computes the congruent number theta function. To run this you need to have openmp
on your machine, you need a recent version of gcc (e.g. 4.3.x or 4.4.x) and you need to export
OMP NUM THREADS=16 or some factor of 16, depending on how many cores your machine has.
The code also expects a directory /storage with PLENTY of space where temporary files will be created.
Be warned that this code multiplies HUGE integers which do not fit into memory and much disk space
is used. You also need a significant amount of memory on your machine, which must also be a 64 bit
linux platform. Parameters can be changed at the top of the file thetaproduct.c. Primitive (squarefree)
zeroes of the congruent number theta function curve will be computed up to MOD∗LIMIT in the class K
(mod MOD). At present FILES1 and FILES2 must be equal. LIMIT must also be divisible by BLOCK
and by BUNDLE∗FILES1. The code is not currently designed to correctly handle small problems.

6 FLINT macros

In the file flint.h are various useful macros.

The macro constant FLINT_BITS is set at compile time to be the number of bits per limb on the machine.
FLINT requires it to be either 32 or 64 bits. Other architectures are not currently supported.

The macro constant FLINT_D_BITS is set at compile time to be the number of bits per double on the
machine or the number of bits per limb, whichever is smaller. This will have the value 53 or 32 on currently
supported architectures. Numerous functions using precomputed inverses only support operands up to
FLINT_D_BITS bits, hence the macro.

FLINT_ABS(x) returns the absolute value of a long x.

FLINT_MIN(x, y) returns the minimum of two long or two unsigned long values x and y.

FLINT_MAX(x, y) returns the maximum of two long or two unsigned long values x and y.

FLINT_BIT_COUNT(x) returns the number of binary bits required to represent an unsigned long x.

5



7 The fmpz poly module

The fmpz_poly_t data type represents elements of Z[x]. The fmpz_poly module provides routines for
memory management, basic arithmetic, and conversions to/from other types.

Each coefficient of an fmpz_poly_t is an integer of the FLINT fmpz_t type.

Unless otherwise specified, all functions in this section permit aliasing between their input arguments
and between their input and output arguments.

7.1 Simple example

The following example computes the square of the polynomial 5x3 − 1.

#include "fmpz_poly.h"
....

fmpz_poly_t x, y;
fmpz_poly_init(x);
fmpz_poly_init(y);
fmpz_poly_set_coeff_ui(x, 3, 5);
fmpz_poly_set_coeff_si(x, 0, -1);
fmpz_poly_mul(y, x, x);
fmpz_poly_print(x); printf("\n");
fmpz_poly_print(y); printf("\n");
fmpz_poly_clear(x);
fmpz_poly_clear(y);

The output is:

4 -1 0 0 5
7 1 0 0 -10 0 0 25

7.2 Definition of the fmpz poly t polynomial type

The fmpz_poly_t type is a typedef for an array of length 1 of fmpz_poly_struct’s. This permits passing
parameters of type fmpz_poly_t ‘by reference’ in a manner similar to the way GMP integers of type
mpz_t can be passed by reference.

In reality one never deals directly with the struct and simply deals with objects of type fmpz_poly_t.
For simplicity we will think of an fmpz_poly_t as a struct, though in practice to access fields of this
struct, one needs to dereference first, e.g. to access the length field of an fmpz_poly_t called poly1 one
writes poly1->length.

An fmpz_poly_t is said to be normalised if either length == 0, or if the leading coefficient of the poly-
nomial is nonzero. All fmpz_poly functions expect their inputs to be normalised, and unless otherwise
specified they produce output that is normalised.

It is recommended that users do not access the fields of an fmpz_poly_t or its coefficient data directly,
but make use of the functions designed for this purpose (detailed below).

Functions in fmpz_poly do all the memory management for the user. One does not need to specify the
maximum length or number of limbs per coefficient in advance before using a polynomial object. FLINT
reallocates space automatically as the computation proceeds, if more space is required.

We now describe the functions available in fmpz_poly.
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7.3 Initialisation and memory management

void fmpz_poly_init(fmpz_poly_t poly)

Initialise an fmpz_poly_t for use. The length of poly is set to zero. A corresponding call to
fmpz_poly_clear must be made after finishing with the fmpz_poly_t to free the memory
used by the polynomial.

For efficiency reasons, a call to fmpz_poly_init does not actually allocate any memory for
coefficients. Each of the functions will automatically allocate any space needed for coeffi-
cients and in fact the easiest way to use fmpz_poly is to let FLINT do all the allocation
automatically.

To this end, a user need only ever make calls to the fmpz_poly_init and fmpz_poly_clear
memory management functions if they so wish. Naturally, more efficient code may result if
the other memory management functions are also used.

void fmpz_poly_realloc(fmpz_poly_t poly , unsigned long alloc)

Shrink or expand the polynomial so that it has space for precisely alloc coefficients. If alloc
is less than the current length, the polynomial is truncated (and then normalised), otherwise
the coefficients and current length remain unaffected.

If the parameter alloc is zero, any space currently allocated for coefficients in poly is free’d.
A subsequent call to fmpz_poly_clear is still permitted and does nothing.

void fmpz_poly_fit_length(fmpz_poly_t poly , unsigned long alloc)

Expand the polynomial (if necessary) so that it has space for at least alloc coefficients.
This function will never shrink the memory allocated for coefficients and the contents of the
existing coefficients and the current length remain unaffected.

void fmpz_poly_fit_limbs(fmpz_poly_t poly , unsigned long limbs)

Currently all the coefficients of an fmpz_poly_t have the same number of limbs of space
allocated for them (plus an additional limb for the sign/size limb). This function can be
used to increase the space allocated for the coefficients. As all functions in the fmpz_poly
module automatically manage memory allocation for the user, this function should only be
used when directly manipulating the coefficients by means of the functions in the fmpz module
(described below). In a later version of FLINT, this function will become defunct, as FLINT
will automatically reallocate fmpz_t’s when there is insufficient space, and this will include
polynomial coefficients.

void fmpz_poly_clear(fmpz_poly_t poly)

Free all memory used by the coefficients of poly. The polynomial object poly cannot be used
again until a subsequent call to an initialisation function is made.
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7.4 Setting/retrieving coefficients

void fmpz_poly_get_coeff_mpz(mpz_t x, const fmpz_poly_t poly ,
unsigned long n)

Retrieve coefficient n as an mpz_t.

Coefficients are numbered from zero, starting with the constant coefficient.

Sets x to zero when n >= poly->length.

void fmpz_poly_get_coeff_mpz_read_only(mpz_t x,
const fmpz_poly_t poly , unsigned long n)

Retrieve coefficient n as a read only mpz_t. The function must be passed an uninitialised
mpz_t. The mpz_t can then be used as an input to a GMP function, but not as an output.
Its contents may be inspected, but not alterered. This function will in general be much faster
than the function fmpz_poly_get_coeff_mpz which makes an extra copy of the data.

Coefficients are numbered from zero, starting with the constant coefficient.

Sets x to zero when n >= poly->length.

void fmpz_poly_set_coeff_mpz(fmpz_poly_t poly , unsigned long n,
mpz_t x)

Set coefficient n to the value of the given mpz_t.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

void fmpz_poly_get_coeff_fmpz(fmpz_t x, const fmpz_poly_t poly ,
unsigned long n)

Retrieve coefficient n as an fmpz_t.

Coefficients are numbered from zero, starting with the constant coefficient.

Sets x to zero when n >= poly->length.

void fmpz_poly_set_coeff_fmpz(fmpz_poly_t poly , unsigned long n,
fmpz_t x)

Set coefficient n to the value of the given fmpz_t.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

unsigned long fmpz_poly_get_coeff_ui(const fmpz_poly_t poly ,
unsigned long n)
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Return the absolute value of coefficient n as an unsigned long.

Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient
is longer than a single limb, the first limb is returned.

Returns zero when n >= poly->length.

void fmpz_poly_set_coeff_ui(fmpz_poly_t poly , unsigned long n,
unsigned long x)

Set coefficient n to the value of the given unsigned long.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

long fmpz_poly_get_coeff_si(const fmpz_poly_t poly ,
unsigned long n)

Return the value of coefficient n as a long.

Coefficients are numbered from zero, starting with the constant coefficient. If the coefficient
will not fit into a long, i.e. if its absolute value takes up more than FLINT_BITS - 1 bits
then the result is undefined.

Returns zero when n >= poly->length.

void fmpz_poly_set_coeff_si(fmpz_poly_t poly , unsigned long n,
long x)

Set coefficient n to the value of the given long.

Coefficients are numbered from zero, starting with the constant coefficient. If n represents
a coefficient beyond the current length of poly, zero coefficients are added in between the
existing coefficients and the new coefficient, if required.

fmpz_t fmpz_poly_get_coeff_ptr(fmpz_poly_t poly , unsigned long n)

Return a reference to coefficient n (as an fmpz_t). This function is provided so that individual
coefficients can be accessed and operated on by functions in the fmpz module. This function
does not make a copy of the data, but returns a reference to the actual coefficient.

Coefficients are numbered from zero, starting with the constant coefficient.

Returns NULL when n >= poly->length.

fmpz_t fmpz_poly_lead(const fmpz_poly_t poly)

Return a reference to the leading coefficient (as an fmpz_t) of poly. This function is provided
so that the leading coefficient can be easily accessed and operated on by functions in the fmpz
module. This function does not make a copy of the data, but returns a reference to the actual
coefficient.

Returns NULL when the polynomial has length zero.

9



7.5 String conversions and I/O

The functions in this section are not intended to be particularly fast. They are intended mainly as a
debugging aid.
For the string output functions there are two variants. The first uses a simple string representation of
polynomials which prints only the length of the polynomial and the integer coefficients, whilst the latter
variant (appended with _pretty) uses a more traditional string representation of polynomials which
prints a variable name as part of the representation.
The first string representation is given by a sequence of integers, in decimal notation, separated by
white space. The first integer gives the length of the polynomial; the remaining length integers are the
coefficients. For example 5x3−x+1 is represented by the string “4 1 -1 0 5”, and the zero polynomial
is represented by “0”. The coefficients may be signed and arbitrary precision.
The string representation of the functions appended by _pretty includes only the non-zero terms of the
polynomial, starting with the one of highest degree. Each term starts with a coefficient, prepended with
a sign (positive or negative), followed by the character *, followed by a variable name, which must be
passed as a string parameter to the function, followed by a carot ^ followed by a non-negative exponent.
If the sign of the leading coefficient is positive, it is omitted. Also the exponents of the degree 1 and 0
terms are omitted, as is the variable and the * character in the case of the degree 0 coefficient. If the
coefficient is plus or minus one, the coefficient is omitted, except for the sign.
Some examples of the _pretty representation are:

5*x^3+7*x-4
x^2+3
-x^4+2*x-1
x+1
5

int fmpz_poly_from_string(fmpz_poly_t poly , const char * s)

Import a polynomial from a string. If the string represents a valid polynomial the function
returns 1, otherwise it returns 0.

char * fmpz_poly_to_string(const fmpz_poly_t poly)
char * fmpz_poly_to_string_pretty(const fmpz_poly_t poly ,

const char * x)

Convert a polynomial to a string and return a pointer to the string. Space is allocated for
the string by this function and must be freed when it is no longer used, by a call to free.

The pretty version must be supplied with a string x which represents the variable name to
be used when printing the polynomial.

void fmpz_poly_fprint(const fmpz_poly_t poly , FILE * f)
void fmpz_poly_fprint_pretty(const fmpz_poly_t poly , FILE * f,

const char * x)

Convert a polynomial to a string and write it to the given stream.

The pretty version must be supplied with a string x which represents the variable name to
be used when printing the polynomial.
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void fmpz_poly_print(const fmpz_poly_t poly)
void fmpz_poly_print_pretty(const fmpz_poly_t poly , const char * x)

Convert a polynomial to a string and write it to stdout.

The pretty version must be supplied with a string x which represents the variable name to
be used when printing the polynomial.

void fmpz_poly_fread(fmpz_poly_t poly , FILE* f)

Read a polynomial from the given stream. Return 1 if the data from the stream represented
a valid polynomial, otherwise return 0.

void fmpz_poly_read(fmpz_poly_t poly)

Read a polynomial from stdin. Return 1 if the data read from stdin represented a valid
polynomial, otherwise return 0.

7.6 Polynomial parameters (length, degree, max limbs, etc.)

long fmpz_poly_degree(const fmpz_poly_t poly)

Return poly->length - 1. The zero polynomial is defined to have degree −1.

unsigned long fmpz_poly_length(const fmpz_poly_t poly)

Return poly->length. The zero polynomial is defined to have length 0.

unsigned long fmpz_poly_max_limbs(const fmpz_poly_t poly)

Returns the maximum number of limbs required to store the absolute value of coefficients of
poly.

long fmpz_poly_max_bits(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of
poly. If all the coefficients of poly are non-negative, b is returned, otherwise −b is returned.

long fmpz_poly_max_bits1(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coefficients of
poly. If all the coefficients of poly are non-negative, b is returned, otherwise −b is returned.

The assumption is made that the absolute value of each coefficient fits into an unsigned
long. This function will be more efficient than the more general fmpz_poly_max_bits in this
situation.
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7.7 Assignment and basic manipulation

void fmpz_poly_set(fmpz_poly_t output , const fmpz_poly_t poly)

Set polynomial output equal to the polynomial poly.

void fmpz_poly_swap(fmpz_poly_t poly1 , fmpz_poly_t poly2)

Efficiently swap two polynomials. The coefficients are not moved in memory, pointers are
simply switched.

void fmpz_poly_zero(fmpz_poly_t poly)

Set the polynomial to the zero polynomial.

void fmpz_poly_zero_coeffs(fmpz_poly_t poly , unsigned long n)

Set the first n coefficients of poly to zero. If n is greater than or equal to the length of poly
then poly is set to the zero polynomial.

void fmpz_poly_neg(fmpz_poly_t output , fmpz_poly_t poly)

Negate the polynomial poly, i.e. set output to -poly.

void fmpz_poly_truncate(fmpz_poly_t poly , const unsigned long trunc)

If trunc is less than the current length of the polynomial, truncate the polynomial to that
length. Note that as the function normalises its output, the eventual length of the polynomial
may be less than trunc. If trunc is not less than the current length of the polynomial, this
function does nothing.

void fmpz_poly_reverse(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long length)

This function considers the polynomial poly to be of length n, notionally truncating and
zero padding if required, and reverses the result. Since this function normalises its result the
eventual length of output may be less than length. Note that the supplied length may be
smaller or larger than the current length of poly if required.

void _fmpz_poly_normalise(fmpz_poly_t poly)

This function normalises poly so that the leading coefficient is non-zero (or the polynomial
is the zero polynomial). As all functions in fmpz_poly expect and return normalised polyno-
mials, this function is only used when manipulating the coefficients directly by making use
of the functions in the fmpz module (described below).
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7.8 Conversions

void fmpz_poly_to_zmod_poly(zmod_poly_t zpol , fmpz_poly_t fpol)
void fmpz_poly_to_zmod_poly_no_red(zmod_poly_t zpol , fmpz_poly_t fpol)

Reduce the coefficients of the fmpz_poly_t fpol mod the modulus of the zmod_poly_t zpol
and store the result in zpol.

If the modulus of zpol is p, the no_red version of this function assumes that the coefficients
of fmpz_poly_t fpol are in the range [−p, p) and the computation is done more efficiently.

These functions are provided to enable the implementation of multimodular algorithms.

void zmod_poly_to_fmpz_poly_unsigned(fmpz_poly_t fpol ,
zmod_poly_t zpol)

Convert the zmod_poly_t zpol to an fmpz_poly_t. The coefficients of the fmpz_poly_t will
all be unsigned.

void zmod_poly_to_fmpz_poly(fmpz_poly_t fpol , zmod_poly_t zpol)

Convert the zmod_poly_t zpol to an fmpz_poly_t. If p is the modulus of zpol then coeffi-
cients which lie in [0, p/2] are unchanged, however, coefficients a in the range (p/2, p) become
a− p.
This function is provided to enable the implementation of multimodular algorithms.

7.9 Chinese remaindering

int fmpz_poly_CRT_unsigned(fmpz_poly_t res , fmpz_poly_t fpol ,
zmod_poly_t zpol , fmpz_t newmod , fmpz_t oldmod)

Performs modular recombination using the Chinese Remainder Theorem. If zpol has modulus
p, newmod is set equal to oldmod*p and each coefficient of res is set to the unique value modulo
newmod, in the range [0,newmod) which is a modulo oldmod and b modulo p, where a is the
coefficient of fpol and b is the corresponding coefficient of zpol.

The coefficients of fpol are assumed to be unsigned.

int fmpz_poly_CRT(fmpz_poly_t res , fmpz_poly_t fpol ,
zmod_poly_t zpol , fmpz_t newmod , fmpz_t oldmod)

Performs modular recombination using the Chinese Remainder Theorem. If zpol has modulus
p, newmod is set equal to oldmod*p and each coefficient of res is set to the unique value modulo
newmod, in the range [−(newmod−1)/2,newmod/2] which is a modulo oldmod and b modulo
p, where a is the coefficient of fpol and b is the corresponding coefficient of zpol.
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7.10 Comparison

int fmpz_poly_equal(const fmpz_poly_t poly1 ,
const fmpz_poly_t poly2)

Return 1 if the two polynomials are equal, 0 otherwise.

7.11 Shifting

void fmpz_poly_left_shift(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long n)

Shift poly to the left by n coefficients (multiply by xn) and write the result to output. Zero
coefficients are inserted.

The parameter n must be non-negative, but can be zero.

void fmpz_poly_right_shift(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long n)

Shift poly to the right by n coefficients (divide by xn and discard the remainder) and write
the result to output.

The parameter n must be non-negative, but can be zero. Shifting right by greater than or
equal to the current length of the polynomial results in the zero polynomial.

7.12 Norms

void fmpz_poly_2norm(fmpz_t norm , fmpz_poly_t pol)

Sets norm to the euclidean norm of pol, i.e. the integer square root (discarding the remainder)
of the sum of the squares of the coefficients of pol.

7.13 Addition/subtraction

void fmpz_poly_add(fmpz_poly_t output , const fmpz_poly_t poly1 ,
const fmpz_poly_t poly2)

Set the output to the sum of the input polynomials.

Note that if poly1 and poly2 have the same length, cancellation may occur (if the leading
coefficients have the same absolute values but opposite signs) and so the result may have less
coefficients than either of the inputs.

void fmpz_poly_sub(fmpz_poly_t output , const fmpz_poly_t poly1 ,
const fmpz_poly_t poly2)

Set the output to poly1 - poly2.

Note that if poly1 and poly2 have the same length, cancellation may occur (if the leading
coefficients have the same values) and so the result may have less coefficients than either of
the inputs.
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7.14 Scalar multiplication and division

void fmpz_poly_scalar_mul_ui(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long x)

Multiply poly by the unsigned long x and write the result to output.

void fmpz_poly_scalar_mul_si(fmpz_poly_t output ,
const fmpz_poly_t poly , long x)

Multiply poly by the long x and write the result to output.

void fmpz_poly_scalar_mul_fmpz(fmpz_poly_t output ,
const fmpz_poly_t poly , const fmpz_t x)

Multiply poly by the fmpz_t x and write the result to output.

void fmpz_poly_scalar_mul_mpz(fmpz_poly_t output ,
const fmpz_poly_t poly , const mpz_t x)

Multiply poly by the mpz_t x and write the result to output.

void fmpz_poly_scalar_div_ui(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long x)

Divide poly by the unsigned long x, round quotients towards minus infinity, discard re-
mainders and write the result to output.

void fmpz_poly_scalar_div_si(fmpz_poly_t output ,
const fmpz_poly_t poly , long x)

Divide poly by the long x, round quotients towards minus infinity, discard remainders and
write the result to output.

void fmpz_poly_scalar_tdiv_ui(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long x)

Divide poly by the unsigned long x, round quotients towards zero, discard remainders and
write the result to output.

void fmpz_poly_scalar_tdiv_si(fmpz_poly_t output ,
const fmpz_poly_t poly , long x)
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Divide poly by the long x, round quotients towards zero, discard remainders and write the
result to output.

void fmpz_poly_scalar_div_exact_ui(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long x)

Divide poly by the unsigned long x. Division is assumed to be exact and the result is
undefined otherwise.

void fmpz_poly_scalar_div_exact_si(fmpz_poly_t output ,
const fmpz_poly_t poly , long x)

Divide poly by the long x. Division is assumed to be exact and the result is undefined
otherwise.

void fmpz_poly_scalar_div_fmpz(fmpz_poly_t output ,
const fmpz_poly_t poly , const fmpz_t x)

Divide poly by the fmpz_t x, round quotients towards minus infinity, discard remainders,
and write the result to output.

void fmpz_poly_scalar_div_mpz(fmpz_poly_t output ,
const fmpz_poly_t poly , const mpz_t x)

Divide poly by the mpz_t x, round quotients towards minus infinity, discard remainders, and
write the result to output.

7.15 Polynomial multiplication

void fmpz_poly_mul(fmpz_poly_t output , const fmpz_poly_t poly1 ,
const fmpz_poly_t poly2)

Multiply the two given polynomials and return the result in output.

The length of the output polynomial will be poly1->length + poly2->length - 1.

void fmpz_poly_mul_trunc_n(fmpz_poly_t output ,
const fmpz_poly_t poly1 , const fmpz_poly_t poly2 , unsigned long n)

Multiply the two given polynomials and truncate the result to n coefficients, storing the result
in output. This is sometimes known as a short product.

The length of the output polynomial will be at most the minimum of n and the value
poly1->length + poly2->length - 1. It is permissible to set n to any non-negative value,
however the function is optimised for n about half of poly1->length + poly2->length.

This function is more efficient than multiplying the two polynomials then truncating. It is
the operation used when multiplying power series.
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void fmpz_poly_mul_trunc_left_n(fmpz_poly_t output ,
const fmpz_poly_t poly1 , const fmpz_poly_t poly2 , unsigned long n)

Multiply the two given polynomials storing the result in output. This function guarantees
all the coefficients except the first n, which may be arbitrary. This is sometimes known as an
opposite short product.

The length of the output polynomial will be poly1->length + poly2->length - 1 unless
n is greater than or equal to this value, in which case it will return the zero polynomial. It is
permissible to set n to any non-negative value, however the function is optimised for n about
half of poly1->length + poly2->length.

For short polynomials, this function is more efficient than computing the full product.

7.16 Polynomial division

void fmpz_poly_divrem(fmpz_poly_t Q, fmpz_poly_t R,
const fmpz_poly_t A, const fmpz_poly_t B)

Performs division with remainder in Z[x]. Computes polynomials Q and R in Z[x] such that
the equation A = B*Q + R, holds. All but the final B->length - 1 coefficients of R will be
positive and less than the absolute value of the lead coefficient of B.

Note that in the special cases where the leading coefficient of B is ±1 or A = B*Q for some
polynomial Q, the result of this function is the same as if the computation had been done
over Q.

void fmpz_poly_div(fmpz_poly_t Q, const fmpz_poly_t A,
const fmpz_poly_t B)

Performs division without remainder in Z[x]. The computation returns the same result as
fmpz_poly_divrem, but no remainder is computed. This is in general faster than computing
quotient and remainder.

Note that in the special cases where the leading coefficient of B is ±1 or A = B*Q for some
polynomial Q, the result of this function is the same as if the computation had been done
over Q.

void fmpz_poly_invert_series(fmpz_poly_t Q_inv ,
const fmpz_poly_t Q, const unsigned long n)

Sets Q_inv to n terms of the inverse of Q. Calling this function is equivalent to calling the
function below, fmpz_poly_div_series, with A equal to 1. Assumes that the constant term
of Q is 1.

void fmpz_poly_div_series(fmpz_poly_t Q, const fmpz_poly_t A,
const fmpz_poly_t B, unsigned long n)
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Performs power series division in Z[[x]]. The function considers the polynomials A and B to
be power series of length n starting with the constant terms. The function assumes that
B is normalised, i.e. that the constant coefficient is 1. The result is truncated to length n
regardless of the inputs.

int fmpz_poly_divides(fmpz_poly_t Q, fmpz_poly_t A, fmpz_poly_t B)

If the polynomial A is divisible by the polynomial B this function returns 1 and sets Q to the
quotient, otherwise it returns 0.

This function can be used for efficient exact division.

7.17 Pseudo division

void fmpz_poly_pseudo_divrem(fmpz_poly_t Q, fmpz_poly_t R,
unsigned long * d, const fmpz_poly_t A, const fmpz_poly_t B)

Performs division with remainder of two polynomials in Z[x], notionally returning the results
in Q[x] (actually in Z[x] with a single common denominator).

Computes polynomials Q and R such that lead(B)^d*A = B*Q + R where R has degree less
than that of B.

This function may be used to do division of polynomials in Q[x] as follows. Suppose polyno-
mials C and D are given in Q[x].

1) Write C = d1*A and D = d2*B for some polynomials A and B in Z[x] and integers d1 and
d2.

2) Use pseudo-division to compute Q and R in Z[x] so that l^d*A = B*Q + R where l is the
leading coefficient of B.

3) We can now write C = (d1/d2*D*Q + d1*R)/l^d.

void fmpz_poly_pseudo_div(fmpz_poly_t Q, unsigned long * d,
const fmpz_poly_t A, const fmpz_poly_t B)

Performs division without remainder of two polynomials in Z[x], notionally returning the
results in Q[x] (actually in Z[x] with a single common denominator).

Notionally computes polynomials Q and R such that lead(B)^d*A = B*Q + R where R has
degree less than that of B, but returns only Q. This is slightly more efficient than computing
the quotient and remainder.

void fmpz_poly_pseudo_rem(fmpz_poly_t R, unsigned long * d,
const fmpz_poly_t A, const fmpz_poly_t B)

Performs division with remainder of two polynomials in Z[x], without returning the quotient,
notionally returning the results in Q[x] (actually in Z[x] with a single common denominator).

Notionally computes polynomials Q and R such that lead(B)^d*A = B*Q + R where R has
degree less than that of B, but returns only R. This is more efficient than computing the
quotient and remainder.

Note that at present this function is not asymptotically fast. Use fmpz_poly_pseudo_divrem
if large operands will be supplied (e.g. of length greater than 32).
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void fmpz_poly_pseudo_divrem_cohen(fmpz_poly_t Q, fmpz_poly_t R,
const fmpz_poly_t A, const fmpz_poly_t B)

This is a variant of fmpz_poly_pseudo_divrem which computes polynomials Q and R such
that lead(B)^d*A = B*Q + R. However the value d is fixed at A->length - B->length + 1.

This function is faster when the remainder is not well behaved, i.e. where it is not expected
to be zero or close to it. Note that this function is not asymptotically fast. It is efficient only
for short polynomials (e.g. B->length < 32).

void fmpz_poly_pseudo_rem_cohen(fmpz_poly_t R, const fmpz_poly_t A,
const fmpz_poly_t B)

This is a variant of fmpz_poly_pseudo_rem which also notionally computes polynomials Q
and R such that lead(B)^d*A = B*Q + R, but returns only R. However the value d is fixed
at A->length - B->length + 1.

This function is faster when the remainder is not well behaved, i.e. where it is not expected
to be zero or close to it. Note that this function is not asymptotically fast. It is efficient only
for short polynomials (e.g. B->length < 32).

7.18 Powering

void fmpz_poly_power(fmpz_poly_t output , const fmpz_poly_t poly ,
unsigned long exp)

Raises poly to the power exp and writes the result in output.

void fmpz_poly_power_trunc_n(fmpz_poly_t output ,
const fmpz_poly_t poly , unsigned long exp , unsigned long n)

Notionally raises poly to the power exp, truncates the result to length n and writes the result
in output. This is computed much more efficiently than simply powering the polynomial and
truncating.

If exp is zero then the result will be the constant polynomial equal to 1, unless poly is zero,
in which case the output will be zero.

This function can be used to raise power series to a power in an efficient way.

7.19 Gaussian content

void fmpz_poly_content(fmpz_t c, fmpz_poly_t poly)

Set the fmpz_t c to the Gaussian content of the polynomial poly, i.e. to the greatest common
divisor of its coefficients.

void fmpz_poly_primitive_part(fmpz_poly_t prim , fmpz_poly_t poly)

Set prim to the primitive part of the polynomial poly, i.e. to poly divided by its Gaussian
content.
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7.20 Greatest common divisor and resultant

void fmpz_poly_gcd(fmpz_poly_t res , const fmpz_poly_t poly1 ,
const fmpz_poly_t poly2)

Sets res to the greatest common divisor of the polynomials poly1 and poly2.

unsigned long fmpz_poly_resultant_bound(fmpz_poly_t a,
fmpz_poly_t b)

void fmpz_poly_resultant(fmpz_t r, fmpz_poly_t a, fmpz_poly_t b)

Compute the resultant of the polynomials a and b. If a and b are monic with a(x) =
∏

i(x−αi)
and b(x) =

∏
j(x− βj), when factored over the complex numbers, then the resultant is given

by the expression r(x) =
∏

i,j(αi − βj). If the polynomials are not monic, and a and b
have leading coefficients l1 and l2 and degrees d1 and d2 respectively, then this quantity is
multiplied by ld2−1

1 ld1−1
2 .

Note that the resultant is zero iff the polynomials share a root over the algebraic closure of
Q.

Currently it is necessary to ensure r has sufficient space to store the result. The function
fmpz_poly_resultant_bound is used to determine a bit bound on the number of bits b
required and r must have space for b/FLINT_BITS + 2 limbs.

In a future version of FLINT, this computation will not be necessary.

void fmpz_poly_xgcd(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t,
fmpz_poly_t a, fmpz_poly_t b)

Given coprime polynomials a and b this function computes polynomials s and t and the
resultant r of the polynomials such that r = a*s + b*t.

See the function fmpz_poly_resultant for information on how large r needs to be to hold
the result.

7.21 Modular arithmetic

void fmpz_poly_invmod(fmpz_t d, fmpz_poly_t H, fmpz_poly_t poly1 ,
fmpz_poly_t poly2)

Computes a polynomial H and a denominator d such that poly1*H is d modulo poly2.

Assumes that poly1 and poly2 are coprime and that poly2 is monic.

This function is useful for computing inverses in number field arithmetic.

7.22 Derivative

void fmpz_poly_derivative(fmpz_poly_t der , fmpz_poly_t poly)

Sets der to the derivative of poly.
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7.23 Evaluation

void fmpz_poly_evaluate(fmpz_t output ,
const fmpz_poly_t poly , const fmpz_t val)

Evaluates poly at the value val and sets output to the result.

unsigned long fmpz_poly_evaluate_mod(const fmpz_poly_t poly ,
unsigned long p, unsigned long val , pre_inv_t pinv)

Evaluates poly at the value val modulo p and returns the result. The last argument pinv
must be set to the precomputed inverse of p, which can be obtained using the function
z_precompute_inverse.

7.24 Polynomial composition

void fmpz_poly_compose(fmpz_poly_t output ,
const fmpz_poly_t f, const fmpz_poly_t g)

Sets output to the polynomial composition of f with g, i.e. computes f(g(x)).

void fmpz_poly_translate_mod_horner(zmod_poly_t output ,
const fmpz_poly_t f, const zmod_poly_t g)

Sets output to the polynomial composition of f with g where g is of the form x+ c for some
c ∈ Zp with p the modulus of g, i.e. computes f(x+ c) mod p.

7.25 Polynomial signature

void fmpz_poly_signature(ulong * r1 , ulong * r2 , fmpz_poly_t poly)

Determines the signature r1, r2 (where r1 + 2*r2 = degree(poly) and r1 is the number of real
roots of poly). The input polynomial must be squarefree, otherwise the result is undefined
and an exception may be raised. The zero polynomial is allowed, for convenience, and the
number of real and complex roots are both set to 0 in that case.

7.26 Squarefree

void fmpz_poly_is_squarefree(ulong * r1 , ulong * r2 , fmpz_poly_t poly)

Returns 1 if poly is squarefree, otherwise returns 0.
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7.27 Subpolynomials

A number of functions are provided for attaching an fmpz_poly_t object to an existing polynomial or
to a range of coefficients of an existing polynomial providing an alias for the original polynomial or part
thereof.

Each of the functions in this section normalise the subpolynomials so that they can be used as inputs to
fmpz_poly functions.

As FLINT has no way of reallocating space in subpolynomials, they should not be used for outputs of
fmpz_poly functions, but only for inputs. In a later version of FLINT, this restriction will be lifted.

Note that FLINT may perform suboptimally if a polynomial and an alias of the polynomial are passed
as inputs to the same function, as FLINT has no way to tell that it is dealing with aliases of the same
polynomial.

void _fmpz_poly_attach(fmpz_poly_t output , const fmpz_poly_t poly)

Attach the fmpz_poly_t object output to the polynomial poly. Any changes made to the
length field of output do not affect poly.

void _fmpz_poly_attach_shift(fmpz_poly_t output ,
const fmpz_poly_t input , unsigned long n)

Attach the fmpz_poly_t object output to poly but shifted to the left by n coefficients.
This is equivalent to notionally shifting the original polynomial right (dividing by xn) then
attaching to the result without affecting the original polynomial.

void _fmpz_poly_attach_truncate(fmpz_poly_t output ,
const fmpz_poly_t input , unsigned long n)

Attach the fmpz_poly_t object output to the first n coefficients of the polynomial poly. This
is equivalent to notionally truncating the original polynomial to n coefficients then attaching
to the result without affecting the original polynomial.

8 The fmpz module

The fmpz module is designed for manipulation of the FLINT flat multiprecision integer format fmpz_t.

Internally, the data for an fmpz_t has first limb a sign/size limb. If it is 0 the integer represented by
the fmpz_t is 0. The absolute value of the sign/size limb is the number of subsequent limbs that the
absolute value of the integer being represented, takes up. The absolute value of the integer is then stored
as limbs, least significant limb first, in the subsequent limbs after the sign/size limb. If the sign/size limb
is positive, a positive integer is intended and if the sign/size limb is negative the negative integer with
the stored absolute value is intended.

The fmpz_t type is not intended as a standalone integer type. It is intended to be used in composite
types such as polynomials and matrices which consist of many integer entries.

Currently the user is responsible for memory management of fmpz_t’s, i.e. one must ensure that the
output of a function in the fmpz module contains sufficient space to store the result. This will be changed
in a later version of FLINT, where automatic memory management will be done for the user.
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To ensure that the correct number of limbs are available in each fmpz_t of an fmpz_poly_t one must cur-
rently call void fmpz_poly_fit_limbs(fmpz_poly_t pol, unsigned long limbs), which will then
ensure that each coefficient of pol has space for at least the given number of limbs (referring to the
absolute value of the coefficients). Again, in a later version of FLINT, this step will be unnecessary as
automatic memory management will be done for all fmpz_t’s, including coefficients of fmpz_poly_t’s.

Note that fmpz_t’s are not currently guaranteed to allow aliasing between inputs or between inputs and
outputs. However some optimised inplace functions are provided.

8.1 A simple example

We start with a simple example of the use of the fmpz module.

This example sets x to 3 and adds 5 to it.

#include "fmpz.h"
....

fmpz_t x = fmpz_init (1); // Allocate 1 limb of space

fmpz_set_ui(x, 3);
fmpz_add_ui_inplace(x, 5);
printf("3 + 5 is "); fmpz_print(x); printf("\n");
fmpz_clear(x);

We now discuss the functions available in the fmpz module.

8.2 Memory management

fmpz_t fmpz_init(unsigned long limbs)

Allocates space for an fmpz_t with the given number of limbs (plus an additional limb for
the sign/size) on the heap and return a pointer to the space.

fmpz_t fmpz_realloc(fmpz_t f, unsigned long limbs)

Reallocate the space used by the fmpz_t f so that it has space for the given number of limbs
(plus a sign/size limb). The parameter limbs must be non-negative. The existing contents
of f are not altered if they still fit in the new size.

void fmpz_clear(const fmpz_t f)

Free space used by the fmpz_t f.

8.3 String operations

void fmpz_print(const fmpz_t f)

Print the multiprecision integer f. A minus sign is prepended if the integer is negative.
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8.4 fmpz properties

unsigned long fmpz_size(const fmpz_t f)

Return the number of limbs used to store the absolute value of the multiprecision integer f.

unsigned long fmpz_bits(const fmpz_t f)

Return the number of bits required to store the absolute value of the multiprecision integer
f.

int fmpz_sgn(const fmpz_t f)

Return 1 if the sign of f is positive, −1 if it is negative and 0 if f is zero.

8.5 Assignment

void fmpz_set_ui(fmpz_t res , unsigned long x)

Set the multiprecision integer res to the unsigned long x.

void fmpz_set_si(fmpz_t res , long x)

Set the multiprecision integer res to the long x.

double fmpz_get_d(fmpz_t x)

Returns a double floating point approximation to the multiprecision integer x. Note that
the exponent of a double is limited to strictly less that 1024, thus the absolute value of the
integer x must be less than 21024.

void fmpz_set(fmpz_t res , const fmpz_t f)

Set the multiprecision integer res to equal the multiprecision integer f.

void fmpz_abs(fmpz_t res , const fmpz_t f)

Set the multiprecision integer res to the absolute value of the multiprecision integer f.

void fmpz_neg(fmpz_t res , const fmpz_t f)

Set the multiprecision integer res to minus the multiprecision integer f.
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8.6 Comparison

int fmpz_equal(const fmpz_t f1 , const fmpz_t f2)

Return 1 if f1 is equal to f2, otherwise return 0.

int fmpz_is_one(const fmpz_t f)

Return 1 if f is one, otherwise return 0.

int fmpz_is_m1(const fmpz_t f)

Return 1 if f is minus one, otherwise return 0.

int fmpz_is_zero(const fmpz_t f)

Return 1 if f is zero, otherwise return 0.

int fmpz_cmpabs(const fmpz_t f1 , const fmpz_t f2)

Compares the absolute values of f1 and f2. If the absolute value of f1 is less than that of f2
then a negative value is returned. If the absolute value of f1 is greater than that of f2 then
a positive value is returned. If the absolute values are equal, then zero is returned.

8.7 Conversions

void mpz_to_fmpz(fmpz_t res , const mpz_t x)

Convert the mpz_t x to the fmpz_t res.

void fmpz_to_mpz(mpz_t res , const fmpz_t f)

Convert the fmpz_t f to the mpz_t res.

8.8 Addition/subtraction

void fmpz_add(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to the sum of f1 and f2.

void fmpz_add_ui_inplace(fmpz_t res , unsigned long x)

Set res to the sum of res and the unsigned long x.
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void fmpz_add_ui(fmpz_t res , const fmpz_t f, unsigned long x)

Set res to the sum of f and the unsigned long x.

void fmpz_sub(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to f1 minus f2.

void fmpz_sub_ui_inplace(fmpz_t res , unsigned long x)

Set res to res minus the unsigned long x.

void fmpz_sub_ui(fmpz_t res , const fmpz_t f, unsigned long x)

Set res to f minus the unsigned long x.

8.9 Multiplication

void fmpz_mul(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to f1 times f2.

void fmpz_mul_trunc(fmpz_t res , fmpz_t a,
fmpz_t b, unsigned long trunc)

Set res to f1 times f2 truncated to trunc limbs. This is in general faster than doing a full
multiplication then truncating.

void fmpz_mul_ui(fmpz_t res , const fmpz_t f1 , unsigned long x)

Set res to f1 times the unsigned long x.

void fmpz_mul_2exp(fmpz_t output , fmpz_t x, unsigned long exp)

Set output to x multiplied by 2exp.

void fmpz_addmul(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to res + f1 * f2.
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8.10 Division

void fmpz_tdiv(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to the quotient of f1 by f2. Round the quotient towards zero and discard the
remainder.

void fmpz_fdiv(fmpz_t res , const fmpz_t f1 , const fmpz_t f2)

Set res to the quotient of f1 by f2. Round the quotient towards minus infinity and discard
the remainder.

void fmpz_tdiv_ui(fmpz_t res , const fmpz_t f1 , unsigned long x)

Set res to the quotient of f1 by the unsigned long x. Round the quotient towards zero and
discard the remainder.

void fmpz_div_2exp(fmpz_t output , fmpz_t x, unsigned long exp)

Divide x by 2exp, returning the quotient and discarding the remainder. Rounding occurs
towards zero.

int fmpz_divides(fmpz_t q, const fmpz_t a, const fmpz_t b)

If b divides a then set q to the quotient and return 1, else return 0.

8.11 Modular arithmetic

unsigned long fmpz_mod_ui(const fmpz_t input ,
const unsigned long x)

Returns f1 modulo the unsigned long x. Note that input may be signed.

void fmpz_mod(fmpz_t res , const fmpz_t input , const fmpz_t x)

Sets res to input modulo x. Note that input may be signed but x must be unsigned.

void fmpz_mulmod(fmpz_t res , fmpz_t a, fmpz_t b, fmpz_t m)

Sets res to a multiplied by b modulo m. Note m must be unsigned and both a and b are
assumed to be reduced modulo m.

void fmpz_invert(fmpz_t res , fmpz_t x, fmpz_t m)

Sets res to the inverse of x modulo m. Note m must be unsigned, x and m must be coprime
and x reduced modulo m.

void fmpz_divmod(fmpz_t res , fmpz_t a, fmpz_t b, fmpz_t m)

Sets res to a divided by b modulo m. Note m must be unsigned, b and m must be coprime
and both a and b are assumed to be reduced modulo m.
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8.12 Powering

void fmpz_pow_ui(fmpz_t res , const fmpz_t f, unsigned long exp)

Set res to f raised to the power exp. This requires exp to be non-negative.

8.13 Root extraction

void fmpz_sqrtrem(fmpz_t sqrt , fmpz_t rem , fmpz_t x)

Computes the square root of x and returns the integer part of the square root, sqrt, and the
remainder, rem = x - sqrt^2.

Note that x must be non-negative, else an exception is raised.

8.14 Number theoretical

void fmpz_gcd(fmpz_t output , fmpz_t x1 , fmpz_t x2)

Compute the greatest common divisor of x1 and x2. The result is always non-negative and
will be zero if both of the inputs are zero.

8.15 Chinese remaindering

void fmpz_CRT_ui_precomp(fmpz_t x, fmpz_t r1 , fmpz_t m1 ,
unsigned long r2, unsigned long m2, unsigned long c,

pre_inv_t pre)
void fmpz_CRT_ui2_precomp(fmpz_t x, fmpz_t r1 , fmpz_t m1 ,

unsigned long r2, unsigned long m2, unsigned long c,
pre_inv2_t pre)

Computes the unique value x modulo m1*m2 that is r1 modulo m1 and r2 modulo m2. Requires
m1 and m2 to be coprime, c to be set to the value m1 modulo m2 and pre to be a precomputed
inverse of m2 (computed using z_precompute_inverse(m2)).

The first version of the function requires that m2 be no more than FLINT_D_BITS bits, whereas
the second version requires m2 to be no more than FLINT_BITS - 1 bits.

Multiple modular reductions or Chinese remainders can be done at once with the following functions.
An fmpz_comb_t type holds information which is used to speed up the modular reductions and modular
recombinations. The first two functions are for initialising and clearing such a structure.

void fmpz_comb_init(fmpz_comb_t comb , ulong * primes , ulong num_primes)

Initialise a comb structure for multimodular reduction and recombination. The array primes
is assumed to contain num_primes primes each of FLINT_BITS - 1 bits. Modular reductions
and recombinations will be done modulo this list of primes. The primes array must not be
free’d until the comb structure is no longer required and must be cleared by the user.

void fmpz_comb_clear(fmpz_comb_t comb)
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Clear the given comb structure, releasing any memory it uses.

fmpz_t ** fmpz_comb_temp_init(fmpz_comb_t comb)

Creates temporary space to be used by multimodular and CRT functions based on an ini-
tialised comb structure.

void fmpz_comb_temp_clear(fmpz_t ** temp , fmpz_comb_t comb);

Clears temporary space temp used by multimodular and CRT functions using the given comb.

void fmpz_multi_mod_ui(unsigned long * out , fmpz_t in , fmpz_comb_t comb , fmpz_t ** temp)

Reduces the multiprecision integer in modulo each of the primes stored in the comb struc-
ture. The array out will be filled with the residues modulo these primes. The array temp
is temporary space which must be provided by fmpz\_comb\_temp\_init and cleared by
fmpz\_comb\_temp\_clear.

void fmpz_multi_CRT_ui_unsigned(fmpz_t output , unsigned long * residues ,
fmpz_comb_t comb , fmpz_t ** comb_temp)

This function takes a set of residues modulo the list of primes contained in the comb struc-
ture and reconstructs the unique unsigned multiprecision integer modulo the product of
the primes which has these residues modulo the corresponding primes. The array temp
is temporary space which must be provided by fmpz\_comb\_temp\_init and cleared by
fmpz\_comb\_temp\_clear.

void fmpz_multi_CRT_ui(fmpz_t output , unsigned long * residues , fmpz_comb_t comb , fmpz_t ** comb_temp)

This function takes a set of residues modulo the list of primes contained in the comb struc-
ture and reconstructs a signed multiprecision integer modulo the product of the primes
which has these residues modulo the corresponding primes. If N is the product of all the
primes then output is normalised to be in the range [−(N − 1)/2, N/2]. The array temp
is temporary space which must be provided by fmpz\_comb\_temp\_init and cleared by
fmpz\_comb\_temp\_clear.

8.16 Montgomery format

In this section a number of functions are described which deal with numbers in Montgomery format. In
cases where multiple multiplicative functions need to be applied, Montgomery format provides a speed
increase over manipulating the integers in ordinary multiprecision format.

void fmpz_montgomery_init(fmpz_montgomery_t mont , fmpz_t m)

Convert the multiprecision integer to Montgomery format for use with the fmpz_montgomery_redc
function.
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void fmpz_montgomery_clear(fmpz_montgomery_t mont)

Clear the Montgomery structure, releasing any memory used.

void fmpz_montgomery_redc(fmpz_t res , fmpz_t x,
fmpz_montgomery_t mont)

Compute the product of x and the integer stored in Montgomery format in mont and store
the result in Montgomery format in res.

void fmpz_montgomery_mulmod_init(fmpz_montgomery_t mont ,
fmpz_t b, fmpz_t m)

Compute the Montgomery format of a precomputed multiplication by b modulo m.

void fmpz_montgomery_mulmod(fmpz_t res , fmpz_t a,
fmpz_montgomery_t mont)

Compute the product of a by b modulo m where the precomputed data b and m are stored in
the Montgomery structure mont by the previous function. Set res to the result, which is in
ordinary integer format, not Montgomery format.

void fmpz_montgomery_divmod_init(fmpz_montgomery_t mont ,
fmpz_t b, fmpz_t m)

Compute the Montgomery format of a precomputed division by b modulo m, assuming b is
coprime with and reduced modulo m.

void fmpz_montgomery_mulmod(fmpz_t res , fmpz_t a,
fmpz_montgomery_t mont)

Compute a divided by b modulo m where the precomputed data b and m are stored in the
Montgomery structure mont by the previous function. Set res to the result, which is in
ordinary integer format, not Montgomery format.

void fmpz_montgomery_mod_init(fmpz_montgomery_t mont , fmpz_t m)

Compute the Montgomery format for a precomputed reduction modulo m.

void fmpz_montgomery_mod(fmpz_t res , fmpz_t a,
fmpz_montgomery_t mont)

Compute a modulo m where the precomputed data m is stored in the Montgomery structure
mont by the previous function. Set res to the result, which is in ordinary integer format, not
Montgomery format.
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9 The F mpz module

The F_mpz module introduces a new FLINT integer format, the F_mpz_t. By default an F_mpz_t is
implemented as an array of F_mpz’s of length one to allow passing by reference as one can do with
GMP/MPIR’s mpz_t type. The F_mpz type is simply a single limb, though the user does not need to be
aware of this except in one specific case outlined below.
In all respects, F_mpz_t’s act precisely like GMP/MPIR mpz_t’s, with automatic memory management,
however in the first place only one limb is used to implement them. Once an F_mpz_t overflows a limb
then a multiprecision integer is automatically allocated and instead of storing the actual integer data the
long which implements the type becomes an index into a FLINT wide array of mpz_t’s.
These internal implementation details are not important for the user to understand, except for three
important things.
Firstly, F_mpz_t’s will be more efficient than mpz_t’s for single limb operations (strictly speaking for
signed quantities whose absolute value does not exceed FLINT BITS - 2 bits).
Secondly, for small integers that fit into FLINT BITS - 2 bits much less memory will be used than for an
mpz_t. When very many F_mpz_t’s are used, there can be important cache benefits on account of this.
Thirdly, it is important to understand how to deal with arrays of F_mpz_t’s. As for mpz_t’s there is an
underlying type (an F_mpz) which can be used to create the array, e.g.:
F_mpz myarr[100];

Now recall that an F_mpz_t is an array of length one of F_mpz’s. Thus a pointer to an F_mpz can be used
in place of an F_mpz_t. For example to find the sign of the third integer in our array we would write:
int sign = F_mpz_sgn(myarr + 2);

The F_mpz module provides routines for memory management, basic manipulation and basic arithmetic.
Unless otherwise specified, all functions in this section permit aliasing between their input arguments
and between their input and output arguments.

9.1 Simple example

The following example computes the square of the integer 7 and prints the result.

#include "F_mpz.h"
....

F_mpz_t x, y;
F_mpz_init(x);
F_mpz_init(y);
F_mpz_set_ui(x, 7);
F_mpz_mul(y, x, x);
F_mpz_print(x);
printf("^2 = ");
F_mpz_print(y);
printf("\n");
F_mpz_clear(x);
F_mpz_clear(y);

The output is:

7^2 = 49

We now describe the functions available in the F_mpz module.
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9.2 Memory Management

void F_mpz_init(F_mpz_t f)

Initialise an F_mpz_t for use. It starts as a small F_mpz_t (i.e. one not representing an
mpz_t).

void F_mpz_init2(F_mpz_t f, ulong limbs)

Allocate an F_mpz_t with the given number of limbs. If limbs is zero then a small F_mpz_t
results (i.e. not representing an mpz_t).

void F_mpz_clear(F_mpz_t f)

Clear the given F_mpz_t.

9.3 Random generation

At the present moment the following random generation functions are provided for convenience only.
They are not intended to be efficient and their prototypes may change in a later version of FLINT.

void F_mpz_random(F_mpz_t f, const ulong bits)

Generate a random F_mpz_t with the given number of bits.

void F_mpz_randomm(F_mpz_t f, const mpz_t n)

Generate a random F_mpz_t in [0, n) where n is an mpz_t.

9.4 Assignment and basic manipulation

void F_mpz_zero(F_mpz_t f)

Set the given F_mpz_t to zero.

void F_mpz_neg(F_mpz_t f, F_mpz_t g)

Set f to minus g.

void F_mpz_set_si(F_mpz_t f, const long val)

Set f to a signed long value val.

void F_mpz_set_ui(F_mpz_t f, const ulong val)
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Set f to an unsigned long value val.

long F_mpz_get_si(const F_mpz_t f)

Return the value of f as a long.

long F_mpz_get_ui(const F_mpz_t f)

Return the value of f as an unsigned long.

void F_mpz_get_mpz(mpz_t x, const F_mpz_t f)

Returns f as an mpz_t.

double F_mpz_get_d_2exp(long * exp , const F_mpz_t f)

Return f as a signed normalised double and a long exponent.

void F_mpz_set_mpz(F_mpz_t f, const mpz_t x)

Sets f to the given mpz_t.

void F_mpz_set_limbs(F_mpz_t f, const mp_limb_t * x, const ulong limbs)

Sets f to the array of limbs x which is the given number of limbs in length and where the
least significant limb is stored first in x.

ulong F_mpz_set_limbs(const mp_limb_t * x, F_mpz_t f)

Sets the array of limbs x to the absolute value of f. The array is assumed to be stored with
least significant limb first. The number of limbs written is returned.

void F_mpz_set(F_mpz_t f, F_mpz_t g)

Sets f to the value of g.

void F_mpz_swap(F_mpz_t f, F_mpz_t g)

Efficiently swaps the two F_mpz_t’s f and g.
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9.5 Comparison

int F_mpz_equal(const F_mpz_t f, const F_mpz_t g)

Returns 1 if the values f and g are equal, otherwise returns 0.

int F_mpz_cmpabs(const F_mpz_t f, const F_mpz_t g)

Returns a negative value if abs(f) < abs(g), positive if abs(f) > abs(g) and returns 0 if
the two values are equal.

int F_mpz_cmp(const F_mpz_t f, const F_mpz_t g)

Returns a negative value if f < g, positive if f > g and returns 0 if the two values are equal.

9.6 Properties of integers

ulong F_mpz_size(F_mpz_t f)

Returns the number of limbs required to store the absolute value of f. Returns 0 if f is zero.

int F_mpz_sgn(const F_mpz_t f)

Returns 1 if f is positive, -1 if it is negative and 0 if f is zero.

int F_mpz_is_zero(const F_mpz_t f)

Returns 1 if f is zero, 0 otherwise.

ulong F_mpz_bits(F_mpz_t f)

Returns the number of bits required to store the absolute value of f. Returns 0 if f is zero.

__mpz_struct * F_mpz_ptr_mpz(F_mpz f)

Returns a pointer to the mpz_t associated with the coefficient f. Assumes f is actually
associated with an mpz_t and not a long. To determine if g is actually an mpz_t one can use
the macro COEFF_IS_MPZ(*g).

Users generally do not need to use this function and it is mainly used internally by FLINT.
However it can be useful when one wishes to read an F_mpz_t as an mpz_t without making
a copy of the data.

If g is an F_mpz_t one must first dereference it before passing it to this function.

To get the value of g as a long when it is not associated with an mpz_t simply dereference g,
i.e. the value is given by *g.
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9.7 Input/output

void F_mpz_print(F_mpz_t x)

Print the given F_mpz_t to stdout.

void F_mpz_read(F_mpz_t x)

Read an F_mpz_t from stdin. The integer can be a signed multiprecision integer in decimal
format.

9.8 Addition/subtraction

void F_mpz_add_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Add the unsigned long x to g and set f to the result.

void F_mpz_sub_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Subtract the unsigned long x from g and set f to the result.

void F_mpz_add_mpz(F_mpz_t f, const F_mpz_t g, mpz_t h)

Set f to g plus h, where h is an mpz_t.

void F_mpz_add(F_mpz_t f, const F_mpz_t g, F_mpz_t h)

Set f to g plus h.

void F_mpz_sub(F_mpz_t f, const F_mpz_t g, F_mpz_t h)

Set f to g minus h.

9.9 Multiplication

void F_mpz_mul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply g by the unsigned long x and set f to the result.

void F_mpz_mul_si(F_mpz_t f, const F_mpz_t g, const long x)

Multiply g by the signed long x and set f to the result.
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void F_mpz_mul2(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply g by h and set f to the result. The function is called mul2 rather than mul due to a
conflict in naming with the mpn_extras module in FLINT. This conflict will be removed in
a later version of FLINT.

void F_mpz_mul_2exp(F_mpz_t f, const F_mpz_t g, const ulong exp)

Multiply g by 2^exp and set f to the result.

void F_mpz_addmul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply g by the unsigned long x and add the result to f, in place.

void F_mpz_submul_ui(F_mpz_t f, const F_mpz_t g, const ulong x)

Multiply g by the unsigned long x and subtract the result from f, in place.

void F_mpz_addmul(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply g by h and add the result to f, in place.

void F_mpz_submul(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Multiply g by h and subtract the result from f, in place.

9.10 Division and remainder

void F_mpz_div_2exp(F_mpz_t f, const F_mpz_t g, const ulong exp)

Divide g by 2^exp and set f to the result. Rounding is towards zero.

void F_mpz_mod(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set f to g modulo h.

void F_mpz_divexact(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set f to g divided by h, assuming the division is exact.

void F_mpz_fdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set f to g divided by h, rounded down towards minus infinity.

void F_mpz_cdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set f to g divided by h, rounded up towards infinity.

void F_mpz_rdiv_q(F_mpz_t f, const F_mpz_t g, const F_mpz_t h)

Set f to g divided by h, rounded to nearest, ties rounded towards positive infinity.
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9.11 Powering

void F_mpz_pow_ui(F_mpz_t f, const F_mpz_t g, const ulong exp)

Set f to g to the power exp. If 0 is raised to the power 0, the result will be 1.

10 The zmod poly module

The zmod_poly_t data type represents elements of Z/nZ[x] for some word sized integer n. Most of the
functions work for an arbitrary n, however the division functions require the leading coefficient of the
divisor polynomial to be invertible modulo n and the factoring, gcd and resultant functions require n to
be prime.

The zmod_poly module provides routines for memory management, basic manipulation and basic arith-
metic.

Each coefficient of a zmod_poly_t is stored as an unsigned long and is assumed to be reduced modulo
the modulus n. Unless otherwise specified all functions return polynomials whose coefficients are reduced
modulo n.

Unless otherwise specified, all functions in this section permit aliasing between their input arguments
and between their input and output arguments.

10.1 Simple example

The following example computes the square of the polynomial 5x3 + 1, where the coefficients are under-
stood to be in Z/7Z.

#include "zmod_poly.h"
....

zmod_poly_t x, y;
zmod_poly_init(x, 7);
zmod_poly_init(y);
zmod_poly_set_coeff_ui(x, 3, 5);
zmod_poly_set_coeff_ui(x, 0, 1);
zmod_poly_mul(y, x, x);
zmod_poly_print(x); printf("\n");
zmod_poly_print(y); printf("\n");
zmod_poly_clear(x);
zmod_poly_clear(y);

The output is:

4 1 0 0 5
7 1 0 0 3 0 0 4

10.2 Definition of the zmod poly t polynomial type

The zmod_poly_t type is a typedef for an array of length 1 of zmod_poly_struct’s. This permits passing
parameters of type zmod_poly_t ‘by reference’.
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All zmod_poly functions expect their inputs to be normalised, and unless otherwise specified they produce
output that is normalised.

It is recommended that users do not access the fields of a zmod_poly_t or its coefficient data directly,
but make use of the functions designed for this purpose (detailed below). The type has fields for the
length of the polynomial, the number of coefficients allocated (the length is always less than or equal to
this), a modulus n and possibly a precomputed inverse of n. Data is also stored for manipulation of the
polynomials by zn_poly which is included in FLINT for efficient computation with polynomials in this
module.

Functions in zmod_poly do all the memory management for the user. One does not need to specify the
maximum length in advance before using a zmod_poly_t polynomial object, but it may be more efficient
to do so. FLINT reallocates space automatically as the computation proceeds, if more space is required.

We now describe the functions available in zmod_poly.

10.3 Memory management

void zmod_poly_init(zmod_poly_t poly , unsigned long p)

Initialise poly as a polynomial over Z/pZ.

void zmod_poly_init2(zmod_poly_t poly , unsigned long p,
unsigned long alloc)

Initialise poly as a polynomial over Z/pZ, allocating space for at least the given number of
coefficients.

void zmod_poly_clear(zmod_poly_t poly)

Release the memory used by poly, which cannot then be used until it is initialised again.

void zmod_poly_realloc(zmod_poly_t poly , unsigned long alloc)

Reallocate poly so that it has space for alloc coefficients. If alloc is greater than the current
length of the polynomial, the existing coefficients are retained, otherwise the polynomial is
truncated and normalised.

void zmod_poly_fit_length(zmod_poly_t poly , unsigned long alloc)

Reallocate poly so that it has space for at least alloc coefficients. This function will not
reduce the number of allocated coefficients, so no data will be lost.
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10.4 Setting/retrieving coefficients

unsigned long zmod_poly_get_coeff_ui(zmod_poly_t poly ,
unsigned long n)

Return the n-th coefficient as an unsigned long. Coefficients are numbered from zero,
starting with the constant coefficient. If n is greater than or equal to the current length of
the polynomial, zero is returned.

void zmod_poly_set_coeff_ui(zmod_poly_t poly , unsigned long n,
unsigned long c)

Set the n-th coefficient to the unsigned long c. It is assumed that c is already reduced
modulo the modulus of the polynomial. Coefficients are numbered from zero, starting with
the constant coefficient. If n is greater than the current length of the polynomial, zeroes are
inserted between the new coefficient and the existing coefficients if required.

10.5 String conversions and I/O

The functions in this section read/write a polynomial to/from a string representation. The representation
starts with the length of the polynomial, a space and then the modulus of the polynomial. If the length
is not zero, this is followed by two spaces and then a space separated list of the coefficients starting from
the constant coefficient. Each coefficient is represented as an integer between zero and one less than the
modulus.

The polynomial 3 ∗ x2 + 2 in Z/7Z[x] would be represented:

3 7 2 0 3

int zmod_poly_from_string(zmod_poly_t poly , char* s)

Load poly from the given string s.

char* zmod_poly_to_string(zmod_poly_t poly)

Return a pointer to a string representing poly. Space is allocated for the string and must be
free’d after use.

void zmod_poly_print(zmod_poly_t poly)

Print the string representation of poly to stdout.

void zmod_poly_fprint(zmod_poly_t poly , FILE* f)

Print the string representation of poly to the given file/stream f.
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int zmod_poly_read(zmod_poly_t poly)

Read a polynomial in string representation from stdin. The function returns 1 if the string
represented a valid polynomial, otherwise it returns 0.

int zmod_poly_fread(zmod_poly_t poly , FILE* f)

Read a polynomial in string representation from the given file/stream f. The function returns
1 if the string represented a valid polynomial, otherwise it returns 0.

10.6 Polynomial parameters (length, degree, modulus, etc.)

unsigned long zmod_poly_length(zmod_poly_t poly)

Return the current length of the polynomial. The zero polynomial has length 0.

long zmod_poly_degree(zmod_poly_t poly)

Return the degree of the polynomial. The zero polynomial is defined to have length −1.

unsigned long zmod_poly_modulus(zmod_poly_t poly)

Return the modulus of the polynomial, i.e. if n is returned, the polynomial is an element of
Z/nZ[x].

unsigned long zmod_poly_bits(zmod_poly_t poly)

Return the maximum number of bits used in the coefficients of poly, i.e. if n is returned,
then no coefficient of the polynomial uses more than n bits.

10.7 Assignment and basic manipulation

void zmod_poly_truncate(zmod_poly_t poly , unsigned long length)

Truncate poly to the given length and normalise.

void zmod_poly_set(zmod_poly_t res , zmod_poly_t poly)

Set res to equal poly.

void zmod_poly_zero(zmod_poly_t poly)

Set poly to be the zero polynomial.
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void zmod_poly_swap(zmod_poly_t poly1 , zmod_poly_t poly2)

Efficiently swap poly1 and poly2. Data is not actually copied in memory. Instead, pointers
are swapped.

void zmod_poly_neg(zmod_poly_t res , zmod_poly_t poly)

Negate the polynomial poly, i.e. set res to -poly.

void zmod_poly_reverse(zmod_poly_t output , zmod_poly_t input ,
unsigned long length)

Notionally zero padding or truncating if necessary, this function considers input to be a
polynomial of the given length and reverses it, storing the result in output.

void __zmod_poly_normalise(zmod_poly_t poly)

Normalises the given polynomial. The polynomial will then either be of length zero or its
leading coefficient will be non-zero. As all functions in the zmod_poly module expect and
return normalised polynomials, this function is only used when manipulating coefficients
directly rather than through the functions provided.

10.8 Subpolynomials

These functions allow one to attach a zmod_poly_t object to an existing polynomial or subpolynomial
thereof. The subpolynomial is normalised if necessary.

Since FLINT cannot reallocate the attached polynomial object, these functions should only be used to
construct polynomial objects to be used as inputs to other zmod_poly functions.

void _zmod_poly_attach(zmod_poly_t poly1 , zmod_poly_t poly2)

Attach poly1 to the polynomial object poly2.

void _zmod_poly_attach_shift(zmod_poly_t poly1 ,
zmod_poly_t poly2 , unsigned long n)

This function notionally shifts poly2 to the right by n coefficients and then attaches the
polynomial object poly1 to the result.

void _zmod_poly_attach_truncate(zmod_poly_t poly1 ,
zmod_poly_t poly2 , unsigned long n)

This function notionally truncates poly2 to length n and then attaches the polynomial object
poly1 to the result.
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10.9 Comparison

int zmod_poly_equal(zmod_poly_t poly1 , zmod_poly_t poly2)

Returns 1 if the two polynomials are equal, otherwise returns 0.

int zmod_poly_is_one(zmod_poly_t poly1)

Returns 1 if the polynomial is equal to the constant polynomial 1, otherwise returns 0.

int zmod_poly_is_zero(zmod_poly_t poly1)

Returns 1 if the polynomial is the zero polynomial, otherwise returns 0.

10.10 Scalar multiplication and division

void zmod_poly_scalar_mul(zmod_poly_t res , zmod_poly_t poly ,
unsigned long scalar)

Multiply the polynomial through by the given scalar. It is assumed that scalar is already
reduced modulo the modulus of the polynomial.

void zmod_poly_make_monic(zmod_poly_t output , zmod_poly_t pol)

Divide the polynomial through by the inverse of the leading coefficient of the polynomial. It
is assumed that the leading coefficient is invertible modulo the modulus of the polynomial.
This function results in a monic polynomial if this condition is met, otherwise the result is
undefined.

10.11 Addition/subtraction

void zmod_poly_add(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2)

Set res to the sum of poly1 and poly2. Note that if cancellation occurs, res may have a
lesser length than either of the two input polynomials.

void zmod_poly_sub(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2)

Set res to poly1 minus poly2. Note that if cancellation occurs, res may have a lesser length
than either of the two input polynomials.
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10.12 Shifting

void zmod_poly_left_shift(zmod_poly_t res , zmod_poly_t poly ,
unsigned long k)

Shift the polynomial poly left by k coefficients, i.e. multiply the polynomial by xk and store
the result in res. The value of k must be non-negative.

void zmod_poly_right_shift(zmod_poly_t res , zmod_poly_t poly ,
unsigned long k)

Shift the polynomial poly right by k coefficients, i.e. divide the polynomial by xk, ignoring
the remainder and store the result in res. The value of k must be non-negative. If k is
greater than or equal to the current length of poly, res is set to the zero polynomial.

10.13 Polynomial multiplication

void zmod_poly_mul(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2)

Set res to poly1 multiplied by poly2. The length of res will be poly1->length + poly2->length - 1.

void zmod_poly_sqr(zmod_poly_t res , zmod_poly_t poly)

Set res to poly squared. The length of res will be 2*poly->length - 1.

void zmod_poly_mul_precache_init(zmod_poly_precache_t pre ,
zmod_poly_t poly2 , unsigned long bits_input ,

unsigned long length1)

This function precaches an FFT of the polynomial input2 for (usually multiple) subsequent
multiplications by the polynomial input2, with up to the given number of bits per output
coefficient (0 if this is to be computed automatically). One must set length1 to the maximum
length of any polynomials poly1 that poly2 will be multiplied by.

void zmod_poly_mul_precache(zmod_poly_t output ,
zmod_poly_t poly1 , zmod_poly_precache_t pre)

Multiply the polynomial poly1 by the polynomial whose precached FFT has been stored in
pre by zmod_poly_mul_precache_init, i.e. sets output to the product of poly1 by poly2.

void zmod_poly_mul_precache_clear(zmod_poly_precache_t pre)

Free any memory used by the zmod_poly_mul_precache_t pre.
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void zmod_poly_mul_trunc_n(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2 , unsigned long n)

Set res to poly1 multiplied by poly2 and truncate to length n if this is less than the length of
the full product. This function is usually more efficient than simply doing the multiplication
and then truncating. The function is tuned for n about half the length of a full product. This
function is sometimes called a short product.

This function can be used for power series multiplication.

void zmod_poly_mul_trunc_left_n(zmod_poly_t res ,
zmod_poly_t poly1 , zmod_poly_t poly2 , unsigned long n)

Set res to poly1 multiplied by poly2 ignoring the least significant n terms of the result which
may be set to anything. This function is more efficient than doing the full multiplication if
the operands are relatively short. It is tuned for n about half the length of a full product.
This function is sometimes called an opposite short product.

void zmod_poly_mul_trunc_n_precache_init(zmod_poly_precache_t pre ,
zmod_poly_t poly2 , unsigned long bits , unsigned long trunc)

This function precaches an FFT of a polynomial poly2 to be used (usually multiple times)
for truncated multiplications by input2, with up to the given number of bits per output
coefficient (0 if this is to be computed automatically), where the output will be truncated to
the given length.

This function is also used for initialising a precached middle product.

void zmod_poly_mul_trunc_n_precache(zmod_poly_t output ,
zmod_poly_t poly1 , zmod_poly_precache_t pre , unsigned long trunc)

Performs a truncated multiplication by a polynomial whose FFT has been precached using
zmod_poly_mul_trunc_n_precache_init, i.e. output is set to poly1 multiplied by poly2
and truncated to length trunc (and normalised).

void zmod_poly_mul_middle(zmod_poly_t output ,
zmod_poly_t poly1 , zmod_poly_t poly22 ,

unsigned long trunc)

Performs a middle product of the polynomial poly1 by the polynomial poly2.

The middle product is the product of poly1 by poly2 truncated to length trunc and with
the first trunc/2 coefficients set to zero. Note that for this function to return a correct result
one must ensure that if the full product were wrapped around after the first trunc terms
then no more than trunc/2 terms would be affected by the wraparound.

The typical situation to apply this function is when multiplying a polynomial of length 2n
by one of length n. Ordinarily the product would have 3n− 1 terms, however if trunc is set
to 2n the first n terms will be set to zero and the product truncated at 2n terms. Note that
n− 1 terms would be wrapped around and n− 1 is less than the n terms that will be set to
zero.
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void zmod_poly_mul_middle_precache(zmod_poly_t output ,
zmod_poly_t poly1 , zmod_poly_precache_t pre ,

unsigned long trunc)

Performs a middle product of the polynomial poly1 by the precached polynomial poly2
stored in pre by the function zmod_poly_mul_trunc_n_precache_init.

The middle product is the product of poly1 by poly2 truncated to length trunc with the
first trunc/2 coefficients set to zero. Note that for this function to return a correct result one
must ensure that if the full product were wrapped around after the first trunc terms then no
more than trunc/2 terms would be affected by the wraparound.

The typical situation to apply this function is when multiplying a polynomial of length 2n
by one of length n. Ordinarily the product would have 3n− 1 terms, however if trunc is set
to 2n the first n terms will be set to zero and the product truncated at 2n terms.

10.14 Polynomial division

void zmod_poly_invert_series(zmod_poly_t Q_inv , zmod_poly_t Q,
unsigned long n)

Treat the polynomial Q as a series of length n (the constant coefficient of the series is taken to
be the constant coefficient of the polynomial, which must be invertible modulo the modulus
of Q) and invert it, yielding a series Q_inv also given to precision n.

void zmod_poly_div_series(zmod_poly_t Q, zmod_poly_t A,
zmod_poly_t B, unsigned long n)

Treat the polynomials A and B as series of length n and compute the quotient series Q = A/B.

void zmod_poly_divrem(zmod_poly_t Q, zmod_poly_t R,
zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by B and set Q to the quotient and R to the remainder. The leading
coefficient of B must be invertible modulo the modulus of B.

void zmod_poly_div(zmod_poly_t Q, zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by the polynomial B and set Q to the quotient. The leading coeffi-
cient of B must be invertible modulo the modulus of B. This function is slightly faster than
computing the quotient and remainder as per zmod_poly_divrem.

void zmod_poly_rem(zmod_poly_t R, zmod_poly_t A, zmod_poly_t B)

Divide the polynomial A by B and set R to the remainder. The leading coefficient of B must
be invertible modulo the modulus of B. This function is more efficient than computing the
quotient and remainder as per zmod_poly_divrem.
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10.15 Greatest common divisor and resultant

unsigned long zmod_poly_resultant(zmod_poly_t a, zmod_poly_t b)

Compute the resultant of the polynomials a and b.

If a and b are monic with a(x) =
∏

i(x − αi) and b(x) =
∏

j(x − βj), when factored over
an algebraic closure of the field of coefficients, then the resultant is given by the expression
r(x) =

∏
i,j(αi−βj). If the polynomials are not monic, and a and b have leading coefficients

l1 and l2 and degrees d1 and d2 respectively, then this quantity is multiplied by ld2−1
1 ld1−1

2 .

Note that the resultant is zero iff the polynomials share a root over an algebraic closure of
the coefficient ring.

void zmod_poly_gcd(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2)

Compute the greatest common divisor of the polynomials poly1 and poly2. The result that
is returned will be monic.

int zmod_poly_gcd_invert(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2)

Compute a polynomial res such that res*poly1 is 1 modulo poly2. The two polynomials
poly1 and poly2 are assumed to be coprime. If this is not the case, the function returns 0
and the result is undefined, otherwise it returns 1.

void zmod_poly_xgcd(zmod_poly_t res , zmod_poly_t s, zmod_poly_t t,
zmod_poly_t poly1 , zmod_poly_t poly)

Compute polynomials s and t such that s*poly1+t*poly2 is the resultant of the polynomials
poly1 and poly2. The polynomials poly1 and poly2 are assumed to be coprime. The
resultant that is returned will be monic.

10.16 Differentiation

void zmod_poly_derivative(zmod_poly_t res , zmod_poly_t poly)

Set res equal to the derivative of poly and reduce all the coefficients modulo the modulus of
poly.

10.17 Arithmetic modulo a polynomial

void zmod_poly_mulmod(zmod_poly_t res , zmod_poly_t poly1 ,
zmod_poly_t poly2 , zmod_poly_t f)

Set res equal to the product of poly1 and poly2 modulo f. Assumes that poly1 and poly2
are reduced modulo f.
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void zmod_poly_powmod(zmod_poly_t res , zmod_poly_t pol ,
long exp , zmod_poly_t f)

Sets res equal to pol raised to the power exp modulo f. Assumes pol is reduced modulo
f. There are no restrictions on exp, i.e. it can be zero, positive or negative. The leading
coefficient of f must be invertible modulo the modulus.

10.18 Composition and evaluation

ulong zmod_poly_evaluate(zmod_poly_t poly , ulong c)

Evaluate the polynomial poly at the value c and return the result. It is assumed that c is
already reduced modulo the modulus of poly.

void zmod_poly_compose_horner(zmod_poly_t res ,
zmod_poly_t poly1 , zmod_poly_t poly2)

Compute the composition poly1(poly2(x)) and set res to the result.

10.19 Polynomial Factorization

void zmod_poly_factor_init(zmod_poly_factor_t fac)

Initializes an array for storing factors resulting from a factorisation.

void zmod_poly_factor_clear(zmod_poly_factor_t fac)

Clear an array of factors, releasing any memory used by the struct.

void zmod_poly_factor_add(zmod_poly_factor_t fac ,
zmod_poly_t poly)

Adds an extra element, poly, to the array of factors, fac.

void zmod_poly_factor_concat(zmod_poly_factor_t res ,
zmod_poly_factor_t fac)

Concatenates the two arrays, res and fac, into a single array of factors, res.

void zmod_poly_factor_print(zmod_poly_factor_t fac)

Prints to stdout each factor in the array fac each with their corresponding exponent.
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void zmod_poly_factor_pow(zmod_poly_factor_t fac ,
unsigned long exp)

Raises each factor in the array fac to the power exp.

void zmod_poly_factor_square_free(zmod_poly_factor_t res ,
zmod_poly_t f)

Sets res to a square-free factorization of f.

void zmod_poly_factor_berlekamp(zmod_poly_factor_t factors ,
zmod_poly_t f)

Performs the Berlekamp factoring algorithm on f. Sets factors to the factors of f. Assumes
f is squarefree.

unsigned long zmod_poly_factor(zmod_poly_factor_t result ,
zmod_poly_t input)

Sets result to be a complete factorization of input. There are no restrictions on input.

int zmod_poly_isirreducible(zmod_poly_t f)

Returns 1 if the polynomial f is irreducible, otherwise it returns 0.

11 The long extras module

The long_extras module contains functions for doing arithmetic with integers which will fit into an
unsigned long, including functions for modular arithmetic.

Many of the functions take a precomputed inverse, which increases performance. Unless otherwise
specified, the functions which include 2 in the name support moduli up to FLINT_BITS - 1 bits, i.e. 31
or 63 bits, and the remainder work with moduli up to and including FLINT_D_BITS.

On 64 bit machines, FLINT_BITS is 64 and FLINT_D_BITS is 53 bits. On a 32 bit machine the functions
with 2 in the name are in fact macros aliasing the corresponding unadorned version. In this case
FLINT_BITS is 32.

The functions which begin z_ll_ generally take a parameter consisting of two unsigned long’s thought
of as an integer of twice the normal size, e.g. on a 64 bit machine these functions would support an input
of 128 bits.

Many of the functions in this module can be used to manipulate the individual coefficients of polynomials
of type zmod_poly_t.

pre_inv_t z_precompute_inverse(unsigned long n)

pre_inv2_t z_precompute_inverse2(unsigned long n)

pre_inv_ll_t z_ll_precompute_inverse2(unsigned long n)

48



Return a precomputed inverse of the integer n. The first version returns a pre_inv_t, which
is used with functions taking parameters up to FLINT_D_BITS. The second version returns
a pre_inv2_t for use with function with second versions of functions taking a precomputed
inverse, which support parameters up to FLINT_BITS - 1 bits. The third version returns
an inverse suitable for use with z_ll_ functions which support an operand consisting of two
unsigned long’s for twice the normal integer precision.

unsigned long z_addmod(unsigned long a, unsigned long b,
unsigned long p)

Return the sum of a and b modulo p. Both a and b are assumed to be reduced modulo p
when calling this function.

unsigned long z_submod(unsigned long a, unsigned long b,
unsigned long p)

Return a minus b modulo p. Both a and b are assumed to be reduced modulo p when calling
this function.

unsigned long z_negmod(unsigned long a, unsigned long p)

Return minus a modulo p. The value a is assumed to be reduced modulo p when calling this
function.

unsigned long z_div2_precomp(unsigned long a, unsigned long n,
pre_inv2_t ninv)

Return the floor of the quotient of a by n. There are no restrictions on the size of a.

unsigned long z_mod_precomp(unsigned long a, unsigned long n,
pre_inv_t ninv)

unsigned long z_mod2_precomp(unsigned long a, unsigned long n,
pre_inv2_t ninv)

unsigned long z_ll_mod_precomp(unsigned long a_hi ,
unsigned long a_lo , unsigned long n, pre_inv_ll_t ninv)

Return a modulo n. The first version assumes that a is less than n^2. The second and third
versions place no restrictions on a.

unsigned long z_mulmod_precomp(unsigned long a, unsigned long b,
unsigned long n, pre_inv_t ninv)

unsigned long z_mulmod2_precomp(unsigned long a, unsigned long b,
unsigned long n, pre_inv2_t ninv)
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Return a times b modulo n. The first version assumes that a and b have been reduced modulo
n before calling the function. The second version places no restrictions on a and b, i.e. their
product may be up to two full limbs.

unsigned long z_powmod(unsigned long a, long exp , unsigned long n)

unsigned long z_powmod2(unsigned long a, long exp , unsigned long n)

unsigned long z_powmod_precomp(unsigned long a, long exp ,
unsigned long n, pre_inv_t ninv)

unsigned long z_powmod2_precomp(unsigned long a, long exp ,
unsigned long n, pre_inv2_t ninv)

Raise a to the power exp modulo n. All versions assume a is reduced modulo n, but there are
no restrictions on exp, which may be negative (assuming a is invertible modulo n) or zero.

int z_legendre_precomp(unsigned long a, unsigned long p,
pre_inv_t pinv)

Computes the Legendre symbol of a modulo p for a prime p. Assumes that a is reduced
modulo p.

int z_jacobi(long x, unsigned long y)

Calculates the Jacobi symbol of x mod y. Assumes that gcd(x,y) = 1 and y is odd.

int z_ispseudoprime_fermat(unsigned long const n,
unsigned long const b)

Checks to see if n is a Fermat pseudoprime with base b. Assumes that n does not divide b.

int z_isprime(unsigned long n)

int z_isprime_precomp(unsigned long n, pre_inv_t ninv)

Returns 1 if n is proved prime, otherwise it returns 0 in which case n is composite. In the
precomp version of the function it is assumed that n is greater than 2 and odd. The function
takes a precomputed inverse of n.

int z_isprobab_prime(unsigned long n)

int z_isprobab_prime_precomp(unsigned long n, pre_inv_t ninv)
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This is a deterministic prime test up to 1016. Requires n to be at most FLINT_BITS-1 bits.
For numbers greater than 1016 there are no known counterexamples to the conjecture that a
composite will never be declared prime. Primes are always declared prime by this test.

unsigned long z_nextprime(unsigned long n, int proved)

Returns the next prime after n. Assumes the result will fit in an unsigned long. If proved is
0 the prime is not proven prime, otherwise it is.

int z_isprime_pocklington(unsigned long const n,
unsigned long const iterations)

Proves that n is prime using a Pocklington-Lehmer test. Returns 0 if composite, 1 if prime
and -1 if it failed to prove either way. The number of iterations can be increased for a more
thorough check but will take longer. Setting iterations to -1L will cause it to continue until
the number is proven prime or composite.

int z_ispseudoprime_lucas_ab(unsigned long n, int a, int b)

Tests to see if n is an a,b-Lucas pseudoprime. Returns 0 if n is composite or fails gcd(n,
2*a*b*(a*a - 4*b)) = 1. Returns 1 if n is a Lucas pseudoprime with respect to x2 − ax+ b.
Returns -1 if the discriminant of the quadratic is square. Assumes n has been checked for
primality using trial factoring up to 256. The absolute values of a and b should be < 128. For
details of this function see the book “Primes : a computational perspective” by Pomerance
and Crandall.

int z_ispseudoprime_lucas(unsigned long const n)

Tests if n is a Lucas pseudoprime as per the algorithm of Baillie and Wagstaff (see Math.
Comp. vol 35, no. 152, 1980, pp. 1391–1417). Assumes n has been checked for primality
using trial factoring up to 256.

unsigned long z_pow(unsigned long a, unsigned long exp)

Computes a to the power exp which must be non-negative. Assumes that the result will fit
in an unsigned long.

unsigned long z_sqrtmod(unsigned long a, unsigned long p)

Returns a square root of a modulo p. Assumes a is reduced modulo p. The function returns
0 if a is not a quadratic residue modulo a prime p.

unsigned long z_cuberootmod(unsigned long * cuberoot1 ,
unsigned long a, unsigned long p)
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Returns a cube root of a modulo a prime p. Assumes a is reduced modulo p. If a is not 0,
the function also sets cuberoot1 to a cube root of unity modulo p if the cube roots of a are
distinct, otherwise cuberoot1 is set to 1. If a is not a cubic residue modulo p the function
returns 0.

unsigned long z_gcd(long x, long y)

Returns the greatest common divisor of x and y, which may be signed.

unsigned long z_invert(unsigned long a, unsigned long n)

Returns a multiplicative inverse of a modulo n. Assumes a is reduced modulo n.

long z_gcd_invert(long * a, long x, long y)

Returns the greatest common divisor d of x and y (which may be signed) and sets a such
that a*x is d modulo y. We ensure a is reduced modulo y.

long z_xgcd(long * a, long * b, long x, long y)

Returns the greatest common divisor d of x and y (which may be signed) and sets a and b
such that d = a*x + b*y.

unsigned long z_intsqrt(unsigned long r)

Returns the integer part of the square root of r.

int z_issquare(long x)

The function returns 0 if x is not a perfect square and 1 otherwise.

unsigned long z_CRT(unsigned long x1, unsigned long n1,
unsigned long x2, unsigned long n2)

Returns the unique integer d reduced modulo n1*n2 which is x1 modulo n1 and x2 modulo
n2. Assumes x1 is reduced modulo n1 and x2 is reduced modulo n2. Also assumes n1*n2 is
no more than FLINT_BITS - 1 bits and that n1 and n2 are coprime.

int z_remove(unsigned long * n,
unsigned long p)

int z_remove_precomp(unsigned long * n,
unsigned long p, pre_inv_t pinv)
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Removes the highest power of p possible from n and returns the exponent to which it appeared
in n. In the second function n can only be up to FLINT_BITS-1 bits.

void z_factor(factor_t * factors , unsigned long n, int proved)

Find the factors of n. If proved is set to 0 then the factors are not proved prime, otherwise
the result is proved.

The factor_t struct contains three fields. The first is the num field, which is an int containing
the number of factors. Then p is an array of unsigned long’s containing the actual factors,
and the respective exponents are given by the array of unsigned long’s comprising the exp
field of the struct.

unsigned long z_factor_partial(factor_t * factors ,
unsigned long n, unsigned long limit , int proved)

Factors n until the product of the factor found is > limit. It puts the factors in factors and
returns the cofactor. If proved is set to 0 then the factors are not proved prime, otherwise
the result is proved.

int z_issquarefree(unsigned long n, int proved)

Returns 1 if n is squarefree, otherwise returns 0. If proved is set to 1 then the result is
guaranteed, and if set to 0 then internal factoring may declare some composites prime. Note
that n must be at most FLINT_BITS - 1 bits.

int z_issquare(long n)

Returns 1 if n is a square, otherwise returns 0. There are no restrictions on n, which may be
signed and negative numbers will not be declared square.

unsigned long z_randint(unsigned long limit)

Returns a random uniformly distributed integer in the range 0 to limit - 1 inclusive. If
limit is set to 0, the function returns a full random limb.

unsigned long z_randbits(unsigned long bits)

Returns a random uniformly distributed integer with up to the given number of bits. If bits
is set to 0, the function returns a full random limb.

unsigned long (unsigned long bits , int proved)

Returns a random prime integer with up to the given number of bits. Assumes bits > 1. If
proved is 0 then the prime is not proven prime, otherwise it is.
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12 The mpn extras module

The mpn_extras module is designed to supplement the low level mpn functions provided in GMP/MPIR.
These functions are designed to operate on raw limbs of multiprecision integer data. Each such integer
consists of a string of limbs representing an integer, with the least significant limb first. The integers
may either be unsigned or signed in twos complement format.

void F_mpn_negate(mp_limb_t * dest , mp_limb_t * src ,
unsigned long count)

Considering the data at the location src to be an integer of count limbs stored in twos
complement format, this function negates the integer and stores the result at the location
dest.

void F_mpn_copy(mp_limb_t * dest , const mp_limb_t * src ,
unsigned long count)

Copy count raw limbs at src to the location dest. Copying begins with the most significant
limb first, thus the destination limbs may overlap the source limbs only if dest > src in
memory.

void F_mpn_copy_forward(mp_limb_t * dest , const mp_limb_t * src ,
unsigned long count)

Copy count raw limbs at src to the location dest. Copying begins with the least significant
limb first, thus the destination limbs may overlap the source limbs only if dest < src in
memory.

void F_mpn_clear(mp_limb_t * dest , unsigned long count)

Set all bits of the count limbs starting at dest to binary zeros.

void F_mpn_set(mp_limb_t * dest , unsigned long count)

Set all bits of the count limbs starting at dest to binary ones.

pre_limb_t F_mpn_precompute_inverse(mp_limb_t d)

Returns a precomputed inverse of d for use in F_mpn functions which take a pre_limb_t
precomputed inverse dinv of d.

One needs to normalise d before computing the precomputed inverse. This computation can
be done as follows:
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#include "flint.h"

unsigned long norm;
count_lead_zeros(norm , d);
pre_limb_t xinv = F_mpn_precompute_inverse(d<<norm);

Note that although one must normalise d before precomputing its inverse, the actual value of d, not its
normalisation, is passed to the functions below.

mp_limb_t F_mpn_divrem_ui_precomp(mp_limb_t * quot ,
mp_limb_t * x, unsigned long xn, mp_limb_t d, pre_limb_t dinv)

Compute the quotient of the unsigned multiprecision integer of xn limbs at x by the limb d,
placing the quotient at quot and returning the remainder. The location quot needs space for
xn limbs. The function takes a precomputed inverse of d.

mp_limb_t F_mpn_mul(mp_limb_t * rn, mp_limb_t * s1p ,
unsigned long s1n , mp_limb_t * s2p , unsigned long s2n)

Set rn to s1p*s2p where s1p has s1n limbs and s2p has s2n limbs. The number of limbs
written is s1n + s2n. The most significant limb of the result (which may be zero) is returned
by the function.

This function simply calls the GMP mpn_mul function for small operands, however for integers
of FFT size (larger than about 1300 limbs for multiplication and 1000 limbs for squares) the
function is significantly faster than GMP 4.2.2.

mp_limb_t F_mpn_mul_trunc(mp_limb_t * rn, mp_limb_t * s1p ,
unsigned long s1n , mp_limb_t * s2p , unsigned long s2n ,

unsigned long tn)

Set rn to s1p*s2p) where \code{s1p has s1n limbs and s2p has s2n limbs. The output is
truncated to tn limbs, where tn must be at most s1n+s2n. The most significant limb of the
result (i.e. limb tn) is returned by the function.

The location rn must have space for s1n + s2n limbs, regardless of the value of tn.

This function simply calls the GMP mpn_mul function for small operands, however for integers
of FFT size the function is significantly faster than GMP 4.2.2. and slightly faster than doing
a full multiplication.

void F_mpn_mul_precomp_init(F_mpn_precomp_t precomp ,
mp_limb_t * s1p , unsigned long s1n , s2n)

When multiplying a single large integer s1p of s1n limbs (usually hundreds or more), by many
other integers whose maximum size is s2n limbs, one can cache the FFT of s1p to speed up
the multiplications. The precomputed data is attached to an F_mpn_precomp_t precomp by
this function for use in the functions below.
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void F_mpn_mul_precomp_clear(F_mpn_precomp_t precomp)

Release the memory allocated for the data attached to the F_mpn_precomp_t precomp.

mp_limb_t F_mpn_mul_precomp(mp_limb_t * rp, mp_limb_t * s2p ,
unsigned long s2n , F_mpn_precomp_t precomp)

Multiply the integer s2p of s2n limbs by the integer whose FFT has been cached and attached
to the F_mpn_precomp_t precomp, computed previously with F_mpn_mul_precomp_init.
The total number of limbs written is s1n + s2n (even if the final limb is zero) where s1n is
the size of the integer whose FFT was cached. The most significant limb of the product is
returned by the function.

13 NTL interface

Various functions are provided for converting between FLINT objects and NTL objects. To make use of
these functions one must type:
#include "NTL-interface.h"

If one is linking against libflint then one must also build NTL-interface.o in the top level FLINT
source tree as follows:

g++ -c NTL -interface -o NTL -interface.o -O2 -fPIC

One must then include NTL-interface.o in the list of files to link when compiling your program and
linking against libflint, e.g.

g++ myprog.cpp NTL -interface.o -o myprog -O2 -I$FLINT_GMP_INCLUDE_DIR \
-I$FLINT_NTL_INCLUDE_DIR -L$FLINT_GMP_LIB_DIR -L$FLINT_NTL_LIB_FIR \
-lflint -lntl -lgmp

In each case the functions provided for conversion expect the output objects, whether NTL or FLINT
objects, to be initialised. The first function is unmanaged in that the user must ensure that sufficient
space is allocated in the fmpz_t to hold the integer contained in the ZZ.

void ZZ_to_fmpz(fmpz_t output , const ZZ& z)

Convert an NTL ZZ integer object to a FLINT fmpz_t integer object.

The following functions are managed, in that a reallocation automatically occurs if insufficient space was
allocated by the user.

void fmpz_to_ZZ(ZZ& output , const fmpz_t z)

Convert a FLINT fmpz_t integer object to an NTL ZZ integer object.

void fmpz_poly_to_ZZX(ZZX& output , const fmpz_poly_t poly)

Convert a FLINT fmpz_poly_t polynomial object to an NTL ZZX polynomial object.

void ZZX_to_fmpz_poly(fmpz_poly_t output , const ZZX& poly)

Convert an NTL ZZX polynomial object to a FLINT fmpz_poly_t polynomial object.
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14 The quadratic sieve

Currently the quadratic sieve is a standalone program which can be built by typing:

make mpQS

in the main FLINT directory.

The program is called mpQS. Upon running it, one enters the number to be factored at the prompt.

The quadratic sieve requires that the number entered not be a prime and not be a perfect power. Trial
division and the elliptic curve method should be run before making a call to the quadratic sieve, to
remove small factors. The sieve may fail silently if the conditions are not met or if the number is too
small to be factored by the quadratic sieve (currently about 26 binary bits or below).

15 Large integer multiplication

In the module mpn_extras and mpz_extras are functions F_mpn_mul and F_mpz_mul respectively which
are drop in replacements for GMP/MPIR’s mpn_mul and mpz_mul respectively.

These replacement functions are substantially faster than GMP 4.3.1 and somewhat faster than MPIR
1.2.0 when multiplying integers which are thousands of limbs in size. For smaller multiplications these
functions call their respective GMP/MPIR counterparts.

57


	Introduction
	Building and using FLINT
	Test code
	Reporting bugs
	Example programs
	FLINT macros
	The fmpz_poly module
	Simple example
	Definition of the fmpz_poly_t polynomial type
	Initialisation and memory management
	Setting/retrieving coefficients
	String conversions and I/O
	Polynomial parameters (length, degree, max limbs, etc.)
	Assignment and basic manipulation
	Conversions
	Chinese remaindering
	Comparison
	Shifting
	Norms
	Addition/subtraction
	Scalar multiplication and division
	Polynomial multiplication
	Polynomial division
	Pseudo division
	Powering
	Gaussian content
	Greatest common divisor and resultant
	Modular arithmetic
	Derivative
	Evaluation
	Polynomial composition
	Polynomial signature
	Squarefree
	Subpolynomials

	The fmpz module
	A simple example
	Memory management
	String operations
	fmpz properties
	Assignment
	Comparison
	Conversions
	Addition/subtraction
	Multiplication
	Division
	Modular arithmetic
	Powering
	Root extraction
	Number theoretical
	Chinese remaindering
	Montgomery format

	The F_mpz module
	Simple example
	Memory Management
	Random generation
	Assignment and basic manipulation
	Comparison
	Properties of integers
	Input/output
	Addition/subtraction
	Multiplication
	Division and remainder
	Powering

	The zmod_poly module
	Simple example
	Definition of the zmod_poly_t polynomial type
	Memory management
	Setting/retrieving coefficients
	String conversions and I/O
	Polynomial parameters (length, degree, modulus, etc.)
	Assignment and basic manipulation
	Subpolynomials
	Comparison
	Scalar multiplication and division
	Addition/subtraction
	Shifting
	Polynomial multiplication
	Polynomial division
	Greatest common divisor and resultant
	Differentiation
	Arithmetic modulo a polynomial
	Composition and evaluation
	Polynomial Factorization

	The long_extras module
	The mpn_extras module
	NTL interface
	The quadratic sieve
	Large integer multiplication

