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§1. Introduction

FLINT is a C library of functions for doing number theory. It is highly optimised and
can be compiled on numerous platforms. FLINT also has the aim of providing support
for multicore and multiprocessor computer architectures. To this end, the library is
threadsafe, with few exceptions noted in the appropriate place.

FLINT is currently maintained by William Hart of Warwick University in the UK. Its
main authors are William Hart, Sebastian Pancratz, Fredrik Johansson, Andy Novocin
and David Harvey (no longer active).

FLINT 2 and following should compile on any machine with GCC and a standard GNU
toolchain, however it is specially optimised for x86 (32 and 64 bit) machines. There
is also limited optimisation for ARM and ia64 machines. As of version 2.0, FLINT
required GCC version 2.96 or later, MPIR 2.6.0 or later and MPFR 3.0.0 or later. It is
also required that the platform provide a uint64_t type if a native 64 bit type is not
available. Full C99 compliance is not required.

FLINT is supplied as a set of modules, fmpz, fmpz_poly, etc., each of which can be
linked to a C program making use of their functionality.

All of the functions in FLINT have a corresponding test function provided in an appro-
priately named test file. For example, the function fmpz_poly_add located in
fmpz_poly/add.c has test code in the file fmpz_poly/test/t-add.c.





§2. Building and using FLINT

The easiest way to use FLINT is to build a shared library. Simply download the FLINT
tarball and untar it on your system.

FLINT requires MPIR version 2.6.0 or later and MPFR 3.0.0 or later and a pthread
implementation. Some of the input/output tests require fork and pipe, however these
are disabled on MinGW which does not provide a posix implementation.

To configure FLINT you must specify where MPIR and MPFR are on your system.
FLINT can work with the libraries installed as usual, e.g. in /usr/local or it can work
with the libraries built from source in their standard source trees.

In the case that a library is installed in say /usr in the lib and include directories
as usual, simply specify the top level location, e.g. /usr when configuring FLINT. If a li-
brary is built in its source tree, specify the top level source directory, e.g. /home/user1/mpir/.

To specify the directories where the libraries reside, you must pass the directories as
parameters to FLINT’s configure, e.g.

./ configure --with -mpir=/usr --with -mpfr=/home/user1/mpfr/

If no directories are specified, FLINT assumes it will find the libraries it needs in
/usr/local.

Note that FLINT builds static and shared libraries by default, except on platforms where
this is not supported. If you do not require either a shared or static library then you
may pass --disable-static or --disable-shared to configure.

If you intend to install the FLINT library and header files, you can specify where they
should be placed by passing --prefix=path to configure, where path is the directory
under which the lib and include directories exist into which you wish to place the
FLINT files when it is installed.

If you wish to use FLINT on a single core machine then it will be configured by default
for single mode. This is slightly faster, but is not threadsafe. (This mode can also be
explicitly selected by passing the --single option to configure.) If you wish to build a
threadsafe version of FLINT, you must pass the --reentrant option to configure. This
will be slower on single core machines, but threadsafe.

On some systems, e.g. Sparc and some Macs, more than one ABI is available. FLINT
chooses the ABI based on the CPU type available, however its default choice can be
overridden by passing either ABI=64 or ABI=32 to configure.

In some cases, it is necessary to override the entire CPU/OS defaults. This can be done
by passing --build=cpu-os to configure. The available choices for CPU include x86_64,
x86, ia64, sparc, sparc64, ppc, ppc64. Other CPU types are unrecognised and FLINT
will build with generic code on those machines. The choices for OS include Linux,
MINGW32, CYGWIN, Darwin, FreeBSD, SunOS and numerous other operating systems.

It is also possible to override the default CC, AR and CFLAGS used by FLINT by
passing CC=full_path_to_compiler, etc., to FLINT’s configure.



4 Building and using FLINT

Once FLINT is configured, in the main directory of the FLINT directory tree simply
type:

make

make check

GNU make is required to build FLINT. This is simply make on Linux, Darwin, MinGW
and Cygwin systems. However, on some unixes the command is gmake.

If you wish to install FLINT, simply type:

make install

Now to use FLINT, simply include the appropriate header files for the FLINT modules
you wish to use in your C program. Then compile your program, linking against the
FLINT library, MPIR, MPFR and pthreads with the options -lflint -lmpfr -lgmp

-lpthread.

Note that you may have to set LD_LIBRARY_PATH or equivalent for your system to let
the linker know where to find these libraries. Please refer to your system documentation
for how to do this.

If you have any difficulties with conflicts with system headers on your machine, you can
do the following in your code:

#undef ulong

#include <stdio.h>

// other system headers

#define ulong unsigned long

This prevents FLINT’s definition of ulong interfering with your system headers.

The FLINT make system responds to the standard commands

make

make library

make check

make clean

make distclean

make install

In addition, if you wish to simply check a single module of FLINT you can pass the
option MOD=modname to make check. You can also pass a list of module names in inverted
commas, e.g:

make check MOD=ulong_extras

If your system supports parallel builds, FLINT will build in parallel, e.g:

make -j4 check

Note that on some systems, most notably MinGW, parallel make is supported but can
be problematic.



§3. Test code

Each module of FLINT has an extensive associated test module. We strongly recommend
running the test programs before relying on results from FLINT on your system.

To make and run the test programs, simply type:

make check

in the main FLINT directory after configuring FLINT.





§4. Reporting bugs

The maintainer wishes to be made aware of any and all bugs. Please send an email
with your bug report to hart_wb@yahoo.com or report them on the FLINT devel list
https://groups.google.com/group/flint-devel?hl=en.

If possible please include details of your system, the version of GCC, the versions of
MPIR and MPFR as well as precise details of how to replicate the bug.

Note that FLINT needs to be linked against version 2.6.0 or later of MPIR, version 3.0.0
or later of MPFR and must be compiled with gcc version 2.96 or later.

hart_wb@yahoo.com
https://groups.google.com/group/flint-devel?hl=en




§5. Contributors

FLINT has been developed since 2007 by a large number of people. Initially the library
was started by David Harvey and William Hart. Later maintenance of the library was
taken over solely by William Hart.

The main authors of FLINT to date have been William Hart, David Harvey (no longer
active), Fredrik Johansson, Sebastian Pancratz and Andy Novocin.

Other significant contributions to FLINT have been made by Jason Papadopoulos,
Gonzalo Tornaria, David Howden, Burcin Erocal, Tom Boothby, Daniel Woodhouse,
Tomasz Lechowski, Richard Howell-Peak, Peter Shrimpton, Andrés Goens, Lina Ku-
lakova, Thomas DuBuisson, Jean-Pierre Flori, Frithjof Schulze, Curtis Bright.

Jan Tuitman contributed to the design of the padics module.

Additional research was contributed by Daniel Scott and Daniel Ellam.

Further patches and bug reports have been made by Michael Abshoff, Didier Deshommes,
Craig Citro, Timothy Abbot, Carl Witty, Jaap Spies, Kiran Kedlaya, William Stein,
Kate Minola, Robert Bradshaw, Serge Torres, Dan Grayson, Martin Lee, Bob Smith,
Antony Vennard, Frédéric Chyzak, Julien Puydt and many others.

Ralph Hemmecke made available an autotools build for FLINT.

Numerous people have contributed to wrapping FLINT in Sage and debugging, including
Mike Hansen, Jean-Pierre Flori, Burcin Erocal, Robert Bradshaw, Martin Albrecht,
Sebastian Pancratz, Fredrik Johansson,

Some code (longlong.h and clz_tab.c) has been used from an LGPL v2+ version of
the GMP library. The main author of the GMP library is Torbjorn Granlund.

FLINT 2 was a complete rewrite from scratch which began in about 2010.





§6. Tuning FLINT

FLINT uses a highly optimised Fast Fourier Transform routine for polynomial multi-
plication and some integer multiplication routines. This can be tuned by first typing
make tune and then running the program build/fft/tune/tune_fft.

The output of the program can be pasted into fft_tuning64.in or fft_tuning32.in

depending on the ABI of the current platform. FLINT must then be configured again
and a clean build initiated.

Tuning is only necessary if you suspect that very large polynomial and integer operations
(millions of bits) are taking longer than they should.





§7. Example programs

FLINT comes with example programs to demonstrate current and future FLINT fea-
tures. To build the example programs, type:

make examples

The example programs are built in the build/examples directory. You must set your
LD_LIBRARY_PATH or equivalent for the flint, mpir and mpfr libraries. See your operating
system documentation to see how to set this.

The current example programs are:

partitions Demonstrates the partition counting code, e.g.
build/examples/partitions 1000000000 will compute the number of partitions of
10^9.

delta_qexp Computes the n-th term of the delta function, e.g.
build/examples/delta_qexp 1000000 will compute the one million-th term of the q-
expansion of delta.

crt Demonstrates the integer Chinese Remainder code, e.g. build/examples/crt

10382788 will build up the given integer from its value mod various primes.

multi_crt Demonstrates the fast tree version of the integer Chinese Remainder code,
e.g. build/examples/multi_crt 100493287498239 13 will build up the given integer
from its value mod the given number of primes.

stirling_matrix Generates Stirling number matrices of the first and second kind and
computes their product, which should come out as the identity matrix. The matrices are
printed to standard output. For example build/examples/stirling_matrix 10 does
this with 10 by 10 matrices.

fmpz_poly_factor_zassenhaus Demonstrates the factorisation of a small polynomial.
A larger polynomials is also provided on disk and a small (obvious) change to the example
program will read this file instead of using the hard coded polynomial.

padic Gives examples of the usage of many functions in the padic module.

fmpz_poly_q Gives a very simple example of the fmpz_poly_q module.

fmpz_poly Gives a very simple example of the fmpz_poly module.

fmpq_poly Gives a very simple example of the fmpq_poly module.





§8. FLINT macros

The file flint.h contains various useful macros.

The macro constant FLINT_BITS is set at compile time to be the number of bits per
limb on the machine. FLINT requires it to be either 32 or 64 bits. Other architectures
are not currently supported.

The macro constant FLINT_D_BITS is set at compile time to be the number of bits per
double on the machine or one less than the number of bits per limb, whichever is smaller.
This will have the value 53 or 31 on currently supported architectures. Numerous internal
functions using precomputed inverses only support operands up to FLINT_D_BITS bits,
hence the macro.

The macro FLINT_ABS(x) returns the absolute value of x for primitive signed numerical
types. It might fail for least negative values such as INT_MIN and LONG_MIN.

The macro FLINT_MIN(x, y) returns the minimum of x and y for primitive signed or
unsigned numerical types. This macro is only safe to use when x and y are of the same
type, to avoid problems with integer promotion.

Similar to the previous macro, FLINT_MAX(x, y) returns the maximum of x and y.

The function FLINT_BIT_COUNT(x) returns the number of binary bits required to repre-
sent an unsigned long x. If x is zero, returns 0.

Derived from this there are the two macros FLINT_FLOG2(x) and FLINT_CLOG2(x) which,
for any x ≥ 1, compute blog2 xc and dlog2 xe.





§9. fmpz

Arbitrary precision integers

9.1 Introduction

By default, an fmpz_t is implemented as an array of fmpz’s of length one to allow passing
by reference as one can do with GMP/ MPIR’s mpz_t type. The fmpz_t type is simply
a single limb, though the user does not need to be aware of this except in one specific
case outlined below.

In all respects, fmpz_t’s act precisely like GMP/ MPIR’s mpz_t’s, with automatic mem-
ory management, however, in the first place only one limb is used to implement them.
Once an fmpz_t overflows a limb then a multiprecision integer is automatically allo-
cated and instead of storing the actual integer data the long which implements the type
becomes an index into a FLINT wide array of mpz_t’s.

These internal implementation details are not important for the user to understand,
except for three important things.

Firstly, fmpz_t’s will be more efficient than mpz_t’s for single limb operations, or more
precisely for signed quantities whose absolute value does not exceed FLINT_BITS - 2

bits.

Secondly, for small integers that fit into FLINT_BITS - 2 bits much less memory will be
used than for an mpz_t. When very many fmpz_t’s are used, there can be important
cache benefits on account of this.

Thirdly, it is important to understand how to deal with arrays of fmpz_t’s. As for
mpz_t’s, there is an underlying type, an fmpz, which can be used to create the array,
e.g.

fmpz myarr [100];

Now recall that an fmpz_t is an array of length one of fmpz’s. Thus, a pointer to an
fmpz can be used in place of an fmpz_t. For example, to find the sign of the third integer
in our array we would write

int sign = fmpz_sgn(myarr + 2);

The fmpz module provides routines for memory management, basic manipulation and
basic arithmetic.

Unless otherwise specified, all functions in this section permit aliasing between their
input arguments and between their input and output arguments.
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9.2 Simple example

The following example computes the square of the integer 7 and prints the result.

#include "fmpz.h"

...

fmpz_t x, y;

fmpz_init(x);

fmpz_init(y);

fmpz_set_ui(x, 7);

fmpz_mul(y, x, x);

fmpz_print(x);

printf("^2 = ");

fmpz_print(y);

printf("\n");

fmpz_clear(x);

fmpz_clear(y);

The output is:

7^2 = 49

We now describe the functions available in the fmpz module.

9.3 Memory management

void fmpz_init(fmpz_t f)

A small fmpz_t is initialised, i.e. just a long. The value is set to zero.

void fmpz_init2(fmpz_t f, ulong limbs)

Initialises the given fmpz_t to have space for the given number of limbs.

If limbs is zero then a small fmpz_t is allocated, i.e. just a long. The value is also set
to zero. It is not necessary to call this function except to save time. A call to fmpz_init

will do just fine.

void fmpz_clear(fmpz_t f)

Clears the given fmpz_t, releasing any memory associated with it, either back to the
stack or the OS, depending on whether the reentrant or non-reentrant version of FLINT
is built.

void fmpz_init_set(fmpz_t f, const fmpz_t g)

Initialises f and sets it to the value of g.

void fmpz_init_set_ui(fmpz_t f, ulong g)

Initialises f and sets it to the value of g.

9.4 Random generation

For thread-safety, the randomisation methods take as one of their parameters an object
of type flint_rand_t. Before calling any of the randomisation functions such an ob-
ject first has to be initialised with a call to flint_randinit(). When one is finished
generating random numbers, one should call flint_randclear() to clean up.
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void fmpz_randbits(fmpz_t f, flint_rand_t state ,

mp_bitcnt_t bits)

Generates a random signed integer whose absolute value has the given number of bits.

void fmpz_randtest(fmpz_t f, flint_rand_t state ,

mp_bitcnt_t bits)

Generates a random signed integer whose absolute value has a number of bits which is
random from 0 up to bits inclusive.

void fmpz_randtest_unsigned(fmpz_t f, flint_rand_t state ,

mp_bitcnt_t bits)

Generates a random unsigned integer whose value has a number of bits which is random
from 0 up to bits inclusive.

void fmpz_randtest_not_zero(fmpz_t f, flint_rand_t state ,

mp_bitcnt_t bits)

As per fmpz_randtest, but the result will not be 0. If bits is set to 0, an exception
will result.

void fmpz_randm(fmpz_t f, flint_rand_t state , const fmpz_t

m)

Generates a random integer in the range 0 to m− 1 inclusive.

void fmpz_randtest_mod(fmpz_t f, flint_rand_t state , const

fmpz_t m)

Generates a random integer in the range 0 to m− 1 inclusive, with an increased proba-
bility of generating values close to the endpoints.

void fmpz_randtest_mod_signed(fmpz_t f, flint_rand_t state ,

const fmpz_t m)

Generates a random integer in the range (−m/2,m/2], with an increased probability of
generating values close to the endpoints or close to zero.

9.5 Conversion

ulong fmpz_get_si(const fmpz_t f)

Returns f as a signed long. The result is undefined if f does not fit into a long.

ulong fmpz_get_ui(const fmpz_t f)

Returns f as an unsigned long. The result is undefined if f does not fit into an
unsigned long or is negative.

void fmpz_set_d(fmpz_t f, double c)

Sets f to the double c, rounding down towards zero if the value of c is fractional. The
outcome is undefined if c is infinite, not-a-number, or subnormal.

double fmpz_get_d(const fmpz_t f)

Returns f as a double, rounding down towards zero if f cannot be represented exactly.
The outcome is undefined if f is too large to fit in the normal range of a double.
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double fmpz_get_d_2exp(long * exp , const fmpz_t f)

Returns f as a normalized double along with a 2-exponent exp, i.e. if r is the return
value then f = r * 2^exp, to within 1 ULP.

void fmpz_get_mpz(mpz_t x, const fmpz_t f)

Sets the mpz_t x to the same value as f .

char * fmpz_get_str(char * str , int b, const fmpz_t f)

Returns the representation of f in base b, which can vary between 2 and 62, inclusive.

If str is NULL, the result string is allocated by the function. Otherwise, it is up to the
caller to ensure that the allocated block of memory is sufficiently large.

void fmpz_set_si(fmpz_t f, long val)

Sets f to the given signed long value.

void fmpz_set_ui(fmpz_t f, ulong val)

Sets f to the given unsigned long value.

void fmpz_set_mpz(fmpz_t f, const mpz_t x)

Sets f to the given mpz_t value.

int fmpz_set_str(fmpz_t f, char * str , int b)

Sets f to the value given in the null-terminated string str, in base b. The base b can
vary between 2 and 62, inclusive. Returns 0 if the string contains a valid input and −1
otherwise.

void fmpz_set_ui_smod(fmpz_t f, mp_limb_t x, mp_limb_t m)

Sets f to the signed remainder y ≡ x mod m satisfying −m/2 < y ≤ m/2, given x which
is assumed to satisfy 0 ≤ x < m.

void flint_mpz_init_set_readonly(mpz_t z, const fmpz_t f)

Sets the unitialised mpz_t z to the value of the readonly fmpz_t f .

Note that it is assumed that f does not change during the lifetime of z.

The integer z has to be cleared by a call to flint_mpz_clear_readonly().

The suggested use of the two functions is as follows:

fmpz_t f;

...

{

mpz_t z;

flint_mpz_init_set_readonly(z, f);

foo(..., z);

flint_mpz_clear_readonly(z);

}

This provides a convenient function for user code, only requiring to work with the types
fmpz_t and mpz_t.

In critical code, the following approach may be favourable:
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fmpz_t f;

...

{

__mpz_struct *z;

z = _fmpz_promote_val(f);

foo(..., z);

_fmpz_demote_val(f);

}

void flint_mpz_clear_readonly(mpz_t z)

Clears the readonly mpz_t z.

void fmpz_init_set_readonly(fmpz_t f, const mpz_t z)

Sets the uninitialised fmpz_t f to a readonly version of the integer z.

Note that the value of z is assumed to remain constant throughout the lifetime of f .

The fmpz_t f has to be cleared by calling the function fmpz_clear_readonly().

The suggested use of the two functions is as follows:

mpz_t z;

...

{

fmpz_t f;

fmpz_init_set_readonly(f, z);

foo(..., f);

fmpz_clear_readonly(f);

}

void fmpz_clear_readonly(fmpz_t f)

Clears the readonly fmpz_t f .

9.6 Input and output

int fmpz_read(fmpz_t f)

Reads a multiprecision integer from stdin. The format is an optional minus sign, fol-
lowed by one or more digits. The first digit should be non-zero unless it is the only
digit.

In case of success, returns a positive number. In case of failure, returns a non-positive
number.

This convention is adopted in light of the return values of scanf from the standard
library and mpz_inp_str from MPIR.

int fmpz_fread(FILE * file , fmpz_t f)

Reads a multiprecision integer from the stream file. The format is an optional minus
sign, followed by one or more digits. The first digit should be non-zero unless it is the
only digit.

In case of success, returns a positive number. In case of failure, returns a non-positive
number.

This convention is adopted in light of the return values of scanf from the standard
library and mpz_inp_str from MPIR.
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int fmpz_print(fmpz_t x)

Prints the value x to stdout, without a carriage return. The value is printed as either 0,
the decimal digits of a positive integer, or a minus sign followed by the digits of a negative
integer.

In case of success, returns a positive number. In case of failure, returns a non-positive
number.

This convention is adopted in light of the return values of printf from the standard
library and mpz_out_str from MPIR.

int fmpz_fprint(FILE * file , fmpz_t x)

Prints the value x to file, without a carriage return. The value is printed as either 0, the
decimal digits of a positive integer, or a minus sign followed by the digits of a negative
integer.

In case of success, returns a positive number. In case of failure, returns a non-positive
number.

This convention is adopted in light of the return values of printf from the standard
library and mpz_out_str from MPIR.

9.7 Basic properties and manipulation

size_t fmpz_sizeinbase(const fmpz_t f, int b)

Returns the size of the absolute value of f in base b, measured in numbers of digits. The
base b can be between 2 and 62, inclusive.

mp_bitcnt_t fmpz_bits(const fmpz_t f)

Returns the number of bits required to store the absolute value of f . If f is 0 then 0 is
returned.

mp_size_t fmpz_size(const fmpz_t f)

Returns the number of limbs required to store the absolute value of f . If f is zero then
0 is returned.

int fmpz_sgn(const fmpz_t f)

Returns −1 if the sign of f is negative, +1 if it is positive, otherwise returns 0.

mp_bitcnt_t fmpz_val2(const fmpz_t f)

Returns the exponent of the largest power of two dividing f , or equivalently the number
of trailing zeros in the binary expansion of f . If f is zero then 0 is returned.

void fmpz_swap(fmpz_t f, fmpz_t g)

Efficiently swaps f and g. No data is copied.

void fmpz_set(fmpz_t f, const fmpz_t g)

Sets f to the same value as g.

void fmpz_zero(fmpz_t f)

Sets f to zero.

void fmpz_one(fmpz_t f)
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Sets f to one.

int fmpz_abs_fits_ui(const fmpz_t f)

Returns whether the absolute value of f fits into an unsigned long.

int fmpz_fits_si(const fmpz_t f)

Returns whether the value of f fits into a long.

void fmpz_setbit(fmpz_t f, ulong i)

Sets bit index i of f .

int fmpz_tstbit(const fmpz_t f, ulong i)

Test bit index i of f and return 0 or 1, accordingly.

mp_limb_t fmpz_abs_lbound_ui_2exp(long * exp , const fmpz_t

x, int bits)

For nonzero x, returns a mantissa m with exactly bits bits and sets exp to an exponent
e, such that |x| ≥ m2e. The number of bits must be between 1 and FLINT_BITS inclusive.
The mantissa is guaranteed to be correctly rounded.

mp_limb_t fmpz_abs_ubound_ui_2exp(long * exp , const fmpz_t

x, int bits)

For nonzero x, returns a mantissa m with exactly bits bits and sets exp to an exponent
e, such that |x| ≤ m2e. The number of bits must be between 1 and FLINT_BITS inclusive.
The mantissa is either correctly rounded or one unit too large (possibly meaning that
the exponent is one too large, if the mantissa is a power of two).

9.8 Comparison

int fmpz_cmp(const fmpz_t f, const fmpz_t g)

Returns a negative value if f < g, positive value if g < f , otherwise returns 0.

int fmpz_cmp_ui(const fmpz_t f, ulong g)

Returns a negative value if f < g, positive value if g < f , otherwise returns 0.

int fmpz_cmp_si(const fmpz_t f, long g)

Returns a negative value if f < g, positive value if g < f , otherwise returns 0.

int fmpz_cmpabs(const fmpz_t f, const fmpz_t g)

Returns a negative value if |f | < |g|, positive value if |g| < |f |, otherwise returns 0.

int fmpz_equal(const fmpz_t f, const fmpz_t g)

Returns 1 if f is equal to g, otherwise returns 0.

int fmpz_is_zero(const fmpz_t f)

Returns 1 if f is 0, otherwise returns 0.

int fmpz_is_one(const fmpz_t f)

Returns 1 if f is equal to one, otherwise returns 0.
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int fmpz_is_pm1(const fmpz_t f)

Returns 1 if f is equal to one or minus one, otherwise returns 0.

int fmpz_is_even(const fmpz_t f)

Returns whether the integer f is even.

int fmpz_is_odd(const fmpz_t f)

Returns whether the integer f is odd.

9.9 Basic arithmetic

void fmpz_neg(fmpz_t f1, const fmpz_t f2)

Sets f1 to −f2.

void fmpz_abs(fmpz_t f1, const fmpz_t f2)

Sets f1 to the absolute value of f2.

void fmpz_add(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to g + h.

void fmpz_add_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to g + x where x is an unsigned long.

void fmpz_sub(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to g − h.

void fmpz_sub_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to g − x where x is an unsigned long.

void fmpz_mul(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to g × h.

void fmpz_mul_si(fmpz_t f, const fmpz_t g, long x)

Sets f to g × x where x is a signed long.

void fmpz_mul_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to g × x where x is an unsigned long.

void fmpz_mul2_uiui(fmpz_t f, const fmpz_t g, ulong x,

ulong y)

Sets f to g × x× y where x and y are of type unsigned long.

void fmpz_mul_2exp(fmpz_t f, const fmpz_t g, ulong e)

Sets f to g × 2e.

void fmpz_addmul(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to f + g × h.

void fmpz_addmul_ui(fmpz_t f, const fmpz_t g, ulong x)
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Sets f to f + g × x where x is an unsigned long.

void fmpz_submul(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to f − g × h.

void fmpz_submul_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to f − g × x where x is an unsigned long.

void fmpz_cdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the quotient of g by h, rounding up towards infinity. If h is 0 an exception is
raised.

void fmpz_cdiv_q_si(fmpz_t f, const fmpz_t g, long h)

Sets f to the quotient of g by h, rounding up towards infinity. If h is 0 an exception is
raised.

void fmpz_cdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

Sets f to the quotient of g by h, rounding up towards infinity. If h is 0 an exception is
raised.

void fmpz_fdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

Sets f to g divided by 2^exp, rounding down towards minus infinity.

void fmpz_fdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the quotient of g by h, rounding down towards minus infinity. If h is 0 an
exception is raised.

void fmpz_fdiv_q_si(fmpz_t f, const fmpz_t g, long h)

Set f to the quotient of g by h, rounding down towards minus infinity. If h is 0 an
exception is raised.

void fmpz_fdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

Set f to the quotient of g by h, rounding down towards minus infinity. If h is 0 an
exception is raised.

void fmpz_fdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const

fmpz_t h)

Sets f to the quotient of g by h, rounding down towards minus infinity and s to the
remainder. If h is 0 an exception is raised.

void fmpz_fdiv_r(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the remainder from dividing g by h and rounding the quotient down towards
minus infinity. If h is 0 an exception is raised.

void fmpz_fdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

Sets f to g divided by 2^exp, rounding down towards minus infinity.

void fmpz_fdiv_r_2exp(fmpz_t f, const fmpz_t g, ulong exp)

Sets f to the remainder of g upon division by 2^exp, where the remainder is non-negative.
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void fmpz_tdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the quotient of g by h, rounding down towards zero. If h is 0 an exception is
raised.

void fmpz_tdiv_q_si(fmpz_t f, const fmpz_t g, long h)

Set f to the quotient of g by h, rounding down towards zero. If h is 0 an exception is
raised.

void fmpz_tdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

Set f to the quotient of g by h, rounding down towards zero. If h is 0 an exception is
raised.

ulong fmpz_tdiv_ui(const fmpz_t g, ulong h)

Returns the absolute value of the remainder from dividing g by h, rounding towards
zero. If h is 0 an exception is raised.

void fmpz_tdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

Sets f to g divided by 2^exp, rounding down towards zero.

void fmpz_divexact(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the quotient of g and h, assuming that the division is exact, i.e. g is a multiple
of h. If h is 0 an exception is raised.

void fmpz_divexact_si(fmpz_t f, const fmpz_t g, long h)

Sets f to the quotient of g and h, assuming that the division is exact, i.e. g is a multiple
of h. If h is 0 an exception is raised.

void fmpz_divexact_ui(fmpz_t f, const fmpz_t g, ulong h)

Sets f to the quotient of g and h, assuming that the division is exact, i.e. g is a multiple
of h. If h is 0 an exception is raised.

void fmpz_divexact2_uiui(fmpz_t f, const fmpz_t g, ulong x,

ulong y)

Sets f to the quotient of g and h = x× y, assuming that the division is exact, i.e. g is a
multiple of h. If x or y is 0 an exception is raised.

int fmpz_divisible(const fmpz_t f, const fmpz_t g)

Returns whether f is divisible by g > 0.

int fmpz_divisible_si(const fmpz_t f, long g)

Returns whether f is divisible by g > 0.

void fmpz_mod(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the remainder of g divided by h. The remainder is always taken to be positive.

ulong fmpz_mod_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to g reduced modulo x where x is an unsigned long. If x is 0 an exception will
result.

ulong fmpz_fdiv_ui(const fmpz_t g, ulong x)
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Returns the remainder of g modulo x where x is an unsigned long, without changing
g. If x is 0 an exception will result.

void fmpz_pow_ui(fmpz_t f, const fmpz_t g, ulong x)

Sets f to gx where x is an unsigned long. If x is 0 and g is 0, then f will be set to 1.

void fmpz_powm_ui(fmpz_t f, const fmpz_t g, ulong e, const

fmpz_t m)

Sets f to ge mod m. If e = 0, sets f to 1.

Assumes that m 6= 0, raises an abort signal otherwise.

void fmpz_powm(fmpz_t f, const fmpz_t g, const fmpz_t e,

const fmpz_t m)

Sets f to ge mod m. If e = 0, sets f to 1.

Assumes that m 6= 0, raises an abort signal otherwise.

long fmpz_clog(const fmpz_t x, const fmpz_t b)

long fmpz_clog_ui(const fmpz_t x, ulong b)

Returns dlogb xe.

Assumes that x ≥ 1 and b ≥ 2 and that the return value fits into a signed long.

long fmpz_flog(const fmpz_t x, const fmpz_t b)

long fmpz_flog_ui(const fmpz_t x, ulong b)

Returns blogb xc.

Assumes that x ≥ 1 and b ≥ 2 and that the return value fits into a signed long.

double fmpz_dlog(const fmpz_t x)

Returns a double precision approximation of the natural logarithm of x.

The accuracy depends on the implementation of the floating-point logarithm provided
by the C standard library. The result can typically be expected to have a relative error
no greater than 1-2 bits.

int fmpz_sqrtmod(fmpz_t b, const fmpz_t a, const fmpz_t p)

Returns whether a is a quadratic residue or zero modulo p and sets b to a square root
of a if this is the case.

void fmpz_sqrt(fmpz_t f, const fmpz_t g)

Sets f to the integer part of the square root of g, where g is assumed to be non-negative.
If g is negative, an exception is raised.

void fmpz_sqrtrem(fmpz_t f, fmpz_t r, const fmpz_t g)

Sets f to the integer part of the square root of g, where g is assumed to be non-negative,
and sets r to the remainder, that is, the difference g− f2. If g is negative, an exception
is raised. The behaviour is undefined if f and r are aliases.

int fmpz_is_square(const fmpz_t f)

Returns nonzero if f is a perfect square and zero otherwise.
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void fmpz_root(fmpz_t r, fmpz_t f, long n)

Set r to the integer part of the n-th root of f . Requires that n > 0 and that if n is even
then f be non-negative, otherwise an exception is raides.

void fmpz_fac_ui(fmpz_t f, ulong n)

Sets f to the factorial n! where n is an unsigned long.

void fmpz_fib_ui(fmpz_t f, ulong n)

Sets f to the Fibonacci number Fn where n is an unsigned long.

void fmpz_bin_uiui(fmpz_t f, ulong n, ulong k)

Sets f to the binomial coefficient
(
n
k

)
.

void fmpz_rfac_ui(fmpz_t r, const fmpz_t x, ulong k)

Sets r to the rising factorial x(x+ 1)(x+ 2) · · · (x+ k − 1).

void fmpz_rfac_uiui(fmpz_t r, ulong x, ulong k)

Sets r to the rising factorial x(x+ 1)(x+ 2) · · · (x+ k − 1).

void fmpz_mul_tdiv_q_2exp(fmpz_t f, const fmpz_t g, const

fmpz_t h, ulong exp)

Sets f to the product g and h divided by 2^exp, rounding down towards zero.

void fmpz_mul_si_tdiv_q_2exp(fmpz_t f, const fmpz_t g, long

x, ulong exp)

Sets f to the product g and x divided by 2^exp, rounding down towards zero.

9.10 Greatest common divisor

void fmpz_gcd(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the greatest common divisor of g and h. The result is always positive, even if
one of g and h is negative.

void fmpz_lcm(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the least common multiple of g and h. The result is always nonnegative, even
if one of g and h is negative.

void fmpz_gcdinv(fmpz_t d, fmpz_t a, const fmpz_t f, const

fmpz_t g)

Given integers f, g with 0 ≤ f < g, computes the greatest common divisor d = gcd(f, g)
and the modular inverse a = f−1 (mod g), whenever f 6= 0.

Assumes that d and a are not aliased.

9.11 Modular arithmetic

long _fmpz_remove(fmpz_t x, const fmpz_t f, double finv)

Removes all factors f from x and returns the number of such.

Assumes that x is non-zero, that f > 1 and that finv is the precomputed double inverse
of f whenever f is a small integer and 0 otherwise.

Does not support aliasing.
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long fmpz_remove(fmpz_t rop , const fmpz_t op, const fmpz_t

f)

Remove all occurrences of the factor f > 1 from the integer op and sets rop to the
resulting integer.

If op is zero, sets rop to op and returns 0.

Returns an abort signal if any of the assumptions are violated.

int fmpz_invmod(fmpz_t f, const fmpz_t g, const fmpz_t h)

Sets f to the inverse of g modulo h. The value of h may not be 0 otherwise an exception
results. If the inverse exists the return value will be non-zero, otherwise the return value
will be 0 and the value of f undefined.

9.12 Bit packing and unpacking

int fmpz_bit_pack(mp_limb_t * arr , mp_bitcnt_t shift ,

mp_bitcnt_t bits , fmpz_t coeff , int negate , int borrow)

Shifts the given coefficient to the left by shift bits and adds it to the integer in arr in
a field of the given number of bits.

shift bits --------------

X X X C C C C 0 0 0 0 0 0 0

An optional borrow of 1 can be subtracted from coeff before it is packed. If coeff is
negative after the borrow, then a borrow will be returned by the function.

The value of shift is assumed to be less than FLINT_BITS. All but the first shift bits
of arr are assumed to be zero on entry to the function.

The value of coeff may also be optionally (and notionally) negated before it is used, by
setting the negate parameter to −1.

int fmpz_bit_unpack(fmpz_t coeff , mp_limb_t * arr ,

mp_bitcnt_t shift , mp_bitcnt_t bits , int negate , int

borrow)

A bit field of the given number of bits is extracted from arr, starting after shift bits,
and placed into coeff. An optional borrow of 1 may be added to the coefficient. If the
result is negative, a borrow of 1 is returned. Finally, the resulting coeff may be negated
by setting the negate parameter to −1.

The value of shift is expected to be less than FLINT_BITS.

void fmpz_bit_unpack_unsigned(fmpz_t coeff , const mp_limb_t

* arr , mp_bitcnt_t shift , mp_bitcnt_t bits)

A bit field of the given number of bits is extracted from arr, starting after shift bits,
and placed into coeff.

The value of shift is expected to be less than FLINT_BITS.

9.13 Logic Operations

void fmpz_complement(fmpz_t r, const fmpz_t f)

The variable r is set to the ones-complement of f.

void fmpz_clrbit(fmpz_t f, ulong i)
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Sets the ith bit in f to zero.

void fmpz_combit(fmpz_t f, ulong i)

Complements the ith bit in f.

void fmpz_and(fmpz_t r, const fmpz_t a, const fmpz_t b)

Sets r to the bit-wise logical and of a and b.

void fmpz_or(fmpz_t r, const fmpz_t a, const fmpz_t b)

Sets r to the bit-wise logical (inclusive) or of a and b.

void fmpz_xor(fmpz_t r, const fmpz_t a, const fmpz_t b)

Sets r to the bit-wise logical exclusive or of a and b.

int fmpz_popcnt(const fmpz_t a)

Returns the number of ’1’ bits in the given Z (aka Hamming weight or population count).
The return value is undefined if the input is negative.

9.14 Chinese remaindering

The following functions can be used to reconstruct an integer from its residues modulo
a set of small (word-size) prime numbers. The first two functions, fmpz_CRT_ui and
fmpz_CRT_ui_unsigned, are easy to use and allow building the result one residue at a
time, which is useful when the number of needed primes is not known in advance.

The remaining functions support performing the modular reductions and reconstruc-
tion using balanced subdivision. This greatly improves efficiency for large integers but
assumes that the basis of primes is known in advance. The user must precompute a comb

structure and temporary working space with fmpz_comb_init and fmpz_comb_temp_init,
and free this data afterwards.

For simple demonstration programs showing how to use the CRT functions, see crt.c

and multi_crt.c in the examples directory.

void fmpz_CRT_ui(fmpz_t out , fmpz_t r1, fmpz_t m1, ulong

r2, ulong m2, int sign)

Uses the Chinese Remainder Theorem to compute the unique integer 0 ≤ x < M (if sign
= 0) or −M/2 < x ≤M/2 (if sign = 1) congruent to r1 modulo m1 and r2 modulo m2,
where where M = m1 ×m2. The result x is stored in out.

It is assumed that m1 and m2 are positive integers greater than 1 and coprime.

If sign = 0, it is assumed that 0 ≤ r1 < m1 and 0 ≤ r2 < m2. Otherwise, it is assumed
that −m1 ≤ r1 < m1 and 0 ≤ r2 < m2.

void fmpz_multi_mod_ui(mp_limb_t * out , const fmpz_t in,

const fmpz_comb_t comb , fmpz_comb_temp_t temp)

Reduces the multiprecision integer in modulo each of the primes stored in the comb

structure. The array out will be filled with the residues modulo these primes. The
structure temp is temporary space which must be provided by fmpz_comb_temp_init

and cleared by fmpz_comb_temp_clear.

void fmpz_multi_CRT_ui_unsigned(fmpz_t output , const

mp_limb_t * residues , const fmpz_comb_t comb ,

fmpz_comb_temp_t temp)
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This function takes a set of residues modulo the list of primes contained in the comb struc-
ture and reconstructs the unique unsigned multiprecision integer modulo the product of
the primes which has these residues modulo the corresponding primes. The structure
temp is temporary space which must be provided by fmpz_comb_temp_init and cleared
by fmpz_comb_temp_clear.

void fmpz_multi_CRT_ui(fmpz_t output , const mp_limb_t *

residues , const fmpz_comb_t comb , fmpz_comb_temp_t temp)

This function takes a set of residues modulo the list of primes contained in the comb

structure and reconstructs a multiprecision integer modulo the product of the primes
which has these residues modulo the corresponding primes.

If N is the product of all the primes then out is normalised to be in the range [0, N) if sign
= 0 and the range [−(N−1)/2, N/2] if sign = 1. The array temp is temporary space which
must be provided by fmpz_comb_temp_init and cleared by fmpz_comb_temp_clear.

void fmpz_comb_init(fmpz_comb_t comb , mp_limb_t * primes ,

long num_primes)

Initialises a comb structure for multimodular reduction and recombination. The array
primes is assumed to contain num_primes primes each of FLINT_BITS - 1 bits. Modular
reductions and recombinations will be done modulo this list of primes. The primes array
must not be free’d until the comb structure is no longer required and must be cleared
by the user.

void fmpz_comb_temp_init(fmpz_comb_temp_t temp , const

fmpz_comb_t comb)

Creates temporary space to be used by multimodular and CRT functions based on an
initialised comb structure.

void fmpz_comb_clear(fmpz_comb_t comb)

Clears the given comb structure, releasing any memory it uses.

void fmpz_comb_temp_clear(fmpz_comb_temp_t temp)

Clears temporary space temp used by multimodular and CRT functions using the given
comb structure.
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Vectors over Z

10.1 Memory management

fmpz * _fmpz_vec_init(long len)

Returns an initialised vector of fmpz’s of given length.

void _fmpz_vec_clear(fmpz * vec , long len)

Clears the entries of (vec, len) and frees the space allocated for vec.

10.2 Randomisation

void _fmpz_vec_randtest(fmpz * f, flint_rand_t state , long

len , mp_bitcnt_t bits)

Sets the entries of a vector of the given length to random integers with up to the given
number of bits per entry.

void _fmpz_vec_randtest_unsigned(fmpz * f, flint_rand_t

state , long len , mp_bitcnt_t bits)

Sets the entries of a vector of the given length to random unsigned integers with up to
the given number of bits per entry.

10.3 Bit sizes and norms

long _fmpz_vec_max_bits(const fmpz * vec , long len)

If b is the maximum number of bits of the absolute value of any coefficient of vec, then
if any coefficient of vec is negative, −b is returned, else b is returned.

long _fmpz_vec_max_bits_ref(const fmpz * vec , long len)

If b is the maximum number of bits of the absolute value of any coefficient of vec, then
if any coefficient of vec is negative, −b is returned, else b is returned. This is a slower
reference implementation of _fmpz_vec_max_bits.

ulong _fmpz_vec_max_limbs(const fmpz * vec , long len)



34 fmpz vec

Returns the maximum number of limbs needed to store the absolute value of any entry
in (vec, len). If all entries are zero, returns zero.

void _fmpz_vec_height(fmpz_t height , const fmpz * vec , long

len)

Computes the height of (vec, len), defined as the largest of the absolute values the
coefficients. Equivalently, this gives the infinity norm of the vector. If len is zero, the
height is 0.

long _fmpz_vec_height_index(const fmpz * vec , long len)

Returns the index of an entry of maximum absolute value in the vector. The the length
must be at least 1.

10.4 Input and output

int _fmpz_vec_fread(FILE * file , fmpz ** vec , long * len)

Reads a vector from the stream file and stores it at *vec. The format is the same as
the output format of _fmpz_vec_fprint(), followed by either any character or the end
of the file.

The interpretation of the various input arguments depends on whether or not *vec is
NULL:

If *vec == NULL, the value of *len on input is ignored. Once the length has been read
from file, *len is set to that value and a vector of this length is allocated at *vec.
Finally, *len coefficients are read from the input stream. In case of a file or parsing
error, clears the vector and sets *vec and *len to NULL and 0, respectively.

Otherwise, if *vec != NULL, it is assumed that (*vec, *len) is a properly initialised
vector. If the length on the input stream does not match *len, a parsing error is raised.
Attempts to read the right number of coefficients from the input stream. In case of a
file or parsing error, leaves the vector (*vec, *len) in its current state.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpz_vec_read(fmpz ** vec , long * len)

Reads a vector from stdin and stores it at *vec.

For further details, see _fmpz_vec_fread().

int _fmpz_vec_fprint(FILE * file , const fmpz * vec , long

len)

Prints the vector of given length to the stream file. The format is the length followed
by two spaces, then a space separated list of coefficients. If the length is zero, only 0 is
printed.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpz_vec_print(const fmpz * vec , long len)

Prints the vector of given length to stdout.

For further details, see _fmpz_vec_fprint().

10.5 Conversions
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void _fmpz_vec_get_nmod_vec(mp_ptr res , const fmpz * poly ,

long len , nmod_t mod)

Reduce the coefficients of (poly, len) modulo the given modulus and set (res, len)

to the result.

void _fmpz_vec_set_nmod_vec(fmpz * res , mp_srcptr poly ,

long len , nmod_t mod)

Set the coefficients of (res, len) to the symmetric modulus of the coefficients of
(poly, len), i.e. convert the given coefficients modulo the given modulus n to their
signed integer representatives in the range [−n/2, n/2).

long _fmpz_vec_get_fft(mp_limb_t ** coeffs_f , const fmpz *

coeffs_m , long l, long length)

Convert the vector of coeffs coeffs_m to an fft vector coeffs_f of the given length

with l limbs per coefficient with an additional limb for overflow.

void _fmpz_vec_set_fft(fmpz * coeffs_m , long length ,

mp_limb_t ** coeffs_f , long limbs , long sign)

Convert an fft vector coeffs_f of the given length to a vector of fmpz’s. Each is
assumed to be the given number of limbs long with an additional limb for overflow. If
the output coefficients are to be signed then set sign, otherwise clear it.

10.6 Assignment and basic manipulation

void _fmpz_vec_set(fmpz * vec1 , const fmpz * vec2 , long

len2)

Makes a copy of (vec2, len2) into vec1.

void _fmpz_vec_swap(fmpz * vec1 , fmpz * vec2 , long len2)

Swaps the integers in (vec1, len2) and (vec2, len2).

void _fmpz_vec_zero(fmpz * vec , long len)

Zeros the entries of (vec, len).

void _fmpz_vec_neg(fmpz * vec1 , const fmpz * vec2 , long

len2)

Negates (vec2, len2) and places it into vec1.

10.7 Comparison

int _fmpz_vec_equal(const fmpz * vec1 , const fmpz * vec2 ,

long len)

Compares two vectors of the given length and returns 1 if they are equal, otherwise
returns 0.

int _fmpz_vec_is_zero(const fmpz * vec , long len)

Returns 1 if (vec, len) is zero, and 0 otherwise.

10.8 Sorting

void _fmpz_vec_sort(fmpz * vec , long len)
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Sorts the coefficients of vec in ascending order.

10.9 Addition and subtraction

void _fmpz_vec_add(fmpz * res , const fmpz * vec1 ,

const fmpz * vec2 , long len2)

Sets (res, len2) to the sum of (vec1, len2) and (vec2, len2).

void _fmpz_vec_sub(fmpz * res , const fmpz * vec1 ,

const fmpz * vec2 , long len2)

Sets (res, len2) to (vec1, len2) minus (vec2, len2).

10.10 Scalar multiplication and division

void _fmpz_vec_scalar_mul_fmpz(fmpz * vec1 , const fmpz *

vec2 , long len2 , const fmpz_t x)

Sets (vec1, len2) to (vec2, len2) multiplied by c, where c is an fmpz_t.

void _fmpz_vec_scalar_mul_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Sets (vec1, len2) to (vec2, len2) multiplied by c, where c is a signed long.

void _fmpz_vec_scalar_mul_ui(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong c)

Sets (vec1, len2) to (vec2, len2) multiplied by c, where c is an unsigned long.

void _fmpz_vec_scalar_mul_2exp(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong exp)

Sets (vec1, len2) to (vec2, len2) multiplied by 2^exp.

void _fmpz_vec_scalar_divexact_fmpz(fmpz * vec1 , const fmpz

* vec2 , long len2 , const fmpz_t x)

Sets (vec1, len2) to (vec2, len2) divided by x, where the division is assumed to be
exact for every entry in vec2.

void _fmpz_vec_scalar_divexact_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Sets (vec1, len2) to (vec2, len2) divided by x, where the division is assumed to be
exact for every entry in vec2.

void _fmpz_vec_scalar_divexact_ui(fmpz * vec1 , const fmpz *

vec2 , ulong len2 , ulong c)

Sets (vec1, len2) to (vec2, len2) divided by x, where the division is assumed to be
exact for every entry in vec2.

void _fmpz_vec_scalar_fdiv_q_fmpz(fmpz * vec1 , const fmpz *

vec2 , long len2 , const fmpz_t c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding down towards minus infinity
whenever the division is not exact.
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void _fmpz_vec_scalar_fdiv_q_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding down towards minus infinity
whenever the division is not exact.

void _fmpz_vec_scalar_fdiv_q_ui(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding down towards minus infinity
whenever the division is not exact.

void _fmpz_vec_scalar_fdiv_q_2exp(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong exp)

Sets (vec1, len2) to (vec2, len2) divided by 2^exp, rounding down towards minus
infinity whenever the division is not exact.

void _fmpz_vec_scalar_tdiv_q_fmpz(fmpz * vec1 , const fmpz *

vec2 , long len2 , const fmpz_t c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding towards zero whenever the
division is not exact.

void _fmpz_vec_scalar_tdiv_q_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding towards zero whenever the
division is not exact.

void _fmpz_vec_scalar_tdiv_q_ui(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong c)

Sets (vec1, len2) to (vec2, len2) divided by c, rounding towards zero whenever the
division is not exact.

void _fmpz_vec_scalar_tdiv_q_2exp(fmpz * vec1 , const fmpz *

vec2 , long len2 , ulong exp)

Sets (vec1, len2) to (vec2, len2) divided by 2^exp, rounding down towards zero
whenever the division is not exact.

void _fmpz_vec_scalar_addmul_fmpz(fmpz * vec1 , const fmpz *

vec2 , long len2 , const fmpz_t c)

Adds (vec2, len2) times c to (vec1, len2), where c is a fmpz_t.

void _fmpz_vec_scalar_addmul_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Adds (vec2, len2) times c to (vec1, len2), where c is a signed long.

void _fmpz_vec_scalar_addmul_si_2exp(fmpz * vec1 , const

fmpz * vec2 , long len2 , long c, ulong exp)

Adds (vec2, len2) times c * 2^exp to (vec1, len2), where c is a signed long.

void _fmpz_vec_scalar_submul_fmpz(fmpz * vec1 , const fmpz *

vec2 , long len2 , const fmpz_t x)

Subtracts (vec2, len2) times c from (vec1, len2), where c is a fmpz_t.
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void _fmpz_vec_scalar_submul_si(fmpz * vec1 , const fmpz *

vec2 , long len2 , long c)

Subtracts (vec2, len2) times c from (vec1, len2), where c is a signed long.

void _fmpz_vec_scalar_submul_si_2exp(fmpz * vec1 , const

fmpz * vec2 , long len2 , long c, ulong e)

Subtracts (vec2, len2) times c× 2e from (vec1, len2), where c is a signed long.

10.11 Sums and products

void _fmpz_vec_sum(fmpz_t res , const fmpz * vec , long len)

Sets res to the sum of the entries in (vec, len). Aliasing of res with the entries in
vec is not permitted.

void _fmpz_vec_prod(fmpz_t res , const fmpz * vec , long len)

Sets res to the product of the entries in (vec, len). Aliasing of res with the entries
in vec is not permitted. Uses binary splitting.

10.12 Reduction mod p

void _fmpz_vec_scalar_mod_fmpz(fmpz *res , const fmpz *vec ,

long len , const fmpz_t p)

Reduces all entries in (vec, len) modulo p > 0.

void _fmpz_vec_scalar_smod_fmpz(fmpz *res , const fmpz *vec ,

long len , const fmpz_t p)

Reduces all entries in (vec, len) modulo p > 0, choosing the unique representative in
(−p/2, p/2].

10.13 Gaussian content

void _fmpz_vec_content(fmpz_t res , const fmpz * vec , long

len)

Sets res to the non-negative content of the entries in vec. The content of a zero vector,
including the case when the length is zero, is defined to be zero.

void _fmpz_vec_lcm(fmpz_t res , const fmpz * vec , long len)

Sets res to the nonnegative least common multiple of the entries in vec. The least
common multiple is zero if any entry in the vector is zero. The least common multiple
of a length zero vector is defined to be one.
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Factorisation in Z

11.1 Factoring integers

An integer may be represented in factored form using the fmpz_factor_t data structure.
This consists of two fmpz vectors representing bases and exponents, respectively. Canon-
ically, the bases will be prime numbers sorted in ascending order and the exponents will
be positive.

A separate int field holds the sign, which may be −1, 0 or 1.

void fmpz_factor_init(fmpz_factor_t factor)

Initialises an fmpz_factor_t structure.

void fmpz_factor_clear(fmpz_factor_t factor)

Clears an fmpz_factor_t structure.

void fmpz_factor(fmpz_factor_t factor , const fmpz_t n)

Factors n into prime numbers. If n is zero or negative, the sign field of the factor object
will be set accordingly.

This currently only uses trial division, falling back to n_factor() as soon as the number
shrinks to a single limb.

void fmpz_factor_expand_iterative(fmpz_t n, const

fmpz_factor_t factor)

Evaluates an integer in factored form back to an fmpz_t.

This currently exponentiates the bases separately and multiplies them together one by
one, although much more efficient algorithms exist.





§12. fmpz mat

Matrices over Z

12.1 Introduction

The fmpz_mat_t data type represents dense matrices of multiprecision integers, imple-
mented using fmpz vectors.

No automatic resizing is performed: in general, the user must provide matrices of correct
dimensions for both input and output variables. Output variables are not allowed to be
aliased with input variables unless otherwise noted.

Matrices are indexed from zero: an m× n matrix has rows of index 0, 1, . . . ,m− 1 and
columns of index 0, 1, . . . , n− 1. One or both of m and n may be zero.

Elements of a matrix can be read or written using the fmpz_mat_entry macro, which
returns a reference to the entry at a given row and column index. This reference can be
passed as an input or output fmpz_t variable to any function in the fmpz module for
direct manipulation.

12.2 Simple example

The following example creates the 2×2 matrix A with value 2i+j at row i and column j,
computes B = A2, and prints both matrices.

#include "fmpz.h"

#include "fmpz_mat.h"

...

long i, j;

fmpz_mat_t A;

fmpz_mat_t B;

fmpz_mat_init(A, 2, 2);

fmpz_mat_init(B, 2, 2);

for (i = 0; i < 2; i++)

for (j = 0; j < 2; j++)

fmpz_set_ui(fmpz_mat_entry(A, i, j), 2*i+j);

fmpz_mat_mul(B, A, A);

printf("A = \n");

fmpz_mat_print_pretty(A);

printf("A^2 = \n");

fmpz_mat_print_pretty(B);
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fmpz_mat_clear(A);

fmpz_mat_clear(B);

The output is:

A =

[[0 1]

[2 3]]

A^2 =

[[2 3]

[6 11]]

12.3 Memory management

void fmpz_mat_init(fmpz_mat_t mat , long rows , long cols)

Initialises a matrix with the given number of rows and columns for use.

void fmpz_mat_clear(fmpz_mat_t mat)

Clears the given matrix.

12.4 Basic assignment and manipulation

void fmpz_mat_set(fmpz_mat_t mat1 , fmpz_mat_t mat2)

Sets mat1 to a copy of mat2. The dimensions of mat1 and mat2 must be the same.

void fmpz_mat_init_set(fmpz_mat_t mat , fmpz_mat_t src)

Initialises the matrix mat to the same size as src and sets it to a copy of src.

void fmpz_mat_swap(fmpz_mat_t mat1 , fmpz_mat_t mat2)

Swaps two matrices. The dimensions of mat1 and mat2 are allowed to be different.

fmpz * fmpz_mat_entry(fmpz_mat_t mat , long i, long j)

Returns a reference to the entry of mat at row i and column j. This reference can be
passed as an input or output variable to any function in the fmpz module for direct
manipulation.

Both i and j must not exceed the dimensions of the matrix.

This function is implemented as a macro.

void fmpz_mat_zero(fmpz_mat_t mat)

Sets all entries of mat to 0.

void fmpz_mat_one(fmpz_mat_t mat)

Sets mat to the unit matrix, having ones on the main diagonal and zeroes elsewhere. If
mat is nonsquare, it is set to the truncation of a unit matrix.

12.5 Random matrix generation

void fmpz_mat_randbits(fmpz_mat_t mat , flint_rand_t state ,

mp_bitcnt_t bits)
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Sets the entries of mat to random signed integers whose absolute values have the given
number of binary bits.

void fmpz_mat_randtest(fmpz_mat_t mat , flint_rand_t state ,

mp_bitcnt_t bits)

Sets the entries of mat to random signed integers whose absolute values have a random
number of bits up to the given number of bits inclusive.

void fmpz_mat_randintrel(fmpz_mat_t mat , flint_rand_t

state , mp_bitcnt_t bits)

Sets mat to be a random integer relations matrix, with signed entries up to the given
number of bits.

The number of columns of mat must be equal to one more than the number of rows. The
format of the matrix is a set of random integers in the left hand column and an identity
matrix in the remaining square submatrix.

void fmpz_mat_randsimdioph(fmpz_mat_t mat , flint_rand_t

state , mp_bitcnt_t bits , mp_bitcnt_t bits2)

Sets mat to a random simultaneous diophantine matrix.

The matrix must be square. The top left entry is set to 2^bits2. The remainder of
that row is then set to signed random integers of the given number of binary bits. The
remainder of the first column is zero. Running down the rest of the diagonal are the
values 2^bits with all remaining entries zero.

void fmpz_mat_randntrulike(fmpz_mat_t mat , flint_rand_t

state , mp_bitcnt_t bits , ulong q)

Sets a square matrix mat of even dimension to a random NTRU like matrix.

The matrix is broken into four square submatrices. The top left submatrix is set to
the identity. The bottom left submatrix is set to the zero matrix. The bottom right
submatrix is set to q times the identity matrix. Finally the top right submatrix has the
following format. A random vector h of length r/2 is created, with random signed entries
of the given number of bits. Then entry (i, j) of the submatrix is set to h[i+ j mod r/2].

void fmpz_mat_randntrulike2(fmpz_mat_t mat , flint_rand_t

state , mp_bitcnt_t bits , ulong q)

Sets a square matrix mat of even dimension to a random NTRU like matrix.

The matrix is broken into four square submatrices. The top left submatrix is set to
q times the identity matrix. The top right submatrix is set to the zero matrix. The
bottom right submatrix is set to the identity matrix. Finally the bottom left submatrix
has the following format. A random vector h of length r/2 is created, with random
signed entries of the given number of bits. Then entry (i, j) of the submatrix is set to
h[i+ j mod r/2].

void fmpz_mat_randajtai(fmpz_mat_t mat , flint_rand_t state ,

double alpha)

Sets a square matrix mat to a random ajtai matrix. The diagonal entries (i, i) are set
to a random entry in the range [1, 2b−1] inclusive where b = b(2r − i)αc for some double
parameter α. The entries below the diagonal in column i are set to a random entry in
the range (−2b + 1, 2b− 1) whilst the entries to the right of the diagonal in row i are set
to zero.
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int fmpz_mat_randpermdiag(fmpz_mat_t mat , flint_rand_t

state , const fmpz * diag , long n)

Sets mat to a random permutation of the rows and columns of a given diagonal matrix.
The diagonal matrix is specified in the form of an array of the n initial entries on the
main diagonal.

The return value is 0 or 1 depending on whether the permutation is even or odd.

void fmpz_mat_randrank(fmpz_mat_t mat , flint_rand_t state ,

long rank , mp_bitcnt_t bits)

Sets mat to a random sparse matrix with the given rank, having exactly as many non-
zero elements as the rank, with the nonzero elements being random integers of the given
bit size.

The matrix can be transformed into a dense matrix with unchanged rank by subsequently
calling fmpz_mat_randops().

void fmpz_mat_randdet(fmpz_mat_t mat , flint_rand_t state ,

const fmpz_t det)

Sets mat to a random sparse matrix with minimal number of nonzero entries such that
its determinant has the given value.

Note that the matrix will be zero if det is zero. In order to generate a non-zero singular
matrix, the function fmpz_mat_randrank() can be used.

The matrix can be transformed into a dense matrix with unchanged determinant by
subsequently calling fmpz_mat_randops().

void fmpz_mat_randops(fmpz_mat_t mat , flint_rand_t state ,

long count)

Randomises mat by performing elementary row or column operations. More precisely,
at most count random additions or subtractions of distinct rows and columns will be
performed. This leaves the rank (and for square matrices, the determinant) unchanged.

12.6 Input and output

int fmpz_mat_fprint(FILE * file , const fmpz_mat_t mat)

Prints the given matrix to the stream file. The format is the number of rows, a space,
the number of columns, two spaces, then a space separated list of coefficients, one row
after the other.

In case of success, returns a positive value; otherwise, returns a non-positive value.

int fmpz_mat_fprint_pretty(FILE * file , const fmpz_mat_t

mat)

Prints the given matrix to the stream file. The format is an opening square bracket
then on each line a row of the matrix, followed by a closing square bracket. Each row
is written as an opening square bracket followed by a space separated list of coefficients
followed by a closing square bracket.

In case of success, returns a positive value; otherwise, returns a non-positive value.

int fmpz_mat_print(const fmpz_mat_t mat)

Prints the given matrix to the stream stdout. For further details, see fmpz_mat_fprint().

int fmpz_mat_print_pretty(const fmpz_mat_t mat)
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Prints the given matrix to stdout. For further details, see fmpz_mat_fprint_pretty().

int fmpz_mat_fread(FILE* file , fmpz_mat_t mat)

Reads a matrix from the stream file, storing the result in mat. The expected format is
the number of rows, a space, the number of columns, two spaces, then a space separated
list of coefficients, one row after the other.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.

int fmpz_mat_read(fmpz_mat_t mat)

Reads a matrix from stdin, storing the result in mat.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.

12.7 Comparison

int fmpz_mat_equal(fmpz_mat_t mat1 , fmpz_mat_t mat2)

Returns a non-zero value if mat1 and mat2 have the same dimensions and entries, and
zero otherwise.

int fmpz_mat_is_zero(fmpz_mat_t mat)

Returns a non-zero value if all entries mat are zero, and otherwise returns zero.

int fmpz_mat_is_empty(fmpz_mat_t mat)

Returns a non-zero value if the number of rows or the number of columns in mat is zero,
and otherwise returns zero.

int fmpz_mat_is_square(fmpz_mat_t mat)

Returns a non-zero value if the number of rows is equal to the number of columns in
mat, and otherwise returns zero.

12.8 Transpose

void fmpz_mat_transpose(fmpz_mat_t B, const fmpz_mat_t A)

Sets B to AT , the transpose of A. Dimensions must be compatible. A and B are allowed
to be the same object if A is a square matrix.

12.9 Modular reduction and reconstruction

void fmpz_mat_get_nmod_mat(nmod_mat_t Amod , fmpz_mat_t A)

Sets the entries of Amod to the entries of A reduced by the modulus of Amod.

void fmpz_mat_set_nmod_mat(fmpz_mat_t A, const nmod_mat_t

Amod)

Sets the entries of Amod to the residues in Amod, normalised to the interval −m/2 <=
r < m/2 where m is the modulus.

void fmpz_mat_set_nmod_mat_unsigned(fmpz_mat_t A, const

nmod_mat_t Amod)
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Sets the entries of Amod to the residues in Amod, normalised to the interval 0 <= r < m
where m is the modulus.

void fmpz_mat_CRT_ui(fmpz_mat_t res , const fmpz_mat_t mat1 ,

const fmpz_t m1, const nmod_mat_t mat2 , int sign)

Given mat1 with entries modulo m and mat2 with modulus n, sets res to the CRT
reconstruction modulo mn with entries satisfying −mn/2 <= c < mn/2 (if sign = 1) or
0 <= c < mn (if sign = 0).

void fmpz_mat_multi_mod_ui_precomp(nmod_mat_t * residues ,

long nres , const fmpz_mat_t mat , fmpz_comb_t comb ,

fmpz_comb_temp_t temp)

Sets each of the nres matrices in residues to mat reduced modulo the modulus of the
respective matrix, given precomputed comb and comb_temp structures.

void fmpz_mat_multi_mod_ui(nmod_mat_t * residues , long

nres , const fmpz_mat_t mat)

Sets each of the nres matrices in residues to mat reduced modulo the modulus of the
respective matrix.

This function is provided for convenience purposes. For reducing or reconstructing
multiple integer matrices over the same set of moduli, it is faster to use
fmpz_mat_multi_mod_precomp.

void fmpz_mat_multi_CRT_ui_precomp(fmpz_mat_t mat ,

nmod_mat_t * const residues , long nres , fmpz_comb_t

comb , fmpz_comb_temp_t temp , int sign)

Reconstructs mat from its images modulo the nres matrices in residues, given precom-
puted comb and comb_temp structures.

void fmpz_mat_multi_CRT_ui(fmpz_mat_t mat , nmod_mat_t *

const residues , long nres , int sign)

Reconstructs mat from its images modulo the nres matrices in residues.

This function is provided for convenience purposes. For reducing or reconstructing
multiple integer matrices over the same set of moduli, it is faster to use
fmpz_mat_multi_CRT_ui_precomp.

12.10 Addition and subtraction

void fmpz_mat_add(fmpz_mat_t C, const fmpz_mat_t A, const

fmpz_mat_t B)

Sets C to the elementwise sum A + B. All inputs must be of the same size. Aliasing is
allowed.

void fmpz_mat_sub(fmpz_mat_t C, const fmpz_mat_t A, const

fmpz_mat_t B)

Sets C to the elementwise difference A−B. All inputs must be of the same size. Aliasing
is allowed.

void fmpz_mat_neg(fmpz_mat_t B, const fmpz_mat_t A)
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Sets B to the elementwise negation of A. Both inputs must be of the same size. Aliasing
is allowed.

12.11 Matrix-scalar arithmetic

void fmpz_mat_scalar_mul_si(fmpz_mat_t B, const fmpz_mat_t

A, long c)

void fmpz_mat_scalar_mul_ui(fmpz_mat_t B, const fmpz_mat_t

A, ulong c)

void fmpz_mat_scalar_mul_fmpz(fmpz_mat_t B, const

fmpz_mat_t A, const fmpz_t c)

Set A = B*c where B is an fmpz_mat_t and c is a scalar respectively of type long,
unsigned long, or fmpz_t. The dimensions of A and B must be compatible.

void fmpz_mat_scalar_addmul_si(fmpz_mat_t B, const

fmpz_mat_t A, long c)

void fmpz_mat_scalar_addmul_ui(fmpz_mat_t B, const

fmpz_mat_t A, ulong c)

void fmpz_mat_scalar_addmul_fmpz(fmpz_mat_t B, const

fmpz_mat_t A, const fmpz_t c)

Set A = A + B*c where B is an fmpz_mat_t and c is a scalar respectively of type long,
unsigned long, or fmpz_t. The dimensions of A and B must be compatible.

void fmpz_mat_scalar_submul_si(fmpz_mat_t B, const

fmpz_mat_t A, long c)

void fmpz_mat_scalar_submul_ui(fmpz_mat_t B, const

fmpz_mat_t A, ulong c)

void fmpz_mat_scalar_submul_fmpz(fmpz_mat_t B, const

fmpz_mat_t A, const fmpz_t c)

Set A = A - B*c where B is an fmpz_mat_t and c is a scalar respectively of type long,
unsigned long, or fmpz_t. The dimensions of A and B must be compatible.

void fmpz_mat_scalar_addmul_nmod_mat_fmpz(fmpz_mat_t B,

const nmod_mat_t A, const fmpz_t c)

void fmpz_mat_scalar_addmul_nmod_mat_ui(fmpz_mat_t B, const

nmod_mat_t A, ulong c)

Set A = A + B*c where B is an nmod_mat_t and c is a scalar respectively of type
unsigned long or fmpz_t. The dimensions of A and B must be compatible.

void fmpz_mat_scalar_divexact_si(fmpz_mat_t B, const

fmpz_mat_t A, long c)

void fmpz_mat_scalar_divexact_ui(fmpz_mat_t B, const

fmpz_mat_t A, ulong c)

void fmpz_mat_scalar_divexact_fmpz(fmpz_mat_t B, const

fmpz_mat_t A, const fmpz_t c)



48 fmpz mat

Set A = B / c, where B is an fmpz_mat_t and c is a scalar respectively of type long,
unsigned long, or fmpz_t, which is assumed to divide all elements of B exactly.

12.12 Matrix multiplication

void fmpz_mat_mul(fmpz_mat_t C, const fmpz_mat_t A, const

fmpz_mat_t B)

Sets C to the matrix product C = AB. The matrices must have compatible dimensions
for matrix multiplication. Aliasing is allowed.

This function automatically switches between classical and multimodular multiplication,
based on a heuristic comparison of the dimensions and entry sizes.

void fmpz_mat_mul_classical(fmpz_mat_t C, const fmpz_mat_t

A, const fmpz_mat_t B)

Sets C to the matrix product C = AB computed using classical matrix algorithm.

The matrices must have compatible dimensions for matrix multiplication. No aliasing is
allowed.

void _fmpz_mat_mul_multi_mod(fmpz_mat_t C, fmpz_mat_t A,

fmpz_mat_t B, long bits)

void fmpz_mat_mul_multi_mod(fmpz_mat_t C, fmpz_mat_t A,

fmpz_mat_t B)

Sets C to the matrix product C = AB computed using a multimodular algorithm. C
is computed modulo several small prime numbers and reconstructed using the Chinese
Remainder Theorem. This generally becomes more efficient than classical multiplication
for large matrices.

The bits parameter is a bound for the bit size of largest element of C, or twice the
absolute value of the largest element if any elements of C are negative. The function
fmpz_mat_mul_multi_mod calculates a rigorous bound automatically. If the default
bound is too pessimistic, _fmpz_mat_mul_multi_mod can be used with a custom bound.

The matrices must have compatible dimensions for matrix multiplication. No aliasing is
allowed.

12.13 Inverse

int fmpz_mat_inv(fmpz_mat_t Ainv , fmpz_t den , const

fmpz_mat_t A)

Sets (Ainv, den) to the inverse matrix of A. Returns 1 if A is nonsingular and 0 if A is
singular. Aliasing of Ainv and A is allowed.

The denominator is not guaranteed to be minimal, but is guaranteed to be a divisor of
the determinant of A.

This function uses a direct formula for matrices of size two or less, and otherwise solves
for the identity matrix using fraction-free LU decomposition.

12.14 Trace

void fmpz_mat_trace(fmpz_t trace , const fmpz_mat_t mat)
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Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The
matrix is required to be square.

12.15 Determinant

void fmpz_mat_det(fmpz_t det , const fmpz_mat_t A)

Sets det to the determinant of the square matrix A. The matrix of dimension 0 × 0 is
defined to have determinant 1.

This function automatically chooses between fmpz_mat_det_cofactor,
fmpz_mat_det_bareiss, fmpz_mat_det_modular and
fmpz_mat_det_modular_accelerated (with proved = 1), depending on the size of the
matrix and its entries.

void fmpz_mat_det_cofactor(fmpz_t det , const fmpz_mat_t A)

Sets det to the determinant of the square matrix A computed using direct cofactor
expansion. This function only supports matrices up to size 4× 4.

void fmpz_mat_det_bareiss(fmpz_t det , const fmpz_mat_t A)

Sets det to the determinant of the square matrix A computed using the Bareiss algo-
rithm. A copy of the input matrix is row reduced using fraction-free Gaussian elimina-
tion, and the determinant is read off from the last element on the main diagonal.

void fmpz_mat_det_modular(fmpz_t det , const fmpz_mat_t A,

int proved)

Sets det to the determinant of the square matrix A (if proved = 1), or a probabilistic
value for the determinant (proved = 0), computed using a multimodular algorithm.

The determinant is computed modulo several small primes and reconstructed using the
Chinese Remainder Theorem. With proved = 1, sufficiently many primes are chosen
to satisfy the bound computed by fmpz_mat_det_bound. With proved = 0, the de-
terminant is considered determined if it remains unchanged modulo several consecutive
primes (currently if their product exceeds 2100).

void fmpz_mat_det_modular_accelerated(fmpz_t det , const

fmpz_mat_t A, int proved)

Sets det to the determinant of the square matrix A (if proved = 1), or a probabilistic
value for the determinant (proved = 0), computed using a multimodular algorithm.

This function uses the same basic algorithm as fmpz_mat_det_modular, but instead
of computing det(A) directly, it generates a divisor d of det(A) and then computes
x = det(A)/d modulo several small primes not dividing d. This typically accelerates the
computation by requiring fewer primes for large matrices, since d with high probability
will be nearly as large as the determinant. This trick is described in [1].

void fmpz_mat_det_modular_given_divisor(fmpz_t det , const

fmpz_mat_t A, const fmpz_t d, int proved)

Given a positive divisor d of det(A), sets det to the determinant of the square matrix
A (if proved = 1), or a probabilistic value for the determinant (proved = 0), computed
using a multimodular algorithm.

void fmpz_mat_det_bound(fmpz_t bound , const fmpz_mat_t A)

Sets bound to a nonnegative integer B such that |det(A)| ≤ B. Assumes A to be a square
matrix. The bound is computed from the Hadamard inequality |det(A)| ≤

∏
‖ai‖2

where the product is taken over the rows ai of A.
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void fmpz_mat_det_divisor(fmpz_t d, const fmpz_mat_t A)

Sets d to some positive divisor of the determinant of the given square matrix A, if the
determinant is nonzero. If |det(A)| = 0, d will always be set to zero.

A divisor is obtained by solving Ax = b for an arbitrarily chosen right-hand side b using
Dixon’s algorithm and computing the least common multiple of the denominators in x.
This yields a divisor d such that |det(A)|/d is tiny with very high probability.

12.16 Rank

long fmpz_mat_rank(const fmpz_mat_t A)

Returns the rank, that is, the number of linearly independent columns (equivalently,
rows), of A. The rank is computed by row reducing a copy of A.

12.17 Nonsingular solving

The following functions allow solving matrix-matrix equationsAX = B where the system
matrix A is square and has full rank. The solving is implicitly done over the field of
rational numbers: except where otherwise noted, an integer matrix X̂ and a separate
denominator d (den) are computed such that A(X̂/d) = b, equivalently such that AX̂ =
bd holds over the integers.

No guarantee is made that the numerators and denominator are reduced to lowest terms,
but the denominator is always guaranteed to be a divisor of the determinant of A. If A
is singular, den will be set to zero and the elements of the solution vector or matrix will
have undefined values. No aliasing is allowed between arguments.

int fmpz_mat_solve(fmpz_mat_t X, fmpz_t den , const

fmpz_mat_t A, const fmpz_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

This function uses Cramer’s rule for small systems and fraction-free LU decomposition
followed by fraction-free forward and back substitution for larger systems.

Note that for very large systems, it is faster to compute a modular solution using
fmpz_mat_solve_dixon.

int fmpz_mat_solve_fflu(fmpz_mat_t X, fmpz_t den , const

fmpz_mat_t A, const fmpz_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

Uses fraction-free LU decomposition followed by fraction-free forward and back substi-
tution.

void fmpz_mat_solve_fflu_precomp(fmpz_mat_t X, const long *

perm , const fmpz_mat_t FFLU , const fmpz_mat_t B)

Performs fraction-free forward and back substitution given a precomputed fraction-free
LU decomposition and corresponding permutation.

int fmpz_mat_solve_cramer(fmpz_mat_t X, fmpz_t den , const

fmpz_mat_t A, const fmpz_mat_t B)
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Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B × den. Returns 1 if A is nonsingular and 0 if A is singular.

Uses Cramer’s rule. Only systems of size up to 3× 3 are allowed.

void fmpz_mat_solve_bound(fmpz_t N, fmpz_t D, const

fmpz_mat_t A, const fmpz_mat_t B)

Assuming that A is nonsingular, computes integers N and D such that the reduced
numerators and denominators n/d in A−1B satisfy the bounds 0 ≤ |n| ≤ N and 0 ≤
d ≤ D.

int fmpz_mat_solve_dixon(fmpz_mat_t X, fmpz_t M, const

fmpz_mat_t A, const fmpz_mat_t B)

Solves AX = B given a nonsingular square matrix A and a matrix B of compatible
dimensions, using a modular algorithm. In particular, Dixon’s p-adic lifting algorithm
is used (currently a non-adaptive version)

This is generally the preferred method for large dimensions.

More precisely, this function computes an integer M and an integer matrix X such that
AX = B mod M and such that all the reduced numerators and denominators of the
elements x = p/q in the full solution satisfy 2|p|q < B. As such, the explicit rational
solution matrix can be recovered uniquely by passing the output of this function to
fmpq_mat_set_fmpz_mat_mod.

A nonzero value is returned if A is nonsingular. If A is singular, zero is returned and
the values of the output variables will be undefined.

Aliasing between input and output matrices is allowed.

12.18 Row reduction

long fmpz_mat_find_pivot_any(const fmpz_mat_t mat , long

start_row , long end_row , long c)

Attempts to find a pivot entry for row reduction. Returns a row index r between
start_row (inclusive) and stop_row (exclusive) such that column c in mat has a nonzero
entry on row r, or returns -1 if no such entry exists.

This implementation simply chooses the first nonzero entry from it encounters. This is
likely to be a nearly optimal choice if all entries in the matrix have roughly the same
size, but can lead to unnecessary coefficient growth if the entries vary in size.

long fmpz_mat_fflu(fmpz_mat_t B, fmpz_poly_t den , long *

perm , const fmpz_mat_t A, int rank_check)

Uses fraction-free Gaussian elimination to set (B, den) to a fraction-free LU decomposi-
tion of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with fmpz_mat_find_pivot_any. If perm is non-NULL, the
permutation of rows in the matrix will also be applied to perm.

If rank_check is set, the function aborts and returns 0 if the matrix is detected not to
have full rank without completing the elimination.

The denominator den is set to ±det(S) where S is an appropriate submatrix of A (S = A
if A is square) and the sign is decided by the parity of the permutation. Note that the
determinant is not generally the minimal denominator.

The fraction-free LU decomposition is defined in [27].
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long fmpz_mat_rref(fmpz_mat_t B, fmpz_poly_t den , const

fmpz_mat_t A)

Uses fraction-free Gauss-Jordan elimination to set (B, den) to the reduced row echelon
form of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with fmpz_mat_find_pivot_any.

The denominator den is set to ±det(S) where S is an appropriate submatrix of A (S = A
if A is square). Note that the determinant is not generally the minimal denominator.

The fraction-free Gauss-Jordan algorithm is given in [27].

12.19 Nullspace

long fmpz_mat_nullspace(fmpz_mat_t B, const fmpz_mat_t A)

Computes a basis for the right rational nullspace of A and returns the dimension of
the nullspace (or nullity). B is set to a matrix with linearly independent columns and
maximal rank such that AB = 0 (i.e. Ab = 0 for each column b in B), and the rank of
B is returned.

In general, the entries in B will not be minimal: in particular, the pivot entries in B
will generally differ from unity. B must be allocated with sufficient space to represent
the result (at most n× n where n is the number of column of A).

12.20 Echelon form

long fmpz_mat_rref_fraction_free(long * perm , fmpz_mat_t B,

fmpz_t den , const fmpz_mat_t A)

Computes an integer matrix B and an integer den such that B / den is the unique row
reduced echelon form (RREF) of A and returns the rank, i.e. the number of nonzero
rows in B.

Aliasing of B and A is allowed, with an in-place computation being more efficient. The
size of B must be the same as that of A.

The permutation order will be written to perm unless this argument is NULL. That is,
row i of the output matrix will correspond to row perm[i] of the input matrix.

The denominator will always be a divisor of the determinant of (some submatrix of) A,
but is not guaranteed to be minimal or canonical in any other sense.
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Polynomials over Z

13.1 Introduction

The fmpz_poly_t data type represents elements of Z[x]. The fmpz_poly module pro-
vides routines for memory management, basic arithmetic, and conversions from or to
other types.

Each coefficient of an fmpz_poly_t is an integer of the FLINT fmpz_t type. There
are two advantages of this model. Firstly, the fmpz_t type is memory managed, so the
user can manipulate individual coefficients of a polynomial without having to deal with
tedious memory management. Secondly, a coefficient of an fmpz_poly_t can be changed
without changing the size of any of the other coefficients.

Unless otherwise specified, all functions in this section permit aliasing between their
input arguments and between their input and output arguments.

13.2 Simple example

The following example computes the square of the polynomial 5x3 − 1.

#include "fmpz_poly.h"

...

fmpz_poly_t x, y;

fmpz_poly_init(x);

fmpz_poly_init(y);

fmpz_poly_set_coeff_ui(x, 3, 5);

fmpz_poly_set_coeff_si(x, 0, -1);

fmpz_poly_mul(y, x, x);

fmpz_poly_print(x); printf("\n");

fmpz_poly_print(y); printf("\n");

fmpz_poly_clear(x);

fmpz_poly_clear(y);

The output is:

4 -1 0 0 5

7 1 0 0 -10 0 0 25



54 fmpz poly

13.3 Definition of the fmpz poly t type

The fmpz_poly_t type is a typedef for an array of length 1 of fmpz_poly_struct’s.
This permits passing parameters of type fmpz_poly_t by reference in a manner similar
to the way GMP integers of type mpz_t can be passed by reference.

In reality one never deals directly with the struct and simply deals with objects of type
fmpz_poly_t. For simplicity we will think of an fmpz_poly_t as a struct, though in
practice to access fields of this struct, one needs to dereference first, e.g. to access the
length field of an fmpz_poly_t called poly1 one writes poly1->length.

An fmpz_poly_t is said to be normalised if either length is zero, or if the leading
coefficient of the polynomial is non-zero. All fmpz_poly functions expect their inputs to
be normalised, and unless otherwise specified they produce output that is normalised.

It is recommended that users do not access the fields of an fmpz_poly_t or its coefficient
data directly, but make use of the functions designed for this purpose, detailed below.

Functions in fmpz_poly do all the memory management for the user. One does not
need to specify the maximum length or number of limbs per coefficient in advance before
using a polynomial object. FLINT reallocates space automatically as the computation
proceeds, if more space is required. Each coefficient is also managed separately, being
resized as needed, independently of the other coefficients.

We now describe the functions available in fmpz_poly.

13.4 Memory management

void fmpz_poly_init(fmpz_poly_t poly)

Initialises poly for use, setting its length to zero. A corresponding call to
fmpz_poly_clear() must be made after finishing with the fmpz_poly_t to free the
memory used by the polynomial.

void fmpz_poly_init2(fmpz_poly_t poly , long alloc)

Initialises poly with space for at least alloc coefficients and sets the length to zero.
The allocated coefficients are all set to zero.

void fmpz_poly_realloc(fmpz_poly_t poly , long alloc)

Reallocates the given polynomial to have space for alloc coefficients. If alloc is zero
the polynomial is cleared and then reinitialised. If the current length is greater than
alloc the polynomial is first truncated to length alloc.

void fmpz_poly_fit_length(fmpz_poly_t poly , long len)

If len is greater than the number of coefficients currently allocated, then the polynomial
is reallocated to have space for at least len coefficients. No data is lost when calling this
function.

The function efficiently deals with the case where fit_length is called many times in
small increments by at least doubling the number of allocated coefficients when length
is larger than the number of coefficients currently allocated.

void fmpz_poly_clear(fmpz_poly_t poly)

Clears the given polynomial, releasing any memory used. It must be reinitialised in
order to be used again.

void _fmpz_poly_normalise(fmpz_poly_t poly)
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Sets the length of poly so that the top coefficient is non-zero. If all coefficients are
zero, the length is set to zero. This function is mainly used internally, as all functions
guarantee normalisation.

void _fmpz_poly_set_length(fmpz_poly_t poly , long newlen)

Demotes the coefficients of poly beyond newlen and sets the length of poly to newlen.

13.5 Polynomial parameters

long fmpz_poly_length(const fmpz_poly_t poly)

Returns the length of poly. The zero polynomial has length zero.

long fmpz_poly_degree(const fmpz_poly_t poly)

Returns the degree of poly, which is one less than its length.

13.6 Assignment and basic manipulation

void fmpz_poly_set(fmpz_poly_t poly1 , const fmpz_poly_t

poly2)

Sets poly1 to equal poly2.

void fmpz_poly_set_si(fmpz_poly_t poly , long c)

Sets poly to the signed integer c.

void fmpz_poly_set_ui(fmpz_poly_t poly , ulong c)

Sets poly to the unsigned integer c.

void fmpz_poly_set_fmpz(fmpz_poly_t poly , const fmpz_t c)

Sets poly to the integer c.

void fmpz_poly_set_mpz(fmpz_poly_t poly , const mpz_t c)

Sets poly to the integer c.

int _fmpz_poly_set_str(fmpz * poly , const char * str)

Sets poly to the polynomial encoded in the null-terminated string str. Assumes that
poly is allocated as a sufficiently large array suitable for the number of coefficients
present in str.

Returns 0 if no error occurred. Otherwise, returns a non-zero value, in which case the
resulting value of poly is undefined. If str is not null-terminated, calling this method
might result in a segmentation fault.

int fmpz_poly_set_str(fmpz_poly_t poly , const char * str)

Imports a polynomial from a null-terminated string. If the string str represents a valid
polynomial returns 1, otherwise returns 0.

Returns 0 if no error occurred. Otherwise, returns a non-zero value, in which case the
resulting value of poly is undefined. If str is not null-terminated, calling this method
might result in a segmentation fault.

char * _fmpz_poly_get_str(const fmpz * poly , long len)
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Returns the plain FLINT string representation of the polynomial (poly, len).

char * fmpz_poly_get_str(const fmpz_poly_t poly)

Returns the plain FLINT string representation of the polynomial poly.

char * _fmpz_poly_get_str_pretty(const fmpz * poly , long

len , const char * x)

Returns a pretty representation of the polynomial (poly, len) using the null-terminated
string x as the variable name.

char * fmpz_poly_get_str_pretty(const fmpz_poly_t poly ,

const char * x)

Returns a pretty representation of the polynomial poly using the null-terminated string
x as the variable name.

void fmpz_poly_zero(fmpz_poly_t poly)

Sets poly to the zero polynomial.

void fmpz_poly_one(fmpz_poly_t poly)

Sets poly to the constant polynomial one.

void fmpz_poly_zero_coeffs(fmpz_poly_t poly , long i, long j)

Sets the coefficients of xi, . . . , xj−1 to zero.

void fmpz_poly_swap(fmpz_poly_t poly1 , fmpz_poly_t poly2)

Swaps poly1 and poly2. This is done efficiently without copying data by swapping
pointers, etc.

void _fmpz_poly_reverse(fmpz * res , const fmpz * poly , long

len , long n)

Sets (res, n) to the reverse of (poly, n), where poly is in fact an array of length len.
Assumes that 0 < len <= n. Supports aliasing of res and poly, but the behaviour is
undefined in case of partial overlap.

void fmpz_poly_reverse(fmpz_poly_t res , const fmpz_poly_t

poly , long n)

This function considers the polynomial poly to be of length n, notionally truncating
and zero padding if required, and reverses the result. Since the function normalises its
result res may be of length less than n.

void fmpz_poly_truncate(fmpz_poly_t poly , long newlen)

If the current length of poly is greater than newlen, it is truncated to have the given
length. Discarded coefficients are not necessarily set to zero.

13.7 Randomisation

void fmpz_poly_randtest(fmpz_poly_t f, flint_rand_t state ,

long len , mp_bitcnt_t bits)

Sets f to a random polynomial with up to the given length and where each coefficient
has up to the given number of bits. The coefficients are signed randomly. One must call
flint_randinit() before calling this function.
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void fmpz_poly_randtest_unsigned(fmpz_poly_t f,

flint_rand_t state , long len , mp_bitcnt_t bits)

Sets f to a random polynomial with up to the given length and where each coefficient
has up to the given number of bits. One must call flint_randinit() before calling this
function.

void fmpz_poly_randtest_not_zero(fmpz_poly_t f,

flint_rand_t state , long len , mp_bitcnt_t bits)

As for fmpz_poly_randtest() except that len and bits may not be zero and the
polynomial generated is guaranteed not to be the zero polynomial. One must call
flint_randinit() before calling this function.

13.8 Getting and setting coefficients

void fmpz_poly_get_coeff_fmpz(fmpz_t x, const fmpz_poly_t

poly , long n)

Sets x to the nth coefficient of poly. Coefficient numbering is from zero and if n is set
to a value beyond the end of the polynomial, zero is returned.

long fmpz_poly_get_coeff_si(const fmpz_poly_t poly , long n)

Returns coefficient n of poly as a long. The result is undefined if the value does not fit
into a long. Coefficient numbering is from zero and if n is set to a value beyond the end
of the polynomial, zero is returned.

ulong fmpz_poly_get_coeff_ui(const fmpz_poly_t poly , long n)

Returns coefficient n of poly as a ulong. The result is undefined if the value does not
fit into a ulong. Coefficient numbering is from zero and if n is set to a value beyond the
end of the polynomial, zero is returned.

fmpz * fmpz_poly_get_coeff_ptr(const fmpz_poly_t poly , long

n)

Returns a reference to the coefficient of xn in the polynomial, as an fmpz *. This
function is provided so that individual coefficients can be accessed and operated on by
functions in the fmpz module. This function does not make a copy of the data, but
returns a reference to the actual coefficient.

Returns NULL when n exceeds the degree of the polynomial.

This function is implemented as a macro.

fmpz * fmpz_poly_lead(const fmpz_poly_t poly)

Returns a reference to the leading coefficient of the polynomial, as an fmpz *. This
function is provided so that the leading coefficient can be easily accessed and operated
on by functions in the fmpz module. This function does not make a copy of the data,
but returns a reference to the actual coefficient.

Returns NULL when the polynomial is zero.

This function is implemented as a macro.

void fmpz_poly_set_coeff_fmpz(fmpz_poly_t poly , long n,

const fmpz_t x)

Sets coefficient n of poly to the fmpz value x. Coefficient numbering starts from zero
and if n is beyond the current length of poly then the polynomial is extended and zero
coefficients inserted if necessary.
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void fmpz_poly_set_coeff_si(fmpz_poly_t poly , long n, long

x)

Sets coefficient n of poly to the long value x. Coefficient numbering starts from zero
and if n is beyond the current length of poly then the polynomial is extended and zero
coefficients inserted if necessary.

void fmpz_poly_set_coeff_ui(fmpz_poly_t poly , long n, ulong

x)

Sets coefficient n of poly to the unsigned long value x. Coefficient numbering starts
from zero and if n is beyond the current length of poly then the polynomial is extended
and zero coefficients inserted if necessary.

13.9 Comparison

int fmpz_poly_equal(const fmpz_poly_t poly1 , const

fmpz_poly_t poly2)

Returns 1 if poly1 is equal to poly2, otherwise returns 0. The polynomials are assumed
to be normalised.

int fmpz_poly_is_zero(const fmpz_poly_t poly)

Returns 1 if the polynomial is zero and 0 otherwise.

This function is implemented as a macro.

int fmpz_poly_is_one(const fmpz_poly_t poly)

Returns 1 if the polynomial is one and 0 otherwise.

int fmpz_poly_is_unit(const fmpz_poly_t poly)

Returns 1 is the polynomial is the constant polynomial ±1, and 0 otherwise.

13.10 Addition and subtraction

void _fmpz_poly_add(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Sets res to the sum of (poly1, len1) and (poly2, len2). It is assumed that res has
sufficient space for the longer of the two polynomials.

void fmpz_poly_add(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the sum of poly1 and poly2.

void _fmpz_poly_sub(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Sets res to (poly1, len1) minus (poly2, len2). It is assumed that res has sufficient
space for the longer of the two polynomials.

void fmpz_poly_sub(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to poly1 minus poly2.

void fmpz_poly_neg(fmpz_poly_t res , const fmpz_poly_t poly)
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Sets res to -poly.

13.11 Scalar multiplication and division

void fmpz_poly_scalar_mul_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t x)

Sets poly1 to poly2 times x.

void fmpz_poly_scalar_mul_mpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const mpz_t x)

Sets poly1 to poly2 times the mpz_t x.

void fmpz_poly_scalar_mul_si(fmpz_poly_t poly1 , fmpz_poly_t

poly2 , long x)

Sets poly1 to poly2 times the signed long x.

void fmpz_poly_scalar_mul_ui(fmpz_poly_t poly1 , fmpz_poly_t

poly2 , ulong x)

Sets poly1 to poly2 times the unsigned long x.

void fmpz_poly_scalar_mul_2exp(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong exp)

Sets poly1 to poly2 times 2^exp.

void fmpz_poly_scalar_addmul_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t x)

Sets poly to poly1 + x * poly2.

void fmpz_poly_scalar_submul_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t x)

Sets poly to poly1 - x * poly2.

void fmpz_poly_scalar_fdiv_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t x)

Sets poly1 to poly2 divided by the fmpz_t x, rounding coefficients down toward −∞.

void fmpz_poly_scalar_fdiv_mpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const mpz_t x)

Sets poly1 to poly2 divided by the mpz_t x, rounding coefficients down toward −∞.

void fmpz_poly_scalar_fdiv_si(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , long x)

Sets poly1 to poly2 divided by the long x, rounding coefficients down toward −∞.

void fmpz_poly_scalar_fdiv_ui(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong x)

Sets poly1 to poly2 divided by the unsigned long x, rounding coefficients down to-
ward −∞.

void fmpz_poly_scalar_fdiv_2exp(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong x)
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Sets poly1 to poly2 divided by 2^x, rounding coefficients down toward −∞.

void fmpz_poly_scalar_tdiv_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t x)

Sets poly1 to poly2 divided by the fmpz_t x, rounding coefficients toward 0.

void fmpz_poly_scalar_tdiv_si(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , long x)

Sets poly1 to poly2 divided by the long x, rounding coefficients toward 0.

void fmpz_poly_scalar_tdiv_ui(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong x)

Sets poly1 to poly2 divided by the unsigned long x, rounding coefficients toward 0.

void fmpz_poly_scalar_tdiv_2exp(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong x)

Sets poly1 to poly2 divided by 2^x, rounding coefficients toward 0.

void fmpz_poly_scalar_divexact_fmpz(fmpz_poly_t poly1 ,

const fmpz_poly_t poly2 , const fmpz_t x)

Sets poly1 to poly2 divided by the fmpz_t x, assuming the coefficient is exact for every
coefficient.

void fmpz_poly_scalar_divexact_mpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const mpz_t x)

Sets poly1 to poly2 divided by the mpz_t x, assuming the coefficient is exact for every
coefficient.

void fmpz_poly_scalar_divexact_si(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , long x)

Sets poly1 to poly2 divided by the long x, assuming the coefficient is exact for every
coefficient.

void fmpz_poly_scalar_divexact_ui(fmpz_poly_t poly1 ,

fmpz_poly_t poly2 , ulong x)

Sets poly1 to poly2 divided by the unsigned long x, assuming the coefficient is exact
for every coefficient.

void fmpz_poly_scalar_mod_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t p)

Sets poly1 to poly2, reducing each coefficient modulo p > 0.

void fmpz_poly_scalar_smod_fmpz(fmpz_poly_t poly1 , const

fmpz_poly_t poly2 , const fmpz_t p)

Sets poly1 to poly2, symmetrically reducing each coefficient modulo p > 0, that is,
choosing the unique representative in the interval (−p/2, p/2].

13.12 Bit packing

void _fmpz_poly_bit_pack(mp_ptr arr , const fmpz * poly ,

long len , mp_bitcnt_t bit_size , int negate)
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Packs the coefficients of poly into bitfields of the given bit_size, negating the coeffi-
cients before packing if negate is set to −1.

int _fmpz_poly_bit_unpack(fmpz * poly , long len , mp_srcptr

arr , mp_bitcnt_t bit_size , int negate)

Unpacks the polynomial of given length from the array as packed into fields of the given
bit_size, finally negating the coefficients if negate is set to −1. Returns borrow, which
is nonzero if a leading term with coefficient ±1 should be added at position len of poly.

void _fmpz_poly_bit_unpack_unsigned(fmpz * poly , long len ,

mp_srcptr_t arr , mp_bitcnt_t bit_size)

Unpacks the polynomial of given length from the array as packed into fields of the given
bit_size. The coefficients are assumed to be unsigned.

void fmpz_poly_bit_pack(fmpz_t f, const fmpz_poly_t poly ,

mp_bitcnt_t bit_size)

Packs poly into bitfields of size bit_size, writing the result to f. The sign of f will be
the same as that of the leading coefficient of poly.

void fmpz_poly_bit_unpack(fmpz_poly_t poly , const fmpz_t f,

mp_bitcnt_t bit_size)

Unpacks the polynomial with signed coefficients packed into fields of size bit_size as
represented by the integer f.

void fmpz_poly_bit_unpack_unsigned(fmpz_poly_t poly , const

fmpz_t f, mp_bitcnt_t bit_size)

Unpacks the polynomial with unsigned coefficients packed into fields of size bit_size

as represented by the integer f. It is required that f is nonnegative.

13.13 Multiplication

void _fmpz_poly_mul_classical(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).

Assumes len1 and len2 are positive. Allows zero-padding of the two input polynomials.
No aliasing of inputs with outputs is allowed.

void fmpz_poly_mul_classical(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Sets res to the product of poly1 and poly2, computed using the classical or schoolbook
method.

void _fmpz_poly_mullow_classical(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2 , long n)

Sets (res, n) to the first n coefficients of (poly1, len1) multiplied by (poly2, len2).

Assumes 0 < n <= len1 + len2 - 1. Assumes neither len1 nor len2 is zero.

void fmpz_poly_mullow_classical(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the first n coefficients of poly1 * poly2.
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void _fmpz_poly_mulhigh_classical(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2 , long

start)

Sets the first start coefficients of res to zero and the remainder to the corresponding
coefficients of (poly1, len1)* (poly2, len2).

Assumes start <= len1 + len2 - 1. Assumes neither len1 nor len2 is zero.

void fmpz_poly_mulhigh_classical(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long start)

Sets the first start coefficients of res to zero and the remainder to the corresponding
coefficients of the product of poly1 and poly2.

void _fmpz_poly_mulmid_classical(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Sets res to the middle len1 - len2 + 1 coefficients of the product of (poly1, len1)

and (poly2, len2), i.e. the coefficients from degree len2 - 1 to len1 - 1 inclusive.
Assumes that len1 >= len2 > 0.

void fmpz_poly_mulmid_classical(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Sets res to the middle len(poly1)- len(poly2)+ 1 coefficients of poly1 * poly2, i.e.
the coefficient from degree len2 - 1 to len1 - 1 inclusive. Assumes that len1 >=

len2.

void _fmpz_poly_mul_karatsuba(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).
Assumes len1 >= len2 > 0. Allows zero-padding of the two input polynomials. No
aliasing of inputs with outputs is allowed.

void fmpz_poly_mul_karatsuba(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpz_poly_mullow_karatsuba_n(fmpz * res , const fmpz *

poly1 , const fmpz * poly2 , long n)

Sets res to the product of poly1 and poly2 and truncates to the given length. It is
assumed that poly1 and poly2 are precisely the given length, possibly zero padded.
Assumes n is not zero.

void fmpz_poly_mullow_karatsuba_n(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the product of poly1 and poly2 and truncates to the given length.

void _fmpz_poly_mulhigh_karatsuba_n(fmpz * res , const fmpz

* poly1 , const fmpz * poly2 , long len)

Sets res to the product of poly1 and poly2 and truncates at the top to the given length.
The first len - 1 coefficients are set to zero. It is assumed that poly1 and poly2 are
precisely the given length, possibly zero padded. Assumes len is not zero.

void fmpz_poly_mulhigh_karatsuba_n(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long len)
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Sets the first len - 1 coefficients of the result to zero and the remaining coefficients to
the corresponding coefficients of the product of poly1 and poly2. Assumes poly1 and
poly2 are at most of the given length.

void _fmpz_poly_mul_KS(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).

Places no assumptions on len1 and len2. Allows zero-padding of the two input poly-
nomials. Supports aliasing of inputs and outputs.

void fmpz_poly_mul_KS(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpz_poly_mullow_KS(fmpz * res , const fmpz * poly1 ,

long len1 , const fmpz * poly2 , long len2 , long n)

Sets (res, n) to the lowest n coefficients of the product of (poly1, len1) and (poly2,

len2).

Assumes that len1 and len2 are positive, but does allow for the polynomials to be zero-
padded. The polynomials may be zero, too. Assumes n is positive. Supports aliasing
between res, poly1 and poly2.

void fmpz_poly_mullow_KS(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the lowest n coefficients of the product of poly1 and poly2.

void _fmpz_poly_mul_SS(fmpz * output , const fmpz * input1 ,

long length1 , const fmpz * input2 , long length2)

Sets (output, length1 + length2 - 1) to the product of (input1, length1) and
(input2, length2).

We must have len1 > 1 and len2 > 1. Allows zero-padding of the two input polyno-
mials. Supports aliasing of inputs and outputs.

void fmpz_poly_mul_SS(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the product of poly1 and poly2. Uses the Schönhage-Strassen algorithm.

void _fmpz_poly_mullow_SS(fmpz * output , const fmpz *

input1 , long length1 , const fmpz * input2 , long length2 ,

long n)

Sets (res, n) to the lowest n coefficients of the product of (poly1, len1) and (poly2,

len2).

Assumes that len1 and len2 are positive, but does allow for the polynomials to be
zero-padded. We must have len1 > 1 and len2 > 1. Assumes n is positive. Supports
aliasing between res, poly1 and poly2.

void fmpz_poly_mullow_SS(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the lowest n coefficients of the product of poly1 and poly2.
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void _fmpz_poly_mul(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).
Assumes len1 >= len2 > 0. Allows zero-padding of the two input polynomials.

void fmpz_poly_mul(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the product of poly1 and poly2. Chooses an optimal algorithm from the
choices above.

void _fmpz_poly_mullow(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2 , long n)

Sets (res, n) to the lowest n coefficients of the product of (poly1, len1) and (poly2,

len2).

Assumes len1 >= len2 > 0 and 0 < n <= len1 + len2 - 1. Allows for zero-padding
in the inputs. Does not support aliasing between the inputs and the output.

void fmpz_poly_mullow(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the lowest n coefficients of the product of poly1 and poly2.

void fmpz_poly_mulhigh_n(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2 , long n)

Sets the high n coefficients of res to the high n coefficients of the product of poly1 and
poly2, assuming the latter are precisely n coefficients in length, zero padded if necessary.
The remaining n− 1 coefficients may be arbitrary.

13.14 Squaring

void _fmpz_poly_sqr_KS(fmpz * rop , const fmpz * op, long

len)

Sets (rop, 2*len - 1) to the square of (op, len), assuming that len > 0.

Supports zero-padding in (op, len). Does not support aliasing.

void fmpz_poly_sqr_KS(fmpz_poly_t rop , const fmpz_poly_t op)

Sets rop to the square of the polynomial op using Kronecker segmentation.

void _fmpz_poly_sqr_karatsuba(fmpz * rop , const fmpz * op ,

long len)

Sets (rop, 2*len - 1) to the square of (op, len), assuming that len > 0.

Supports zero-padding in (op, len). Does not support aliasing.

void fmpz_poly_sqr_karatsuba(fmpz_poly_t rop , const

fmpz_poly_t op)

Sets rop to the square of the polynomial op using the Karatsuba multiplication algo-
rithm.

void _fmpz_poly_sqr_classical(fmpz * rop , const fmpz * op ,

long len)
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Sets (rop, 2*len - 1) to the square of (op, len), assuming that len > 0.

Supports zero-padding in (op, len). Does not support aliasing.

void fmpz_poly_sqr_classical(fmpz_poly_t rop , const

fmpz_poly_t op)

Sets rop to the square of the polynomial op using the classical or schoolbook method.

void _fmpz_poly_sqr(fmpz * rop , const fmpz * op, long len)

Sets (rop, 2*len - 1) to the square of (op, len), assuming that len > 0.

Supports zero-padding in (op, len). Does not support aliasing.

void fmpz_poly_sqr(fmpz_poly_t rop , const fmpz_poly_t op)

Sets rop to the square of the polynomial op.

void _fmpz_poly_sqrlow_KS(fmpz * res , const fmpz * poly ,

long len , long n)

Sets (res, n) to the lowest n coefficients of the square of (poly, len).

Assumes that len is positive, but does allow for the polynomial to be zero-padded. The
polynomial may be zero, too. Assumes n is positive. Supports aliasing between res and
poly.

void fmpz_poly_sqrlow_KS(fmpz_poly_t res , const fmpz_poly_t

poly , long n)

Sets res to the lowest n coefficients of the square of poly.

void _fmpz_poly_sqrlow_karatsuba_n(fmpz * res , const fmpz *

poly , long n)

Sets (res, n) to the square of (poly, n) truncated to length n, which is assumed to
be positive. Allows for poly to be zero-oadded.

void fmpz_poly_sqrlow_karatsuba_n(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Sets res to the square of poly and truncates to the given length.

void _fmpz_poly_sqrlow_classical(fmpz * res , const fmpz *

poly , long len , long n)

Sets (res, n) to the first n coefficients of the square of (poly, len).

Assumes that 0 < n <= 2 * len - 1.

void fmpz_poly_sqrlow_classical(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Sets res to the first n coefficients of the square of poly.

void _fmpz_poly_sqrlow(fmpz * res , const fmpz * poly , long

len , long n)

Sets (res, n) to the lowest n coefficients of the square of (poly, len).

Assumes len1 >= len2 > 0 and 0 < n <= 2 * len - 1. Allows for zero-padding in
the input. Does not support aliasing between the input and the output.
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void fmpz_poly_sqrlow(fmpz_poly_t res , const fmpz_poly_t

poly , long n)

Sets res to the lowest n coefficients of the square of poly.

13.15 Powering

void _fmpz_poly_pow_multinomial(fmpz * res , const fmpz *

poly , long len , ulong e)

Computes res = poly^e. This uses the J.C.P. Miller pure recurrence as follows:

If ` is the index of the lowest non-zero coefficient in poly, as a first step this method
zeros out the lowest e` coefficients of res. The recurrence above is then used to compute
the remaining coefficients.

Assumes len > 0, e > 0. Does not support aliasing.

void fmpz_poly_pow_multinomial(fmpz_poly_t res , const

fmpz_poly_t poly , ulong e)

Computes res = poly^e using a generalisation of binomial expansion called the J.C.P. Miller
pure recurrence [23, 33]. If e is zero, returns one, so that in particular 0^0 = 1.

The formal statement of the recurrence is as follows. Write the input polynomial as
P (x) = p0 + p1x+ · · ·+ pmx

m with p0 6= 0 and let

P (x)n = a(n, 0) + a(n, 1)x+ · · ·+ a(n,mn)xmn.

Then a(n, 0) = pn0 and, for all 1 ≤ k ≤ mn,

a(n, k) = (kp0)−1
m∑
i=1

pi
(
(n+ 1)i− k

)
a(n, k − i).

void _fmpz_poly_pow_binomial(fmpz * res , const fmpz * poly ,

ulong e)

Computes res = poly^e when poly is of length 2, using binomial expansion.

Assumes e > 0. Does not support aliasing.

void fmpz_poly_pow_binomial(fmpz_poly_t res , const

fmpz_poly_t poly , ulong e)

Computes res = poly^e when poly is of length 2, using binomial expansion.

If the length of poly is not 2, raises an exception and aborts.

void _fmpz_poly_pow_addchains(fmpz * res , const fmpz *

poly , long len , const int * a, int n)

Given a star chain 1 = a0 < a1 < · · · < an = e computes res = poly^e.

A star chain is an addition chain 1 = a0 < a1 < · · · < an such that, for all i > 0,
ai = ai−1 + aj for some j < i.

Assumes that e > 2, or equivalently n > 1, and len > 0. Does not support aliasing.

void fmpz_poly_pow_addchains(fmpz_poly_t res , const

fmpz_poly_t poly , ulong e)

Computes res = poly^e using addition chains whenever 0 ≤ e ≤ 148.

If e > 148, raises an exception and aborts.



13.16 Shifting 67

void _fmpz_poly_pow_binexp(fmpz * res , const fmpz * poly ,

long len , ulong e)

Sets res = poly^e using left-to-right binary exponentiation as described in [23, p. 461].

Assumes that len > 0, e > 1. Assumes that res is an array of length at least e*(len
- 1)+ 1. Does not support aliasing.

void fmpz_poly_pow_binexp(fmpz_poly_t res , const

fmpz_poly_t poly , ulong e)

Computes res = poly^e using the binary exponentiation algorithm. If e is zero, returns
one, so that in particular 0^0 = 1.

void _fmpz_poly_pow_small(fmpz * res , const fmpz * poly ,

long len , ulong e)

Sets res = poly^e whenever 0 ≤ e ≤ 4.

Assumes that len > 0 and that res is an array of length at least e*(len - 1)+ 1.
Does not support aliasing.

void _fmpz_poly_pow(fmpz * res , const fmpz * poly , long

len , ulong e)

Sets res = poly^e, assuming that e, len > 0 and that res has space for e*(len -

1)+ 1 coefficients. Does not support aliasing.

void fmpz_poly_pow(fmpz_poly_t res , const fmpz_poly_t poly ,

ulong e)

Computes res = poly^e. If e is zero, returns one, so that in particular 0^0 = 1.

void _fmpz_poly_pow_trunc(fmpz * res , const fmpz * poly ,

ulong e, long n)

Sets (res, n) to (poly, n) raised to the power e and truncated to length n.

Assumes that e, n > 0. Allows zero-padding of (poly, n). Does not support aliasing of
any inputs and outputs.

void fmpz_poly_pow_trunc(fmpz_poly_t res , const fmpz_poly_t

poly , ulong e, long n)

Notationally raises poly to the power e, truncates the result to length n and writes
the result in res. This is computed much more efficiently than simply powering the
polynomial and truncating.

Thus, if n = 0 the result is zero. Otherwise, whenever e = 0 the result will be the
constant polynomial equal to 1.

This function can be used to raise power series to a power in an efficient way.

13.16 Shifting

void _fmpz_poly_shift_left(fmpz * res , const fmpz * poly ,

long len , long n)

Sets (res, len + n) to (poly, len) shifted left by n coefficients.

Inserts zero coefficients at the lower end. Assumes that len and n are positive, and that
res fits len + n elements. Supports aliasing between res and poly.
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void fmpz_poly_shift_left(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Sets res to poly shifted left by n coeffs. Zero coefficients are inserted.

void _fmpz_poly_shift_right(fmpz * res , const fmpz * poly ,

long len , long n)

Sets (res, len - n) to (poly, len) shifted right by n coefficients.

Assumes that len and n are positive, that len > n, and that res fits len - n elements.
Supports aliasing between res and poly, although in this case the top coefficients of
poly are not set to zero.

void fmpz_poly_shift_right(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Sets res to poly shifted right by n coefficients. If n is equal to or greater than the
current length of poly, res is set to the zero polynomial.

13.17 Bit sizes and norms

ulong fmpz_poly_max_limbs(const fmpz_poly_t poly)

Returns the maximum number of limbs required to store the absolute value of coefficients
of poly. If poly is zero, returns 0.

long fmpz_poly_max_bits(const fmpz_poly_t poly)

Computes the maximum number of bits b required to store the absolute value of coeffi-
cients of poly. If all the coefficients of poly are non-negative, b is returned, otherwise
−b is returned.

void fmpz_poly_height(fmpz_t height , const fmpz_poly_t poly)

Computes the height of poly, defined as the largest of the absolute values the coefficients
of poly. Equivalently, this gives the infinity norm of the coefficients. If poly is zero, the
height is 0.

void _fmpz_poly_2norm(fmpz_t res , const fmpz * poly , long

len)

Sets res to the Euclidean norm of (poly, len), that is, the integer square root of the
sum of the squares of the coefficients of poly.

void fmpz_poly_2norm(fmpz_t res , const fmpz_poly_t poly)

Sets res to the Euclidean norm of poly, that is, the integer square root of the sum of
the squares of the coefficients of poly.

mp_limb_t _fmpz_poly_2norm_normalised_bits(const fmpz *

poly , long len)

Returns an upper bound on the number of bits of the normalised Euclidean norm of
(poly, len), i.e. the number of bits of the Euclidean norm divided by the absolute
value of the leading coefficient. The returned value will be no more than 1 bit too large.

This is used in the computation of the Landau-Mignotte bound.

It is assumed that len > 0. The result only makes sense if the leading coefficient is
nonzero.

13.18 Greatest common divisor
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void _fmpz_poly_gcd_subresultant(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Computes the greatest common divisor (res, len2) of (poly1, len1) and (poly2,

len2), assuming len1 >= len2 > 0. The result is normalised to have positive leading
coefficient. Aliasing between res, poly1 and poly2 is supported.

void fmpz_poly_gcd_subresultant(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Computes the greatest common divisor res of poly1 and poly2, normalised to have
non-negative leading coefficient.

This function uses the subresultant algorithm as described in [9, Algorithm 3.3.1].

int _fmpz_poly_gcd_heuristic(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Computes the greatest common divisor (res, len2) of (poly1, len1) and (poly2,

len2), assuming len1 >= len2 > 0. The result is normalised to have positive leading
coefficient. Aliasing between res, poly1 and poly2 is not supported. The function may
not always succeed in finding the GCD. If it fails, the function returns 0, otherwise it
returns 1.

int fmpz_poly_gcd_heuristic(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Computes the greatest common divisor res of poly1 and poly2, normalised to have
non-negative leading coefficient.

The function may not always succeed in finding the GCD. If it fails, the function returns
0, otherwise it returns 1.

This function uses the heuristic GCD algorithm (GCDHEU). The basic strategy is to
remove the content of the polynomials, pack them using Kronecker segmentation (given
a bound on the size of the coefficients of the GCD) and take the integer GCD. Unpack
the result and test divisibility.

void _fmpz_poly_gcd_modular(fmpz * res , const fmpz * poly1 ,

long len1 , const fmpz * poly2 , long len2)

Computes the greatest common divisor (res, len2) of (poly1, len1) and (poly2,

len2), assuming len1 >= len2 > 0. The result is normalised to have positive leading
coefficient. Aliasing between res, poly1 and poly2 is not supported.

void fmpz_poly_gcd_modular(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Computes the greatest common divisor res of poly1 and poly2, normalised to have
non-negative leading coefficient.

This function uses the modular GCD algorithm. The basic strategy is to remove the
content of the polynomials, reduce them modulo sufficiently many primes and do CRT
reconstruction until some bound is reached (or we can prove with trial division that we
have the GCD).

void _fmpz_poly_gcd(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Computes the greatest common divisor res of (poly1, len1) and (poly2, len2), as-
suming len1 >= len2 > 0. The result is normalised to have positive leading coefficient.

Assumes that res has space for len2 coefficients. Aliasing between res, poly1 and
poly2 is not supported.
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void fmpz_poly_gcd(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Computes the greatest common divisor res of poly1 and poly2, normalised to have
non-negative leading coefficient.

void _fmpz_poly_xgcd_modular(fmpz_t r, fmpz * s, fmpz * t,

const fmpz * f, long len1 , const fmpz * g, long len2)

Set r to the resultant of (f, len1) and (g, len2). If the resultant is zero, the function
returns immediately. Otherwise it finds polynomials s and t such that s*f + t*g = r.
The length of s will be no greater than len2 and the length of t will be no greater than
len1 (both are zero padded if necessary).

It is assumed that len1 >= len2 > 0. No aliasing of inputs and outputs is permitted.

The function assumes that f and g are primitive (have Gaussian content equal to 1).
The result is undefined otherwise.

Uses a multimodular algorithm. The resultant is first computed and extended GCD’s
modulo various primes p are computed and combined using CRT. When the CRT sta-
bilises the resulting polynomials are simply reduced modulo further primes until a proven
bound is reached.

void fmpz_poly_xgcd_modular(fmpz_t r, fmpz_poly_t s,

fmpz_poly_t t, const fmpz_poly_t f, const fmpz_poly_t g)

Set r to the resultant of f and g. If the resultant is zero, the function then returns
immediately, otherwise s and t are found such that s*f + t*g = r.

The function assumes that f and g are primitive (have Gaussian content equal to 1).
The result is undefined otherwise.

Uses the multimodular algorithm.

void _fmpz_poly_xgcd(fmpz_t r, fmpz * s, fmpz * t, const

fmpz * f, long len1 , const fmpz * g, long len2)

Set r to the resultant of (f, len1) and (g, len2). If the resultant is zero, the function
returns immediately. Otherwise it finds polynomials s and t such that s*f + t*g = r.
The length of s will be no greater than len2 and the length of t will be no greater than
len1 (both are zero padded if necessary).

The function assumes that f and g are primitive (have Gaussian content equal to 1).
The result is undefined otherwise.

It is assumed that len1 >= len2 > 0. No aliasing of inputs and outputs is permitted.

void fmpz_poly_xgcd(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t,

const fmpz_poly_t f, const fmpz_poly_t g)

Set r to the resultant of f and g. If the resultant is zero, the function then returns
immediately, otherwise s and t are found such that s*f + t*g = r.

The function assumes that f and g are primitive (have Gaussian content equal to 1).
The result is undefined otherwise.

void _fmpz_poly_lcm(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz * poly2 , long len2)

Sets (res, len1 + len2 - 1) to the least common multiple of the two polynomials
(poly1, len1) and (poly2, len2), normalised to have non-negative leading coeffi-
cient.

Assumes that len1 >= len2 > 0.
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Does not support aliasing.

void fmpz_poly_lcm(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the least common multiple of the two polynomials poly1 and poly2, nor-
malised to have non-negative leading coefficient.

If either of the two polynomials is zero, sets res to zero.

This ensures that the equality

fg = gcd(f, g) lcm(f, g)

holds up to sign.

void _fmpz_poly_resultant(fmpz_t res , const fmpz * poly1 ,

long len1 , const fmpz * poly2 , long len2)

Sets res to the resultant of (poly1, len1) and (poly2, len2), assuming that len1

>= len2 > 0.

void fmpz_poly_resultant(fmpz_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Computes the resultant of poly1 and poly2.

For two non-zero polynomials f(x) = amx
m + · · · + a0 and g(x) = bnx

n + · · · + b0 of
degrees m and n, the resultant is defined to be

anmb
m
n

∏
(x,y):f(x)=g(y)=0

(x− y).

For convenience, we define the resultant to be equal to zero if either of the two polyno-
mials is zero.

This function uses the algorithm described in [9, Algorithm 3.3.7].

13.19 Gaussian content

void _fmpz_poly_content(fmpz_t res , const fmpz * poly , long

len)

Sets res to the non-negative content of (poly, len). Aliasing between res and the
coefficients of poly is not supported.

void fmpz_poly_content(fmpz_t res , const fmpz_poly_t poly)

Sets res to the non-negative content of poly. The content of the zero polynomial is
defined to be zero. Supports aliasing, that is, res is allowed to be one of the coefficients
of poly.

void _fmpz_poly_primitive_part(fmpz * res , const fmpz *

poly , long len)

Sets (res, len) to (poly, len) divided by the content of (poly, len), and normalises
the result to have non-negative leading coefficient.

Assumes that (poly, len) is non-zero. Supports aliasing of res and poly.

void fmpz_poly_primitive_part(fmpz_poly_t res , const

fmpz_poly_t poly)
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Sets res to poly divided by the content of poly, and normalises the result to have
non-negative leading coefficient. If poly is zero, sets res to zero.

13.20 Euclidean division

void _fmpz_poly_divrem_basecase(fmpz * Q, fmpz * R, const

fmpz * A, long lenA , const fmpz * B, long lenB)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ + R and each coef-
ficient of R beyond lenB is reduced modulo the leading coefficient of B. If the leading
coefficient of B is ±1 or the division is exact, this is the same thing as division over Q.

Assumes that len(A), len(B) > 0. Allows zero-padding in (A, lenA). R and A may be
aliased, but apart from this no aliasing of input and output operands is allowed.

void fmpz_poly_divrem_basecase(fmpz_poly_t Q, fmpz_poly_t

R, const fmpz_poly_t A, const fmpz_poly_t B)

Computes Q, R such that A = BQ + R and each coefficient of R beyond len(B) − 1 is
reduced modulo the leading coefficient of B. If the leading coefficient of B is ±1 or the
division is exact, this is the same thing as division over Q. An exception is raised if B
is zero.

void _fmpz_poly_divrem_divconquer_recursive(fmpz * Q, fmpz

* BQ, fmpz * W, const fmpz * A, const fmpz * B, long

lenB)

Computes (Q, lenB), (BQ, 2 lenB - 1) such that BQ = B × Q and A = BQ + R
where each coefficient of R beyond len(B)− 1 is reduced modulo the leading coefficient
of B. We assume that len(A) = 2 len(B)− 1. If the leading coefficient of B is ±1 or the
division is exact, this is the same as division over Q.

Assumes len(B) > 0. Allows zero-padding in (A, lenA). Requires a temporary array
(W, 2 lenB - 1). No aliasing of input and output operands is allowed.

This function does not read the bottom len(B) − 1 coefficients from A, which means
that they might not even need to exist in allocated memory.

void _fmpz_poly_divrem_divconquer(fmpz * Q, fmpz * R, const

fmpz * A, long lenA , const fmpz * B, long lenB)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ + R and each coef-
ficient of R beyond len(B) − 1 is reduced modulo the leading coefficient of B. If the
leading coefficient of B is ±1 or the division is exact, this is the same as division over Q.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.

void fmpz_poly_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t

R, const fmpz_poly_t A, const fmpz_poly_t B)

Computes Q, R such that A = BQ + R and each coefficient of R beyond len(B) − 1 is
reduced modulo the leading coefficient of B. If the leading coefficient of B is ±1 or the
division is exact, this is the same as division over Q. An exception is raised if B is zero.

void _fmpz_poly_divrem(fmpz * Q, fmpz * R, const fmpz * A,

long lenA , const fmpz * B, long lenB)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ + R and each coef-
ficient of R beyond len(B) − 1 is reduced modulo the leading coefficient of B. If the
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leading coefficient of B is ±1 or the division is exact, this is the same thing as division
over Q.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.

void fmpz_poly_divrem(fmpz_poly_t Q, fmpz_poly_t R, const

fmpz_poly_t A, const fmpz_poly_t B)

Computes Q, R such that A = BQ + R and each coefficient of R beyond len(B) − 1 is
reduced modulo the leading coefficient of B. If the leading coefficient of B is ±1 or the
division is exact, this is the same as division over Q. An exception is raised if B is zero.

void _fmpz_poly_div_basecase(fmpz * Q, fmpz * R, const fmpz

* A, long lenA , const fmpz * B, long lenB)

Computes the quotient (Q, lenA - lenB + 1) of (A, lenA) divided by (B, lenB).

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B.

If the leading coefficient of B is ±1 or the division is exact, this is the same as division
over Q.

Assumes len(A), len(B) > 0. Allows zero-padding in (A, lenA). Requires a temporary
array R of size at least the (actual) length of A. For convenience, R may be NULL. R
and A may be aliased, but apart from this no aliasing of input and output operands is
allowed.

void fmpz_poly_div_basecase(fmpz_poly_t Q, const

fmpz_poly_t A, const fmpz_poly_t B)

Computes the quotient Q of A divided by Q.

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B.

If the leading coefficient of B is ±1 or the division is exact, this is the same as division
over Q. An exception is raised if B is zero.

void _fmpz_poly_divremlow_divconquer_recursive(fmpz * Q,

fmpz * BQ, const fmpz * A, const fmpz * B, long lenB)

Divide and conquer division of (A, 2 lenB - 1) by (B, lenB), computing only the
bottom len(B)− 1 coefficients of BQ.

Assumes len(B) > 0. Requires BQ to have length at least 2 len(B) − 1, although only
the bottom len(B)− 1 coefficients will carry meaningful output. Does not support any
aliasing. Allows zero-padding in A, but not in B.

void _fmpz_poly_div_divconquer_recursive(fmpz * Q, fmpz *

temp , const fmpz * A, const fmpz * B, long lenB)

Recursive short division in the balanced case.

Computes the quotient (Q, lenB) of (A, 2 lenB - 1) upon division by (B, lenB).
Requires len(B) > 0. Needs a temporary array temp of length 2 len(B) − 1. Does not
support any aliasing.

For further details, see [26].

void _fmpz_poly_div_divconquer(fmpz * Q, const fmpz * A,

long lenA , const fmpz * B, long lenB)
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Computes the quotient (Q, lenA - lenB + 1) of (A, lenA) upon division by (B,

lenB). Assumes that len(A) ≥ len(B) > 0. Does not support aliasing.

fmpz_poly_div_divconquer(fmpz_poly_t Q, const fmpz_poly_t

A, const fmpz_poly_t B)

Computes the quotient Q of A divided by B.

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B.

If the leading coefficient of B is ±1 or the division is exact, this is the same as division
over Q. An exception is raised if B is zero.

void _fmpz_poly_div(fmpz * Q, const fmpz * A, long lenA ,

const fmpz * B, long lenB)

Computes the quotient (Q, lenA - lenB + 1) of (A, lenA) divided by (B, lenB).

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same as division over Q.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). Aliasing of input
and output operands is not allowed.

void fmpz_poly_div(fmpz_poly_t Q, const fmpz_poly_t A,

const fmpz_poly_t B)

Computes the quotient Q of A divided by B.

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same as division over Q. An exception is raised
if B is zero.

void _fmpz_poly_rem_basecase(fmpz * R, const fmpz * A, long

lenA , const fmpz * B, long lenB)

Computes the remainder (R, lenA) of (A, lenA) upon division by (B, lenB).

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same thing as division over Q.

Assumes that len(A), len(B) > 0. Allows zero-padding in (A, lenA). R and A may be
aliased, but apart from this no aliasing of input and output operands is allowed.

void fmpz_poly_rem_basecase(fmpz_poly_t R, const

fmpz_poly_t A, const fmpz_poly_t B)

Computes the remainder R of A upon division by B.

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same as division over Q. An exception is raised
if B is zero.

void _fmpz_poly_rem(fmpz * R, const fmpz * A, long lenA ,

const fmpz * B, long lenB)

Computes the remainder (R, lenA) of (A, lenA) upon division by (B, lenB).
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Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same thing as division over Q.

Assumes that len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). Aliasing of
input and output operands is not allowed.

void fmpz_poly_rem(fmpz_poly_t R, const fmpz_poly_t A,

const fmpz_poly_t B)

Computes the remainder R of A upon division by B.

Notationally, computes Q, R such that A = BQ + R and each coefficient of R beyond
len(B)− 1 is reduced modulo the leading coefficient of B. If the leading coefficient of B
is ±1 or the division is exact, this is the same as division over Q. An exception is raised
if B is zero.

void _fmpz_poly_div_root(fmpz * Q, const fmpz * A, long

len , const fmpz_t c)

Computes the quotient (Q, len-1) of (A, len) upon division by x− c.

Supports aliasing of Q and A, but the result is undefined in case of partial overlap.

void fmpz_poly_div_root(fmpz_poly_t Q, const fmpz_poly_t A,

const fmpz_t c)

Computes the quotient (Q, len-1) of (A, len) upon division by x− c.

13.21 Divisibility testing

int _fmpz_poly_divides(fmpz * Q, const fmpz * A, long lenA ,

const fmpz * B, long lenB)

Returns 1 if (B, lenB) divides (A, lenA) exactly and sets Q to the quotient, otherwise
returns 0.

It is assumed that len(A) ≥ len(B) > 0 and that Q has space for len(A) − len(B) + 1
coefficients.

Aliasing of Q with either of the inputs is not permitted.

This function is currently unoptimised and provided for convenience only.

int fmpz_poly_divides(fmpz_poly_t Q, const fmpz_poly_t A,

const fmpz_poly_t B)

Returns 1 if B divides A exactly and sets Q to the quotient, otherwise returns 0.

This function is currently unoptimised and provided for convenience only.

13.22 Power series division

void _fmpz_poly_inv_series_newton(fmpz * Qinv , const fmpz *

Q, long n)

Computes the first n terms of the inverse power series of Q using Newton iteration.

Assumes that n ≥ 1, that Q has length at least n and constant term ±1. Does not
support aliasing.

void fmpz_poly_inv_series_newton(fmpz_poly_t Qinv , const

fmpz_poly_t Q, long n)
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Computes the first n terms of the inverse power series of Q using Newton iteration,
assuming that Q has constant term ±1 and n ≥ 1.

void _fmpz_poly_inv_series(fmpz * Qinv , const fmpz * Q,

long n)

Computes the first n terms of the inverse power series of Q.

Assumes that n ≥ 1, that Q has length at least n and constant term 1. Does not support
aliasing.

void fmpz_poly_inv_series(fmpz_poly_t Qinv , const

fmpz_poly_t Q, long n)

Computes the first n terms of the inverse power series of Q, assuming Q has constant
term 1 and n ≥ 1.

void _fmpz_poly_div_series(fmpz * Q, const fmpz * A, const

fmpz * B)

Divides (A, n) by (B, n) as power series over Z, assuming B has constant term 1 and
n ≥ 1.

Only supports aliasing of (Q, n) and (B, n).

void fmpz_poly_div_series(fmpz_poly_t Q, const fmpz_poly_t

A, const fmpz_poly_t B, long n)

Performs power series division in Z[[x]]/(xn). The function considers the polynomials
A and B as power series of length n starting with the constant terms. The function
assumes that B has constant term 1 and n ≥ 1.

13.23 Pseudo division

void _fmpz_poly_pseudo_divrem_basecase(fmpz * Q, fmpz * R,

ulong * d, const fmpz * A, long lenA , const fmpz * B,

long lenB)

If ` is the leading coefficient of B, then computes Q, R such that `dA = QB +R. This
function is used for simulating division over Q.

Assumes that len(A) ≥ len(B) > 0. Assumes that Q can fit len(A) − len(B) + 1
coefficients, and that R can fit len(A) coefficients. Supports aliasing of (R, lenA) and
(A, lenA). But other than this, no aliasing of the inputs and outputs is suppported.

void fmpz_poly_pseudo_divrem_basecase(fmpz_poly_t Q,

fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const

fmpz_poly_t B)

If ` is the leading coefficient of B, then computes Q, R such that `dA = QB +R. This
function is used for simulating division over Q.

void _fmpz_poly_pseudo_divrem_divconquer(fmpz * Q, fmpz *

R, ulong * d, const fmpz * A, long lenB , const fmpz * B,

long lenB)

Computes (Q, lenA - lenB + 1), (R, lenA) such that `dA = BQ + R, only setting
the bottom len(B) − 1 coefficients of R to their correct values. The remaining top
coefficients of (R, lenA) may be arbitrary.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.
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void fmpz_poly_pseudo_divrem_divconquer(fmpz_poly_t Q,

fmpz_poly_t R, ulong * d, const fmpz_poly_t A, const

fmpz_poly_t B)

Computes Q, R, and d such that `dA = BQ+R, where R has length less than the length
of B and ` is the leading coefficient of B. An exception is raised if B is zero.

void _fmpz_poly_pseudo_divrem_cohen(fmpz * Q, fmpz * R,

const fmpz * A, long lenA , const fmpz * B, long lenB)

Assumes that len(A) ≥ len(B) > 0. Assumes that Q can fit len(A) − len(B) + 1
coefficients, and that R can fit len(A) coefficients. Supports aliasing of (R, lenA) and
(A, lenA). But other than this, no aliasing of the inputs and outputs is supported.

void fmpz_poly_pseudo_divrem_cohen(fmpz_poly_t Q,

fmpz_poly_t R, const fmpz_poly_t A, const fmpz_poly_t B)

This is a variant of fmpz_poly_pseudo_divrem which computes polynomials Q and R
such that `dA = BQ+R. However, the value of d is fixed at max {0, len(A)− len(B) + 1}.

This function is faster when the remainder is not well behaved, i.e. where it is not
expected to be close to zero. Note that this function is not asymptotically fast. It is
efficient only for short polynomials, e.g. when len(B) < 32.

void _fmpz_poly_pseudo_rem_cohen(fmpz * R, const fmpz * A,

long lenA , const fmpz * B, long lenB)

Assumes that len(A) ≥ len(B) > 0. Assumes that R can fit len(A) coefficients. Supports
aliasing of (R, lenA) and (A, lenA). But other than this, no aliasing of the inputs
and outputs is supported.

void fmpz_poly_pseudo_rem_cohen(fmpz_poly_t R, const

fmpz_poly_t A, const fmpz_poly_t B)

This is a variant of fmpz_poly_pseudo_rem() which computes polynomials Q and R
such that `dA = BQ + R, but only returns R. However, the value of d is fixed at
max {0, len(A)− len(B) + 1}.

This function is faster when the remainder is not well behaved, i.e. where it is not
expected to be close to zero. Note that this function is not asymptotically fast. It is
efficient only for short polynomials, e.g. when len(B) < 32.

This function uses the algorithm described in [9, Algorithm 3.1.2].

void _fmpz_poly_pseudo_divrem(fmpz * Q, fmpz * R, ulong *

d, const fmpz * A, long lenA , const fmpz * B, long lenB)

If ` is the leading coefficient of B, then computes (Q, lenA - lenB + 1), (R, lenB

- 1) and d such that `dA = BQ + R. This function is used for simulating division
over Q.

Assumes that len(A) ≥ len(B) > 0. Assumes that Q can fit len(A) − len(B) + 1
coefficients, and that R can fit len(A) coefficients, although on exit only the bottom
len(B) coefficients will carry meaningful data.

Supports aliasing of (R, lenA) and (A, lenA). But other than this, no aliasing of the
inputs and outputs is suppported.

void fmpz_poly_pseudo_divrem(fmpz_poly_t Q, fmpz_poly_t R,

ulong * d, const fmpz_poly_t A, const fmpz_poly_t B)

Computes Q, R, and d such that `dA = BQ+R.
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void _fmpz_poly_pseudo_div(fmpz * Q, ulong * d, const fmpz

* A, long lenA , const fmpz * B, long lenB)

Pseudo-division, only returning the quotient.

void fmpz_poly_pseudo_div(fmpz_poly_t Q, ulong * d, const

fmpz_poly_t A, const fmpz_poly_t B)

Pseudo-division, only returning the quotient.

void _fmpz_poly_pseudo_rem(fmpz * R, ulong * d, const fmpz

* A, long lenA , const fmpz * B, long lenB)

Pseudo-division, only returning the remainder.

void fmpz_poly_pseudo_rem(fmpz_poly_t R, ulong * d, const

fmpz_poly_t A, const fmpz_poly_t B)

Pseudo-division, only returning the remainder.

13.24 Derivative

void _fmpz_poly_derivative(fmpz * rpoly , const fmpz * poly ,

long len)

Sets (rpoly, len - 1) to the derivative of (poly, len). Also handles the cases where
len is 0 or 1 correctly. Supports aliasing of rpoly and poly.

void fmpz_poly_derivative(fmpz_poly_t res , const

fmpz_poly_t poly)

Sets res to the derivative of poly.

13.25 Evaluation

void _fmpz_poly_evaluate_divconquer_fmpz(fmpz_t res , const

fmpz * poly , long len , const fmpz_t a)

Evaluates the polynomial (poly, len) at the integer a using a divide and conquer
approach. Assumes that the length of the polynomial is at least one. Allows zero
padding. Does not allow aliasing between res and x.

void fmpz_poly_evaluate_divconquer_fmpz(fmpz_t res , const

fmpz_poly_t poly , const fmpz_t a)

Evaluates the polynomial poly at the integer a using a divide and conquer approach.

Aliasing between res and a is supported, however, res may not be part of poly.

void _fmpz_poly_evaluate_horner_fmpz(fmpz_t res , const fmpz

* f, long len , const fmpz_t a)

Evaluates the polynomial (f, len) at the integer a using Horner’s rule, and sets res to
the result. Aliasing between res and a or any of the coefficients of f is not supported.

void fmpz_poly_evaluate_horner_fmpz(fmpz_t res , const

fmpz_poly_t f, const fmpz_t a)

Evaluates the polynomial f at the integer a using Horner’s rule, and sets res to the
result.

As expected, aliasing between res and a is supported. However, res may not be aliased
with a coefficient of f .
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void _fmpz_poly_evaluate_fmpz(fmpz_t res , const fmpz * f,

long len , const fmpz_t a)

Evaluates the polynomial (f, len) at the integer a and sets res to the result. Aliasing
between res and a or any of the coefficients of f is not supported.

void fmpz_poly_evaluate_fmpz(fmpz_t res , const fmpz_poly_t

f, const fmpz_t a)

Evaluates the polynomial f at the integer a and sets res to the result.

As expected, aliasing between res and a is supported. However, res may not be aliased
with a coefficient of f .

void _fmpz_poly_evaluate_horner_mpq(fmpz_t rnum , fmpz_t

rden , const fmpz * f, long len , const fmpz_t anum , const

fmpz_t aden)

Evaluates the polynomial (f, len) at the rational (anum, aden) using Horner’s rule,
and sets (rnum, rden) to the result in lowest terms.

Aliasing between (rnum, rden) and (anum, aden) or any of the coefficients of f is not
supported.

void fmpz_poly_evaluate_horner_mpq(mpq_t res , const

fmpz_poly_t f, const mpq_t a)

Evaluates the polynomial f at the rational a using Horner’s rule, and sets res to the
result.

void _fmpz_poly_evaluate_mpq(fmpz_t rnum , fmpz_t rden ,

const fmpz * f, long len , const fmpz_t anum , const

fmpz_t aden)

Evaluates the polynomial (f, len) at the rational (anum, aden) and sets (rnum,

rden) to the result in lowest terms.

Aliasing between (rnum, rden) and (anum, aden) or any of the coefficients of f is not
supported.

void fmpz_poly_evaluate_mpq(mpq_t res , const fmpz_poly_t f,

const mpq_t a)

Evaluates the polynomial f at the rational a and sets res to the result.

mp_limb_t _fmpz_poly_evaluate_mod(const fmpz * poly , long

len , mp_limb_t a, mp_limb_t n, mp_limb_t ninv)

Evaluates (poly, len) at the value a modulo n and returns the result. The last argu-
ment ninv must be set to the precomputed inverse of n, which can be obtained using
the function n_preinvert_limb().

mp_limb_t fmpz_poly_evaluate_mod(const fmpz_poly_t poly ,

mp_limb_t a, mp_limb_t n)

Evaluates poly at the value a modulo n and returns the result.

void fmpz_poly_evaluate_fmpz_vec(fmpz * res , const

fmpz_poly_t f, const fmpz * a, long n)

Evaluates f at the n values given in the vector f, writing the results to res.

13.26 Newton basis
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void _fmpz_poly_monomial_to_newton(fmpz * poly , const fmpz

* roots , long n)

Converts (poly, n) in-place from its coefficients given in the standard monomial basis
to the Newton basis for the roots r0, r1, . . . , rn−2. In other words, this determines output
coefficients ci such that

c0 + c1(x− r0) + c2(x− r0)(x− r1) + . . .+ cn−1(x− r0)(x− r1) · · · (x− rn−2)

is equal to the input polynomial. Uses repeated polynomial division.

void _fmpz_poly_newton_to_monomial(fmpz * poly , const fmpz

* roots , long n)

Converts (poly, n) in-place from its coefficients given in the Newton basis for the roots
r0, r1, . . . , rn−2 to the standard monomial basis. In other words, this evaluates

c0 + c1(x− r0) + c2(x− r0)(x− r1) + . . .+ cn−1(x− r0)(x− r1) · · · (x− rn−2)

where ci are the input coefficients for poly. Uses Horner’s rule.

13.27 Interpolation

void fmpz_poly_interpolate_fmpz_vec(fmpz_poly_t poly , const

fmpz * xs, const fmpz * ys, long n)

Sets poly to the unique interpolating polynomial of degree at most n − 1 satisfying
f(xi) = yi for every pair xi, yu in xs and ys, assuming that this polynomial has integer
coefficients.

If an interpolating polynomial with integer coefficients does not exist, the result is un-
defined.

It is assumed that the x values are distinct.

13.28 Composition

void _fmpz_poly_compose_horner(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Sets res to the composition of (poly1, len1) and (poly2, len2).

Assumes that res has space for (len1-1)*(len2-1)+ 1 coefficients. Assumes that
poly1 and poly2 are non-zero polynomials. Does not support aliasing between any of
the inputs and the output.

void fmpz_poly_compose_horner(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Sets res to the composition of poly1 and poly2. To be more precise, denoting res,
poly1, and poly2 by f , g, and h, sets f(t) = g(h(t)).

This implementation uses Horner’s method.

void _fmpz_poly_compose_divconquer(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2)

Computes the composition of (poly1, len1) and (poly2, len2) using a divide and
conquer approach and places the result into res, assuming res can hold the output of
length (len1 - 1)* (len2 - 1)+ 1.

Assumes len1, len2 > 0. Does not support aliasing between res and any of (poly1,
len1) and (poly2, len2).
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void fmpz_poly_compose_divconquer(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2)

Sets res to the composition of poly1 and poly2. To be precise about the order of
composition, denoting res, poly1, and poly2 by f , g, and h, respectively, sets f(t) =
g(h(t)).

void _fmpz_poly_compose(fmpz * res , const fmpz * poly1 ,

long len1 , const fmpz * poly2 , long len2)

Sets res to the composition of (poly1, len1) and (poly2, len2).

Assumes that res has space for (len1-1)*(len2-1)+ 1 coefficients. Assumes that
poly1 and poly2 are non-zero polynomials. Does not support aliasing between any of
the inputs and the output.

void fmpz_poly_compose(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_poly_t poly2)

Sets res to the composition of poly1 and poly2. To be precise about the order of
composition, denoting res, poly1, and poly2 by f , g, and h, respectively, sets f(t) =
g(h(t)).

13.29 Taylor shift

void _fmpz_poly_taylor_shift_horner(fmpz * poly , const

fmpz_t c, long n)

Performs the Taylor shift composing poly by x + c in-place. Uses an efficient version
Horner’s rule.

void fmpz_poly_taylor_shift_horner(fmpz_poly_t g, const

fmpz_poly_t f, const fmpz_t c)

Performs the Taylor shift composing f by x+ c.

void _fmpz_poly_taylor_shift_divconquer(fmpz * poly , const

fmpz_t c, long n)

Performs the Taylor shift composing poly by x+c in-place. Uses the divide-and-conquer
polynomial composition algorithm.

void fmpz_poly_taylor_shift_divconquer(fmpz_poly_t g, const

fmpz_poly_t f, const fmpz_t c)

Performs the Taylor shift composing f by x+c. Uses the divide-and-conquer polynomial
composition algorithm.

void _fmpz_poly_taylor_shift(fmpz * poly , const fmpz_t c,

long n)

Performs the Taylor shift composing poly by x+ c in-place.

void fmpz_poly_taylor_shift(fmpz_poly_t g, const

fmpz_poly_t f, const fmpz_t c)

Performs the Taylor shift composing f by x+ c.

13.30 Power series composition
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void _fmpz_poly_compose_series_horner(fmpz * res , const

fmpz * poly1 , long len1 , const fmpz * poly2 , long len2 ,

long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that
(len1-1)* (len2-1)+ 1 <= n, and that res has space for n coefficients. Does not
support aliasing between any of the inputs and the output.

This implementation uses the Horner scheme.

void fmpz_poly_compose_series_horner(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses the Horner scheme.

void _fmpz_poly_compose_series_brent_kung(fmpz * res , const

fmpz * poly1 , long len1 , const fmpz * poly2 , long len2 ,

long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that
(len1-1)* (len2-1)+ 1 <= n, and that res has space for n coefficients. Does not
support aliasing between any of the inputs and the output.

This implementation uses Brent-Kung algorithm 2.1 [7].

void fmpz_poly_compose_series_brent_kung(fmpz_poly_t res ,

const fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses Brent-Kung algorithm 2.1 [7].

void _fmpz_poly_compose_series(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz * poly2 , long len2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that
(len1-1)* (len2-1)+ 1 <= n, and that res has space for n coefficients. Does not
support aliasing between any of the inputs and the output.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs.

void fmpz_poly_compose_series(fmpz_poly_t res , const

fmpz_poly_t poly1 , const fmpz_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs.

13.31 Power series reversion
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void _fmpz_poly_revert_series_lagrange(fmpz * Qinv , const

fmpz * Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased. It is required that Q0 = 0 and Q1 = ±1.

This implementation uses the Lagrange inversion formula.

void fmpz_poly_revert_series_lagrange(fmpz_poly_t Qinv ,

const fmpz_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. It is required that Q0 = 0 and
Q1 = ±1.

This implementation uses the Lagrange inversion formula.

void _fmpz_poly_revert_series_lagrange_fast(fmpz * Qinv ,

const fmpz * Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased. It is required that Q0 = 0 and Q1 = ±1.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula.

void fmpz_poly_revert_series_lagrange_fast(fmpz_poly_t

Qinv , const fmpz_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. It is required that Q0 = 0 and
Q1 = ±1.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula.

void _fmpz_poly_revert_series_newton(fmpz * Qinv , const

fmpz * Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased. It is required that Q0 = 0 and Q1 = ±1.

This implementation uses Newton iteration [7].

void fmpz_poly_revert_series_newton(fmpz_poly_t Qinv , const

fmpz_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. It is required that Q0 = 0 and
Q1 = ±1.

This implementation uses Newton iteration [7].

void _fmpz_poly_revert_series(fmpz * Qinv , const fmpz * Q,

long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased. It is required that Q0 = 0 and Q1 = ±1.

This implementation defaults to the fast version of Lagrange interpolation.
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void fmpz_poly_revert_series(fmpz_poly_t Qinv , const

fmpz_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. It is required that Q0 = 0 and
Q1 = ±1.

This implementation defaults to the fast version of Lagrange interpolation.

13.32 Square root

int _fmpz_poly_sqrt_classical(fmpz * res , const fmpz *

poly , long len)

If (poly, len) is a perfect square, sets (res, len / 2 + 1) to the square root of poly
with positive leading coefficient and returns 1. Otherwise returns 0.

This function first uses various tests to detect nonsquares quickly. Then, it computes
the square root iteratively from top to bottom, requiring O(n2) coefficient operations.

int fmpz_poly_sqrt_classical(fmpz_poly_t b, const

fmpz_poly_t a)

If a is a perfect square, sets b to the square root of a with positive leading coefficient
and returns 1. Otherwise returns 0.

int _fmpz_poly_sqrt(fmpz * res , const fmpz * poly , long len)

If (poly, len) is a perfect square, sets (res, len / 2 + 1) to the square root of poly
with positive leading coefficient and returns 1. Otherwise returns 0.

int fmpz_poly_sqrt(fmpz_poly_t b, const fmpz_poly_t a)

If a is a perfect square, sets b to the square root of a with positive leading coefficient
and returns 1. Otherwise returns 0.

13.33 Signature

void _fmpz_poly_signature(long * r1 , long * r2, fmpz *

poly , long len)

Computes the signature (r1, r2) of the polynomial (poly, len). Assumes that the
polynomial is squarefree over Q.

void fmpz_poly_signature(long * r1, long * r2, fmpz_poly_t

poly)

Computes the signature (r1, r2) of the polynomial poly, which is assumed to be square-
free over Q. The values of r1 and 2r2 are the number of real and complex roots of the
polynomial, respectively. For convenience, the zero polynomial is allowed, in which case
the output is (0, 0).

If the polynomial is not square-free, the behaviour is undefined and an exception may
be raised.

This function uses the algorithm described in [9, Algorithm 4.1.11].

13.34 Hensel lifting

void fmpz_poly_hensel_build_tree(long * link , fmpz_poly_t

*v, fmpz_poly_t *w, const nmod_poly_factor_t fac)
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Initialises and builds a Hensel tree consisting of two arrays v, w of polynomials an array
of links, called link.

The caller supplies a set of r local factors (in the factor structure fac) of some polynomial
F over Z. They also supply two arrays of initialised polynomials v and w, each of length
2r − 2 and an array link, also of length 2r − 2.

We will have five arrays: a v of fmpz_poly_t’s and a V of nmod_poly_t’s and also a
w and a W and link. Here’s the idea: we sort each leaf and node of a factor tree by
degree, in fact choosing to multiply the two smallest factors, then the next two smallest
(factors or products) etc. until a tree is made. The tree will be stored in the v’s. The
first two elements of v will be the smallest modular factors, the last two elements of v
will multiply to form F itself. Since v will be rearranging the original factors we will
need to be able to recover the original order. For this we use the array link which has
nonnegative even numbers and negative numbers. It is an array of long’s which aligns
with V and v if link has a negative number in spot j that means Vj is an original
modular factor which has been lifted, if link[j] is a nonnegative even number then Vj
stores a product of the two entries at V[link[j]] and V[link[j]+1]. W and w play
the role of the extended GCD, at V0, V2, V4, etc. we have a new product, W0, W2, W4,
etc. are the XGCD cofactors of the V ’s. For example, V0W0 + V1W1 ≡ 1 (mod p`) for
some `. These will be lifted along with the entries in V . It is not enough to just lift each
factor, we have to lift the entire tree and the tree of XGCD cofactors.

void fmpz_poly_hensel_lift(fmpz_poly_t G, fmpz_poly_t H,

fmpz_poly_t A, fmpz_poly_t B, const fmpz_poly_t f, const

fmpz_poly_t g, const fmpz_poly_t h, const fmpz_poly_t a,

const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1)

This is the main Hensel lifting routine, which performs a Hensel step from polynomials
mod p to polynomials mod P = pp1. One starts with polynomials f , g, h such that
f = gh (mod p). The polynomials a, b satisfy ag + bh = 1 (mod p).

The lifting formulae are

G =

((f − gh
p

)
b mod g

)
p+ g

H =

((f − gh
p

)
a mod h

)
p+ h

B =

((1− aG− bH
p

)
b mod g

)
p+ b

A =

((1− aG− bH
p

)
a mod h

)
p+ a.

Upon return we have AG + BH = 1 (mod P ) and f = GH (mod P ), where G = g
(mod p) etc.

We require that 1 < p1 ≤ p and that the input polynomials f, g, h have degree at least 1
and that the input polynomials a and b are non-zero.

The output arguments G,H,A,B may only be aliased with the input arguments g, h, a, b,
respectively.

void fmpz_poly_hensel_lift_without_inverse(fmpz_poly_t

Gout , fmpz_poly_t Hout , const fmpz_poly_t f, const

fmpz_poly_t g, const fmpz_poly_t h, const fmpz_poly_t a,

const fmpz_poly_t b, const fmpz_t p, const fmpz_t p1)

Given polynomials such that f = gh (mod p) and ag + bh = 1 (mod p), lifts only the
factors g and h modulo P = pp1.



86 fmpz poly

See fmpz_poly_hensel_lift().

void fmpz_poly_hensel_lift_only_inverse(fmpz_poly_t Aout ,

fmpz_poly_t Bout , const fmpz_poly_t G, const fmpz_poly_t

H, const fmpz_poly_t a, const fmpz_poly_t b, const

fmpz_t p, const fmpz_t p1)

Given polynomials such that f = gh (mod p) and ag + bh = 1 (mod p), lifts only the
cofactors a and b modulo P = pp1.

See fmpz_poly_hensel_lift().

void fmpz_poly_hensel_lift_tree_recursive(long *link ,

fmpz_poly_t *v, fmpz_poly_t *w, fmpz_poly_t f, long j,

long inv , const fmpz_t p0 , const fmpz_t p1)

Takes a current Hensel tree (link, v, w) and a pair (j, j+ 1) of entries in the tree and
lifts the tree from mod p0 to mod P = p0p1, where 1 < p1 ≤ p0.

Set inv to −1 if restarting Hensel lifting, 0 if stopping and 1 otherwise.

Here f = gh is the polynomial whose factors we are trying to lift. We will have that
v[j] is the product of v[link[j]] and v[link[j] + 1] as described above.

Does support aliasing of f with one of the polynomials in the lists v and w. But the
polynomials in these two lists are not allowed to be aliases of each other.

void fmpz_poly_hensel_lift_tree(long *link , fmpz_poly_t *v,

fmpz_poly_t *w, fmpz_poly_t f, long r, const fmpz_t p,

long e0, long e1, long inv)

Computes p0 = pe0 and p1 = pe1−e0 for a small prime p and P = pe1 .

If we aim to lift to pb then f is the polynomial whose factors we wish to lift, made monic
mod pb. As usual, (link, v, w) is an initialised tree.

This starts the recursion on lifting the product tree for lifting from pe0 to pe1 . The value of
inv corresponds to that given for the function fmpz_poly_hensel_lift_tree_recursive().
We set r to the number of local factors of f .

In terms of the notation, above P = pe1 , p0 = pe0 and p1 = pe1−e0 .

Assumes that f is monic.

Assumes that 1 < p1 ≤ p0, that is, 0 < e1 ≤ e0.

long _fmpz_poly_hensel_start_lift(fmpz_poly_factor_t

lifted_fac , long *link , fmpz_poly_t *v, fmpz_poly_t *w,

const fmpz_poly_t f, const nmod_poly_factor_t local_fac ,

long N)

This function takes the local factors in local_fac and Hensel lifts them until they are
known mod pN , where N ≥ 1.

These lifted factors will be stored (in the same ordering) in lifted_fac. It is assumed
that link, v, and w are initialized arrays fmpz_poly_t’s with at least 2 ∗ r − 2 entries
and that r ≥ 2. This is done outside of this function so that you can keep them for
restarting Hensel lifting later. The product of local factors must be squarefree.

The return value is an exponent which must be passed to the function
_fmpz_poly_hensel_continue_lift() as prev_exp if the Hensel lifting is to be re-
sumed.

Currently, supports the case when N = 1 for convenience, although it is preferable in
this case to simple iterate over the local factors and convert them to polynomials over
Z.
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long _fmpz_poly_hensel_continue_lift(fmpz_poly_factor_t

lifted_fac , long *link , fmpz_poly_t *v, fmpz_poly_t *w,

const fmpz_poly_t f, long prev , long curr , long N, const

fmpz_t p)

This function restarts a stopped Hensel lift.

It lifts from curr to N . It also requires prev (to lift the cofactors) given as the return
value of the function _fmpz_poly_hensel_start_lift() or the function
_fmpz_poly_hensel_continue_lift(). The current lifted factors are supplied in lifted_fac

and upon return are updated there. As usual link, v, and w describe the current Hensel
tree, r is the number of local factors and p is the small prime modulo whose power we
are lifting to. It is required that curr be at least 1 and that N > curr.

Currently, supports the case when prev and curr are equal.

void fmpz_poly_hensel_lift_once(fmpz_poly_factor_t

lifted_fac , const fmpz_poly_t f, const

nmod_poly_factor_t local_fac , long N)

This function does a Hensel lift.

It lifts local factors stored in local_fac of f to pN , where N ≥ 2. The lifted factors will
be stored in lifted_fac. This lift cannot be restarted. This function is a convenience
function intended for end users. The product of local factors must be squarefree.

13.35 Input and output

The functions in this section are not intended to be particularly fast. They are intended
mainly as a debugging aid.

For the string output functions there are two variants. The first uses a simple string
representation of polynomials which prints only the length of the polynomial and the
integer coefficients, whilst the latter variant, appended with _pretty, uses a more tra-
ditional string representation of polynomials which prints a variable name as part of the
representation.

The first string representation is given by a sequence of integers, in decimal notation,
separated by white space. The first integer gives the length of the polynomial; the
remaining integers are the coefficients. For example 5x3 − x + 1 is represented by the
string "4 1 -1 0 5", and the zero polynomial is represented by "0". The coefficients
may be signed and arbitrary precision.

The string representation of the functions appended by _pretty includes only the non-
zero terms of the polynomial, starting with the one of highest degree. Each term starts
with a coefficient, prepended with a sign, followed by the character *, followed by a
variable name, which must be passed as a string parameter to the function, followed by
a carot ^ followed by a non-negative exponent.

If the sign of the leading coefficient is positive, it is omitted. Also the exponents of the
degree 1 and 0 terms are omitted, as is the variable and the * character in the case of
the degree 0 coefficient. If the coefficient is plus or minus one, the coefficient is omitted,
except for the sign.

Some examples of the _pretty representation are:

5*x^3+7*x-4

x^2+3

-x^4+2*x-1

x+1

5
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int _fmpz_poly_print(const fmpz * poly , long len)

Prints the polynomial (poly, len) to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_poly_print(const fmpz_poly_t poly)

Prints the polynomial to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpz_poly_print_pretty(const fmpz * poly , long len ,

const char * x)

Prints the pretty representation of (poly, len) to stdout, using the string x to repre-
sent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_poly_print_pretty(const fmpz_poly_t poly , const

char * x)

Prints the pretty representation of poly to stdout, using the string x to represent the
indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpz_poly_fprint(FILE * file , const fmpz * poly , long

len)

Prints the polynomial (poly, len) to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_poly_fprint(FILE * file , const fmpz_poly_t poly)

Prints the polynomial to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpz_poly_fprint_pretty(FILE * file , const fmpz *

poly , long len , char * x)

Prints the pretty representation of (poly, len) to the stream file, using the string x

to represent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_poly_fprint_pretty(FILE * file , const fmpz_poly_t

poly , char * x)

Prints the pretty representation of poly to the stream file, using the string x to rep-
resent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.
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int fmpz_poly_read(fmpz_poly_t poly)

Reads a polynomial from stdin, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.

int fmpz_poly_read_pretty(fmpz_poly_t poly , char **x)

Reads a polynomial in pretty format from stdin.

For further details, see the documentation for the function fmpz_poly_fread_pretty().

int fmpz_poly_fread(FILE * file , fmpz_poly_t poly)

Reads a polynomial from the stream file, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.

int fmpz_poly_fread_pretty(FILE *file , fmpz_poly_t poly ,

char **x)

Reads a polynomial from the file file and sets poly to this polynomial. The string *x

is set to the variable name that is used in the input.

The parser is implemented via a finite state machine as follows:

state event next state

----------------------------

0 ’-’ 1

D 2

V0 3

1 D 2

V0 3

2 D 2

’*’ 4

’+’, ’-’ 1

3 V 3

’^’ 5

’+’, ’-’ 1

4 V0 3

5 D 6

6 D 6

’+’, ’-’ 1

Here, D refers to any digit, V0 to any character which is allowed as the first character
in the variable name (an alphetic character), and V to any character which is allowed in
the remaining part of the variable name (an alphanumeric character or underscore).

Once we encounter a character which does not fit into the above pattern, we stop.

Returns a positive value, equal to the number of characters read from the file, in case
of success. Returns a non-positive value in case of failure, which could either be a read
error or the indicator of a malformed input.

13.36 Modular reduction and reconstruction

void fmpz_poly_get_nmod_poly(nmod_poly_t Amod , fmpz_poly_t

A)
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Sets the coefficients of Amod to the coefficients in A, reduced by the modulus of Amod.

void fmpz_poly_set_nmod_poly(fmpz_poly_t A, const

nmod_poly_t Amod)

Sets the coefficients of A to the residues in Amod, normalised to the interval −m/2 ≤ r <
m/2 where m is the modulus.

void fmpz_poly_set_nmod_poly_unsigned(fmpz_poly_t A, const

nmod_poly_t Amod)

Sets the coefficients of A to the residues in Amod, normalised to the interval 0 ≤ r < m
where m is the modulus.

void _fmpz_poly_CRT_ui_precomp(fmpz * res , const fmpz *

poly1 , long len1 , const fmpz_t m1, mp_srcptr poly2 , long

len2 , mp_limb_t m2, mp_limb_t m2inv , fmpz_t m1m2 ,

mp_limb_t c, int sign)

Sets the coefficients in res to the CRT reconstruction modulo m1m2 of the residues
(poly1, len1) and (poly2, len2) which are images modulo m1 and m2 respectively.
The caller must supply the precomputed product of the input moduli as m1m2, the
inverse of m1 modulo m2 as c, and the precomputed inverse of m2 (in the form computed
by n_preinvert_limb) as m2inv.

If sign = 0, residues 0 <= r < m1m2 are computed, while if sign = 1, residues
−m1m2/2 <= r < m1m2/2 are computed.

Coefficients of res are written up to the maximum of len1 and len2.

void _fmpz_poly_CRT_ui(fmpz * res , const fmpz * poly1 , long

len1 , const fmpz_t m1, mp_srcptr poly2 , long len2 ,

mp_limb_t m2, mp_limb_t m2inv , int sign)

This function is identical to _fmpz_poly_CRT_ui_precomp, apart from automatically
computing m1m2 and c. It also aborts if c cannot be computed.

void fmpz_poly_CRT_ui(fmpz_poly_t res , const fmpz_poly_t

poly1 , const fmpz_t m, const nmod_poly_t poly2 , int sign)

Given poly1 with coefficients modulo m and poly2 with modulus n, sets res to the CRT
reconstruction modulo mn with coefficients satisfying −mn/2 ≤ c < mn/2 (if sign = 1)
or 0 ≤ c < mn (if sign = 0).

13.37 Products

void _fmpz_poly_product_roots_fmpz_vec(fmpz * poly , const

fmpz * xs, long n)

Sets (poly, n + 1) to the monic polynomial which is the product of (x − x0)(x −
x1) · · · (x− xn−1), the roots xi being given by xs.

Aliasing of the input and output is not allowed.

void fmpz_poly_product_roots_fmpz_vec(fmpz_poly_t poly ,

const fmpz * xs, long n)

Sets poly to the monic polynomial which is the product of (x−x0)(x−x1) · · · (x−xn−1),
the roots xi being given by xs.

13.38 Newton basis conversion
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void _fmpz_poly_monomial_to_newton(fmpz * poly , const fmpz

* roots , long n)

Converts the polynomial in-place from its coefficients in the monomial basis to the New-
ton basis 1, (x−r0), (x−r0)(x−r1), . . .. Uses Horner’s rule, requiring O(n2) operations.

void _fmpz_poly_newton_to_monomial(fmpz * poly , const fmpz

* roots , long n)

Converts the polynomial in-place from its coefficients in the Newton basis 1, (x−r0), (x−
r0)(x−r1), . . . to the monomial basis. Uses repeated polynomial division, requiring O(n2)
operations.
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Factorisation of polynomials over Z

14.1 Memory management

void fmpz_poly_factor_init(fmpz_poly_factor_t fac)

Initialises a new factor structure.

void fmpz_poly_factor_init2(fmpz_poly_factor_t fac , long

alloc)

Initialises a new factor structure, providing space for at least alloc factors.

void fmpz_poly_factor_realloc(fmpz_poly_factor_t fac , long

alloc)

Reallocates the factor structure to provide space for precisely alloc factors.

void fmpz_poly_factor_fit_length(fmpz_poly_factor_t fac ,

long len)

Ensures that the factor structure has space for at least len factors. This functions takes
care of the case of repeated calls by always at least doubling the number of factors the
structure can hold.

void fmpz_poly_factor_clear(fmpz_poly_factor_t fac)

Releases all memory occupied by the factor structure.

14.2 Manipulating factors

void fmpz_poly_factor_set(fmpz_poly_factor_t res , const

fmpz_poly_factor_t fac)

Sets res to the same factorisation as fac.

void fmpz_poly_factor_insert(fmpz_poly_factor_t fac , const

fmpz_poly_t p, long e)

Adds the primitive polynomial pe to the factorisation fac.

Assumes that deg(p) ≥ 2 and e 6= 0.
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void fmpz_poly_factor_concat(fmpz_poly_factor_t res , const

fmpz_poly_factor_t fac)

Concatenates two factorisations.

This is equivalent to calling fmpz_poly_factor_insert() repeatedly with the individual
factors of fac.

Does not support aliasing between res and fac.

14.3 Input and output

void fmpz_poly_factor_print(const fmpz_poly_factor_t fac)

Prints the entries of fac to standard output.

14.4 Factoring algorithms

void fmpz_poly_factor_squarefree(fmpz_poly_factor_t fac ,

fmpz_poly_t F)

Takes as input a polynomial F and a freshly initialized factor structure fac. Updates fac
to contain a factorization of F into (not necessarily irreducible) factors that themselves
have no repeated factors. None of the returned factors will have the same exponent.
That is we return gi and unique ei such that

F = c
∏
i

geii

where c is the signed content of F and gcd(gi, g
′
i) = 1.

void

fmpz_poly_factor_zassenhaus_recombination(fmpz_poly_factor_t

final_fac , const fmpz_poly_factor_t lifted_fac , const

fmpz_poly_t F, const fmpz_t P, long exp)

Takes as input a factor structure lifted_fac containing a squarefree factorization of
the polynomial F mod p. The algorithm does a brute force search for irreducible factors
of F over the integers, and each factor is raised to the power exp.

The impact of the algorithm is to augment a factorization of F^exp to the factor structure
final_fac.

void _fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t

final_fac , long exp , fmpz_poly_t f, long cutoff)

This is the internal wrapper of Zassenhaus.

It will attempt to find a small prime such that f modulo p has a minimal number of
factors. If it cannot find a prime giving less than cutoff factors it aborts. Then it
decides a p-adic precision to lift the factors to, hensel lifts, and finally calls Zassenhaus
recombination.

Assumes that len(f) ≥ 2.

Assumes that f is primitive.

Assumes that the constant coefficient of f is non-zero. Note that this can be easily
achieved by taking out factors of the form xk before calling this routine.

void fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t

final_fac , fmpz_poly_t F)
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A wrapper of the Zassenhaus factoring algorithm, which takes as input any polynomial
F , and stores a factorization in final_fac.

The complexity will be exponential in the number of local factors we find for the com-
ponents of a squarefree factorization of F .





§15. fmpq

Arbitrary-precision rational numbers

15.1 Introduction

The fmpq_t data type represents rational numbers as fractions of multiprecision integers.

An fmpq_t is an array of length 1 of type fmpq, with fmpq being implemented as a pair
of fmpz’s representing numerator and denominator.

This format is designed to allow rational numbers with small numerators or denomina-
tors to be stored and manipulated efficiently. When components no longer fit in single
machine words, the cost of fmpq_t arithmetic is roughly the same as that of mpq_t

arithmetic, plus a small amount of overhead.

A fraction is said to be in canonical form if the numerator and denominator have no
common factor and the denominator is positive. Except where otherwise noted, all
functions in the fmpq module assume that inputs are in canonical form, and produce
outputs in canonical form. The user can manipulate the numerator and denominator
of an fmpq_t as arbitrary integers, but then becomes responsible for canonicalising the
number (for example by calling fmpq_canonicalise) before passing it to any library
function.

For most operations, both a function operating on fmpq_t’s and an underscore version
operating on fmpz_t components are provided. The underscore functions may perform
less error checking, and may impose limitations on aliasing between the input and output
variables, but generally assume that the components are in canonical form just like the
non-underscore functions.

15.2 Memory management

void fmpq_init(fmpq_t x)

Initialises the fmpq_t variable x for use. Its value is set to 0.

void fmpq_clear(fmpq_t x)

Clears the fmpq_t variable x. To use the variable again, it must be re-initialised with
fmpq_init.

fmpq * _fmpq_vec_init(long n)
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Initialises a vector of fmpq values of length n and sets all values to 0. This is equivalent to
generating a fmpz vector of length 2n with _fmpz_vec_init and setting all denominators
to 1.

void _fmpq_vec_clear(fmpq * vec , long n)

Frees an fmpq vector.

15.3 Canonicalisation

void fmpq_canonicalise(fmpq_t res)

Puts res in canonical form: the numerator and denominator are reduced to lowest terms,
and the denominator is made positive. If the numerator is zero, the denominator is set
to one.

If the denominator is zero, the outcome of calling this function is undefined, regardless
of the value of the numerator.

void _fmpq_canonicalise(fmpz_t num , fmpz_t den)

Does the same thing as fmpq_canonicalise, but for numerator and denominator given
explicitly as fmpz_t variables. Aliasing of num and den is not allowed.

int fmpq_is_canonical(const fmpq_t x)

Returns nonzero if fmpq_t x is in canonical form (as produced by fmpq_canonicalise),
and zero otherwise.

int _fmpq_is_canonical(const fmpz_t num , const fmpz_t den)

Does the same thing as fmpq_is_canonical, but for numerator and denominator given
explicitly as fmpz_t variables.

15.4 Basic assignment

void fmpq_set(fmpq_t dest , const fmpq_t src)

Sets dest to a copy of src. No canonicalisation is performed.

void fmpq_swap(fmpq_t op1 , fmpq_t op2)

Swaps the two rational numbers op1 and op2.

void fmpq_neg(fmpq_t dest , const fmpq_t src)

Sets dest to the additive inverse of src.

void fmpq_abs(fmpq_t dest , const fmpq_t src)

Sets dest to the absolute value of src.

void fmpq_zero(fmpq_t res)

Sets the value of res to 0.

void fmpq_one(fmpq_t res)

Sets the value of res to 1.

15.5 Comparison
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int fmpq_is_zero(fmpq_t res)

Returns nonzero if res has value 0, and returns zero otherwise.

int fmpq_is_one(fmpq_t res)

Returns nonzero if res has value 1, and returns zero otherwise.

int fmpq_equal(const fmpq_t x, const fmpq_t y)

Returns nonzero if x and y are equal, and zero otherwise. Assumes that x and y are
both in canonical form.

int fmpq_sgn(const fmpq_t x)

Returns the sign of the rational number x.

int fmpq_cmp(const fmpq_t x, const fmpq_t y)

Returns negative if x < y, zero if x = y, and positive if x > y.

void fmpq_height(fmpz_t height , const fmpq_t x)

Sets height to the height of x, defined as the larger of the absolute values of the nu-
merator and denominator of x.

mp_bitcnt_t fmpq_height_bits(const fmpq_t x)

Returns the number of bits in the height of x.

15.6 Conversion

void fmpq_set_fmpz_frac(fmpq_t res , const fmpz_t p, const

fmpz_t q)

Sets res to the canonical form of the fraction p / q. This is equivalent to assigning the
numerator and denominator separately and calling fmpq_canonicalise.

void fmpq_set_si(fmpq_t res , long p, ulong q)

Sets res to the canonical form of the fraction p / q.

void _fmpq_set_si(fmpz_t rnum , fmpz_t rden , long p, ulong q)

Sets (rnum, rden) to the canonical form of the fraction p / q. rnum and rden may not
be aliased.

void fmpq_set_mpq(fmpq_t dest , const mpq_t src)

Sets the value of dest to that of the mpq_t variable src.

void fmpq_get_mpq(mpq_t dest , const fmpq_t src)

Sets the value of dest

int fmpq_get_mpfr(mpfr_t dest , const fmpq_t src , mpfr_rnd_t

rnd)

Sets the MPFR variable dest to the value of src, rounded to the nearest representable
binary floating-point value in direction rnd. Returns the sign of the rounding, according
to MPFR conventions.

char * _fmpq_get_str(char * str , int b, const fmpz_t num ,

const fmpz_t den)
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char * fmpq_get_str(char * str , int b, const fmpq_t x)

Prints the string representation of x in base b ∈ [2, 36] to a suitable buffer.

If str is not NULL, this is used as the buffer and also the return value. If str is NULL,
allocates sufficient space and returns a pointer to the string.

void flint_mpq_init_set_readonly(mpq_t z, const fmpq_t f)

Sets the unitialised mpq_t z to the value of the readonly fmpq_t f .

Note that it is assumed that f does not change during the lifetime of z.

The rational z has to be cleared by a call to flint_mpq_clear_readonly().

The suggested use of the two functions is as follows:

fmpq_t f;

...

{

mpq_t z;

flint_mpq_init_set_readonly(z, f);

foo(..., z);

flint_mpq_clear_readonly(z);

}

This provides a convenient function for user code, only requiring to work with the types
fmpq_t and mpq_t.

void flint_mpq_clear_readonly(mpq_t z)

Clears the readonly mpq_t z.

void fmpq_init_set_readonly(fmpq_t f, const mpq_t z)

Sets the uninitialised fmpq_t f to a readonly version of the rational z.

Note that the value of z is assumed to remain constant throughout the lifetime of f .

The fmpq_t f has to be cleared by calling the function fmpq_clear_readonly().

The suggested use of the two functions is as follows:

mpq_t z;

...

{

fmpq_t f;

fmpq_init_set_readonly(f, z);

foo(..., f);

fmpq_clear_readonly(f);

}

void fmpq_clear_readonly(fmpq_t f)

Clears the readonly fmpq_t f .

15.7 Input and output

void fmpq_fprint(FILE * file , const fmpq_t x)
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Prints x as a fraction to the stream file. The numerator and denominator are printed
verbatim as integers, with a forward slash (/) printed in between.

void _fmpq_fprint(FILE * file , fmpz_t num , fmpz_t den)

Does the same thing as fmpq_fprint, but for numerator and denominator given explic-
itly as fmpz_t variables.

void fmpq_print(const fmpq_t x)

Prints x as a fraction. The numerator and denominator are printed verbatim as integers,
with a forward slash (/) printed in between.

void _fmpq_print(fmpz_t num , fmpz_t den)

Does the same thing as fmpq_print, but for numerator and denominator given explicitly
as fmpz_t variables.

15.8 Random number generation

void fmpq_randtest(fmpq_t res , flint_rand_t state ,

mp_bitcnt_t bits)

Sets res to a random value, with numerator and denominator having up to bits bits.
The fraction will be in canonical form. This function has an increased probability of
generating special values which are likely to trigger corner cases.

void _fmpq_randtest(fmpz_t num , fmpz_t den , flint_rand_t

state , mp_bitcnt_t bits)

Does the same thing as fmpq_randtest, but for numerator and denominator given ex-
plicitly as fmpz_t variables. Aliasing of num and den is not allowed.

void fmpq_randtest_not_zero(fmpq_t res , flint_rand_t state ,

mp_bitcnt_t bits)

As per fmpq_randtest, but the result will not be 0. If bits is set to 0, an exception
will result.

void fmpq_randbits(fmpq_t res , flint_rand_t state ,

mp_bitcnt_t bits)

Sets res to a random value, with numerator and denominator both having exactly bits

bits before canonicalisation, and then puts res in canonical form. Note that as a result
of the canonicalisation, the resulting numerator and denominator can be slightly smaller
than bits bits.

void _fmpq_randbits(fmpz_t num , fmpz_t den , flint_rand_t

state , mp_bitcnt_t bits)

Does the same thing as fmpq_randbits, but for numerator and denominator given ex-
plicitly as fmpz_t variables. Aliasing of num and den is not allowed.

15.9 Arithmetic

void fmpq_add(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)

void fmpq_sub(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)
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void fmpq_mul(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)

void fmpq_div(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)

Sets res respectively to op1 + op2, op1 - op2, op1 * op2, or op1 / op2. Assumes
that the inputs are in canonical form, and produces output in canonical form. Division
by zero results in an error. Aliasing between any combination of the variables is allowed.

void _fmpq_add(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

void _fmpq_sub(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

void _fmpq_mul(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

void _fmpq_div(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

Sets (rnum, rden) to the canonical form of the sum, difference, product or quotient
respectively of the fractions represented by (op1num, op1den) and (op2num, op2den).
Aliasing between any combination of the variables is allowed, as long as no numerator
is aliased with a denominator.

void fmpq_addmul(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)

void fmpq_submul(fmpq_t res , const fmpq_t op1 , const fmpq_t

op2)

Sets res to res + op1 * op2 or res - op1 * op2 respectively, placing the result in
canonical form. Aliasing between any combination of the variables is allowed.

void _fmpq_addmul(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

void _fmpq_submul(fmpz_t rnum , fmpz_t rden , const fmpz_t

op1num , const fmpz_t op1den , const fmpz_t op2num , const

fmpz_t op2den)

Sets (rnum, rden) to the canonical form of the fraction (rnum, rden) + (op1num,

op1den) * (op2num, op2den) or (rnum, rden) - (op1num, op1den) * (op2num, op2den)

respectively. Aliasing between any combination of the variables is allowed, as long as no
numerator is aliased with a denominator.

void fmpq_inv(fmpq_t dest , const fmpq_t src)

Sets dest to 1 / src. The result is placed in canonical form, assuming that src is
already in canonical form.
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void _fmpq_pow_si(fmpz_t rnum , fmpz_t rden , const fmpz_t

opnum , const fmpz_t opden , long e)

void fmpq_pow_si(fmpq_t res , const fmpq_t op, long e)

Sets res to op raised to the power e, where e is a signed long. If e is 0 and op is 0,
then res will be set to 1.

void fmpq_mul_fmpz(fmpq_t res , const fmpq_t op, const

fmpz_t x)

Sets res to the product of the rational number op and the integer x.

void fmpq_div_fmpz(fmpq_t res , const fmpq_t op, const

fmpz_t x)

Sets res to the quotient of the rational number op and the integer x.

void fmpq_mul_2exp(fmpq_t res , const fmpq_t x, mp_bitcnt_t

exp)

Sets res to x multiplied by 2^exp.

void fmpq_div_2exp(fmpq_t res , const fmpq_t x, mp_bitcnt_t

exp)

Sets res to x divided by 2^exp.

15.10 Modular reduction and rational reconstruction

int _fmpq_mod_fmpz(fmpz_t res , fmpz_t num , fmpz_t den ,

fmpz_t mod)

int fmpq_mod_fmpz(fmpz_t res , const fmpq_t x, const fmpz_t

mod)

Sets the integer res to the residue a of x = n/d = (num, den) modulo the positive
integer m = mod, defined as the 0 ≤ a < m satisfying n ≡ ad (mod m). If such an a
exists, 1 will be returned, otherwise 0 will be returned.

int _fmpq_reconstruct_fmpz_2(fmpz_t n, fmpz_t d, const

fmpz_t a, const fmpz_t m, const fmpz_t N, const fmpz_t D)

int fmpq_reconstruct_fmpz_2(fmpq_t res , const fmpz_t a,

const fmpz_t m, const fmpz_t N, const fmpz_t D)

Reconstructs a rational number from its residue a modulo m.

Given a modulus m > 1, a residue 0 ≤ a < m, and positive N,D satisfying 2ND < m,
this function attempts to find a fraction n/d with 0 ≤ |n| ≤ N and 0 < d ≤ D such
that gcd(n, d) = 1 and n ≡ ad (mod m). If a solution exists, then it is also unique. The
function returns 1 if successful, and 0 to indicate that no solution exists.

int _fmpq_reconstruct_fmpz(fmpz_t n, fmpz_t d, const fmpz_t

a, const fmpz_t m)

int fmpq_reconstruct_fmpz(fmpq_t res , const fmpz_t a, const

fmpz_t m)
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Reconstructs a rational number from its residue a modulo m, returning 1 if successful
and 0 if no solution exists. Uses the balanced bounds N = D = b

√
m/2c.

15.11 Rational enumeration

void _fmpq_next_minimal(fmpz_t rnum , fmpz_t rden , const

fmpz_t num , const fmpz_t den)

void fmpq_next_minimal(fmpq_t res , const fmpq_t x)

Given x which is assumed to be nonnegative and in canonical form, sets res to the next
rational number in the sequence obtained by enumerating all positive denominators q,
for each q enumerating the numerators 1 ≤ p < q in order and generating both p/q and
q/p, but skipping all gcd(p, q) 6= 1. Starting with zero, this generates every nonnegative
rational number once and only once, with the first few entries being:

0, 1, 1/2, 2, 1/3, 3, 2/3, 3/2, 1/4, 4, 3/4, 4/3, 1/5, 5, 2/5, . . . .

This enumeration produces the rational numbers in order of minimal height. It has the
disadvantage of being somewhat slower to compute than the Calkin-Wilf enumeration.

void _fmpq_next_signed_minimal(fmpz_t rnum , fmpz_t rden ,

const fmpz_t num , const fmpz_t den)

void fmpq_next_signed_minimal(fmpq_t res , const fmpq_t x)

Given a signed rational number x assumed to be in canonical form, sets res to the
next element in the minimal-height sequence generated by fmpq_next_minimal but with
negative numbers interleaved:

0, 1,−1, 1/2,−1/2, 2,−2, 1/3,−1/3, . . . .

Starting with zero, this generates every rational number once and only once, in order of
minimal height.

void _fmpq_next_calkin_wilf(fmpz_t rnum , fmpz_t rden , const

fmpz_t num , const fmpz_t den)

void fmpq_next_calkin_wilf(fmpq_t res , const fmpq_t x)

Given x which is assumed to be nonnegative and in canonical form, sets res to the
next number in the breadth-first traversal of the Calkin-Wilf tree. Starting with zero,
this generates every nonnegative rational number once and only once, with the first few
entries being:

0, 1, 1/2, 2, 1/3, 3/2, 2/3, 3, 1/4, 4/3, 3/5, 5/2, 2/5, . . . .

Despite the appearance of the initial entries, the Calkin-Wilf enumeration does not
produce the rational numbers in order of height: some small fractions will appear late
in the sequence. This order has the advantage of being faster to produce than the
minimal-height order.

void _fmpq_next_signed_calkin_wilf(fmpz_t rnum , fmpz_t

rden , const fmpz_t num , const fmpz_t den)
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void fmpq_next_signed_calkin_wilf(fmpq_t res , const fmpq_t

x)

Given a signed rational number x assumed to be in canonical form, sets res to the next
element in the Calkin-Wilf sequence with negative numbers interleaved:

0, 1,−1, 1/2,−1/2, 2,−2, 1/3,−1/3, . . . .

Starting with zero, this generates every rational number once and only once, but not in
order of minimal height.

15.12 Continued fractions

long fmpq_get_cfrac(fmpz * c, fmpq_t rem , const fmpq_t x,

long n)

Generates up to n terms of the (simple) continued fraction expansion of x, writing the
coefficients to the vector c and the remainder r to the rem variable. The return value is
the number k of generated terms. The output satisfies:

x = c0 +
1

c1 +
1

c2 +
1

.. . +
1

ck−1 + r

If r is zero, the continued fraction expansion is complete. If r is nonzero, 1/r can be
passed back as input to generate ck, ck+1, . . .. Calls to fmpq_get_cfrac can therefore be
chained to generate the continued fraction incrementally, extracting any desired number
of coefficients at a time.

In general, a rational number has exactly two continued fraction expansions. By conven-
tion, we generate the shorter one. The longer expansion can be obtained by replacing
the last coefficient ak−1 by the pair of coefficients ak−1 − 1, 1.

As a special case, the continued fraction expansion of zero consists of a single zero (and
not the empty sequence).

This function implements a simple algorithm, performing repeated divisions. The run-
ning time is quadratic.

void fmpq_set_cfrac(fmpq_t x, const fmpz * c, long n)

Sets x to the value of the continued fraction

x = c0 +
1

c1 +
1

c2 +
1

.. . +
1

cn−1

where all ci except c0 should be nonnegative. It is assumed that n > 0.

For large n, this function implements a subquadratic algorithm. The convergents are
given by a chain product of 2 by 2 matrices. This product is split in half recursively to
balance the size of the coefficients.
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long fmpq_cfrac_bound(const fmpq_t x)

Returns an upper bound for the number of terms in the continued fraction expansion of
x. The computed bound is not necessarily sharp.

We use the fact that the smallest denominator that can give a continued fraction of
length n is the Fibonacci number Fn+1.

15.13 Summation

void fmpq_bsplit_init(fmpq_bsplit_t s)

Initialises the variable s representing a partial sum of a series of rational numbers com-
puted using binary splitting. The algorithm is described in [17].

void fmpq_bsplit_clear(fmpq_bsplit_t s)

Frees the binary splitting variable s.

void fmpq_bsplit_get_fmpq(fmpq_t x, const fmpq_bsplit_t s)

Sets x to the value of the sum s(0, n) represented by s, reduced to a single fraction in
canonical form.

void fmpq_bsplit_get_mpfr(mpfr_t x, const fmpq_bsplit_t s)

Sets x to a numerical approximation of the sum s. To improve performance, the final
fraction is computed using floating-point multiplications and divisions, possibly resulting
in 3-4 bits of roundoff error.

void fmpq_bsplit_sum_pq(fmpq_bsplit_t s, const fmpq * pq,

long n1, long n2)

With n1 = 0 and n2 = n, computes

s(0, n) =

n∑
k=0

ak
bk

(
k∑
i=0

ci
di

)(
k∏
i=0

pi
qi

)
using binary splitting. With 0 ≤ n1 ≤ n2 ≤ n, computes the content of the sum
corresponding to that interval.

void fmpq_bsplit_sum_abpq(fmpq_bsplit_t s, const fmpq * ab,

const fmpq * pq, long n1, long n2)

With n1 = 0 and n2 = n, computes

s(0, n) =

n∑
k=0

ak
bk

(
k∏
i=0

pi
qi

)
using binary splitting. With 0 ≤ n1 ≤ n2 ≤ n, computes the content of the sum
corresponding to that interval.

void fmpq_bsplit_sum_pq(fmpq_bsplit_t s, const fmpq * ab,

const fmpq * cd, const fmpq * pq, long n1 , long n2)

With n1 = 0 and n2 = n, computes

s(0, n) =

n∑
k=0

k∏
i=0

pi
qi

using binary splitting. With 0 ≤ n1 ≤ n2 ≤ n, computes the content of the sum
corresponding to that interval.
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Matrices over Q

16.1 Introduction

The fmpq_mat_t data type represents matrices over Q.

A rational matrix is stored as an array of fmpq elements in order to allow convenient
and efficient manipulation of individual entries. In general, fmpq_mat functions assume
that input entries are in canonical form, and produce output with entries in canonical
form.

Since rational arithmetic is expensive, computations are typically performed by clearing
denominators, performing the heavy work over the integers, and converting the final
result back to a rational matrix. The fmpq_mat functions take care of such conversions
transparently. For users who need fine-grained control, various functions for conversion
between rational and integer matrices are provided.

16.2 Memory management

void fmpq_mat_init(fmpq_mat_t mat , long rows , long cols)

Initialises a matrix with the given number of rows and columns for use.

void fmpq_mat_clear(fmpq_mat_t mat)

Frees all memory associated with the matrix. The matrix must be reinitialised if it is to
be used again.

16.3 Entry access

MACRO fmpq_mat_entry(mat ,i,j)

Gives a reference to the entry at row i and column j. The reference can be passed as
an input or output variable to any fmpq function for direct manipulation of the matrix
element. No bounds checking is performed.

MACRO fmpq_mat_entry_num(mat ,i,j)

Gives a reference to the numerator of the entry at row i and column j. The reference can
be passed as an input or output variable to any fmpz function for direct manipulation
of the matrix element. No bounds checking is performed.
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MACRO fmpq_mat_entry_den(mat ,i,j)

Gives a reference to the denominator of the entry at row i and column j. The reference
can be passed as an input or output variable to any fmpz function for direct manipulation
of the matrix element. No bounds checking is performed.

16.4 Basic assignment

void fmpq_mat_set(fmpq_mat_t dest , const fmpq_mat_t src)

Sets the entries in dest to the same values as in src, assuming the two matrices have
the same dimensions.

void fmpq_mat_zero(fmpq_mat_t mat)

Sets mat to the zero matrix.

void fmpq_mat_one(fmpq_mat_t mat)

Let m be the minimum of the number of rows and columns in the matrix mat. This
function sets the first m ×m block to the identity matrix, and the remaining block to
zero.

void fmpq_mat_transpose(fmpq_mat_t rop , const fmpq_mat_t op)

Sets the matrix rop to the tranpose of the matrix op, assuming that their dimensios are
compatible.

16.5 Addition, scalar multiplication

void fmpq_mat_add(fmpq_mat_t mat , const fmpq_mat_t mat1 ,

const fmpq_mat_t mat2)

Sets mat to the sum of mat1 and mat2, assuming that all three matrices have the same
dimensions.

void fmpq_mat_sub(fmpq_mat_t mat , const fmpq_mat_t mat1 ,

const fmpq_mat_t mat2)

Sets mat to the difference of mat1 and mat2, assuming that all three matrices have the
same dimensions.

void fmpq_mat_neg(fmpq_mat_t rop , const fmpq_mat_t op)

Sets rop to the negative of op, assuming that the two matrices have the same dimensions.

void fmpq_mat_scalar_mul_fmpz(fmpq_mat_t rop , const

fmpq_mat_t op, const fmpz_t x)

Sets rop to op multiplied by the integer x, assuming that the two matrices have the
same dimensions.

Note that the integer x may not be aliased with any part of the entries of rop.

void fmpq_mat_scalar_div_fmpz(fmpq_mat_t rop , const

fmpq_mat_t op, const fmpz_t x)

Sets rop to op divided by the integer x, assuming that the two matrices have the same
dimensions and that x is non-zero.

Note that the integer x may not be aliased with any part of the entries of rop.

16.6 Input and output
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void fmpq_mat_print(fmpq_mat_t mat)

Prints the matrix mat to standard output.

16.7 Random matrix generation

void fmpq_mat_randbits(fmpq_mat_t mat , flint_rand_t state ,

mp_bitcnt_t bits)

This is equivalent to applying fmpq_randbits to all entries in the matrix.

void fmpq_mat_randtest(fmpq_mat_t mat , flint_rand_t state ,

mp_bitcnt_t bits)

This is equivalent to applying fmpq_randtest to all entries in the matrix.

16.8 Special matrices

void fmpq_mat_hilbert_matrix(fmpq_mat_t mat)

Sets mat to a Hilbert matrix of the given size. That is, the entry at row i and column j
is set to 1/(i+ j + 1).

16.9 Basic comparison and properties

int fmpq_mat_equal(const fmpq_mat_t mat1 , const fmpq_mat_t

mat2)

Returns nonzero if mat1 and mat2 have the same shape and all their entries agree, and
returns zero otherwise. Assumes the entries in both mat1 and mat2 are in canonical
form.

int fmpq_mat_is_integral(const fmpq_mat_t mat)

Returns nonzero if all entries in mat are integer-valued, and returns zero otherwise.
Assumes that the entries in mat are in canonical form.

int fmpq_mat_is_zero(const fmpq_mat_t mat)

Returns nonzero if all entries in mat are zero, and returns zero otherwise.

int fmpq_mat_is_empty(fmpq_mat_t mat)

Returns a non-zero value if the number of rows or the number of columns in mat is zero,
and otherwise returns zero.

int fmpq_mat_is_square(fmpq_mat_t mat)

Returns a non-zero value if the number of rows is equal to the number of columns in
mat, and otherwise returns zero.

16.10 Integer matrix conversion

int fmpq_mat_get_fmpz_mat(fmpz_mat_t dest , const fmpq_mat_t

mat)

Sets dest to mat and returns nonzero if all entries in mat are integer-valued. If not all
entries in mat are integer-valued, sets dest to an undefined matrix and returns zero.
Assumes that the entries in mat are in canonical form.
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void fmpq_mat_get_fmpz_mat_entrywise(fmpz_mat_t num ,

fmpz_mat_t den , const fmpq_mat_t mat)

Sets the integer matrices num and den respectively to the numerators and denominators
of the entries in mat.

void fmpq_mat_get_fmpz_mat_matwise(fmpz_mat_t num , fmpz_t

den , const fmpq_mat_t mat)

Converts all entries in mat to a common denominator, storing the rescaled numerators
in num and the denominator in den. The denominator will be minimal if the entries in
mat are in canonical form.

void fmpq_mat_get_fmpz_mat_rowwise(fmpz_mat_t num , fmpz *

den , const fmpq_mat_t mat)

Clears denominators in mat row by row. The rescaled numerators are written to num,
and the denominator of row i is written to position i in den which can be a preinitialised
fmpz vector. Alternatively, NULL can be passed as the den variable, in which case the
denominators will not be stored.

void fmpq_mat_get_fmpz_mat_rowwise_2(fmpz_mat_t num ,

fmpz_mat_t num2 , fmpz * den , const fmpq_mat_t mat , const

fmpq_mat_t mat2)

Clears denominators row by row of both mat and mat2, writing the respective numerators
to num and num2. This is equivalent to concatenating mat and mat2 horizontally, calling
fmpq_mat_get_fmpz_mat_rowwise, and extracting the two submatrices in the result.

void fmpq_mat_get_fmpz_mat_colwise(fmpz_mat_t num , fmpz *

den , const fmpq_mat_t mat)

Clears denominators in mat column by column. The rescaled numerators are written
to num, and the denominator of column i is written to position i in den which can be
a preinitialised fmpz vector. Alternatively, NULL can be passed as the den variable, in
which case the denominators will not be stored.

void fmpq_mat_set_fmpz_mat(fmpq_mat_t dest , const

fmpz_mat_t src)

Sets dest to src.

void fmpq_mat_set_fmpz_mat_div_fmpz(fmpq_mat_t mat , const

fmpz_mat_t num , const fmpz_t den)

Sets mat to the integer matrix num divided by the common denominator den.

16.11 Modular reduction and rational reconstruction

void fmpq_mat_get_fmpz_mat_mod_fmpz(fmpz_mat_t dest , const

fmpq_mat_t mat , const fmpz_t mod)

Sets each entry in dest to the corresponding entry in mat, reduced modulo mod.

int fmpq_mat_set_fmpz_mat_mod_fmpz(fmpq_mat_t X, const

fmpz_mat_t Xmod , const fmpz_t mod)

Set X to the entrywise rational reconstruction integer matrix Xmod modulo mod, and
returns nonzero if the reconstruction is successful. If rational reconstruction fails for any
element, returns zero and sets the entries in X to undefined values.

16.12 Matrix multiplication



16.13 Trace 111

void fmpq_mat_mul_direct(fmpq_mat_t C, const fmpq_mat_t A,

const fmpq_mat_t B)

Sets C to the matrix product AB, computed naively using rational arithmetic. This is typ-
ically very slow and should only be used in circumstances where clearing denominators
would consume too much memory.

void fmpq_mat_mul_cleared(fmpq_mat_t C, const fmpq_mat_t A,

const fmpq_mat_t B)

Sets C to the matrix product AB, computed by clearing denominators and multiplying
over the integers.

void fmpq_mat_mul(fmpq_mat_t C, const fmpq_mat_t A, const

fmpq_mat_t B)

Sets C to the matrix product AB. This simply calls fmpq_mat_mul_cleared.

void fmpq_mat_mul_fmpz_mat(fmpq_mat_t C, const fmpq_mat_t

A, const fmpz_mat_t B)

Sets C to the matrix product AB, with B an integer matrix. This function works efficiently
by clearing denominators of A.

void fmpq_mat_mul_r_fmpz_mat(fmpq_mat_t C, const fmpz_mat_t

A, const fmpq_mat_t B)

Sets C to the matrix product AB, with A an integer matrix. This function works efficiently
by clearing denominators of B.

16.13 Trace

void fmpq_mat_trace(fmpq_t trace , const fmpq_mat_t mat)

Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The
matrix is required to be square.

16.14 Determinant

void fmpq_mat_det(fmpq_t det , const fmpq_mat_t mat)

Sets det to the determinant of mat. In the general case, the determinant is computed
by clearing denominators and computing a determinant over the integers. Matrices of
size 0, 1 or 2 are handled directly.

16.15 Nonsingular solving

int fmpq_mat_solve_fraction_free(fmpq_mat_t X, const

fmpq_mat_t A, const fmpq_mat_t B)

Solves AX = B for nonsingular A by clearing denominators and solving the rescaled system
over the integers using a fraction-free algorithm. This is usually the fastest algorithm
for small systems. Returns nonzero if X is nonsingular or if the right hand side is empty,
and zero otherwise.

int fmpq_mat_solve_dixon(fmpq_mat_t X, const fmpq_mat_t A,

const fmpq_mat_t B)
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Solves AX = B for nonsingular A by clearing denominators and solving the rescaled system
over the integers using Dixon’s algorithm. The rational solution matrix is generated using
rational reconstruction. This is usually the fastest algorithm for large systems. Returns
nonzero if X is nonsingular or if the right hand side is empty, and zero otherwise.

16.16 Inverse

int fmpq_mat_inv(fmpq_mat_t B, const fmpq_mat_t A)

Sets B to the inverse matrix of A and returns nonzero. Returns zero if A is singular. A

must be a square matrix.

16.17 Echelon form

int fmpq_mat_pivot(long * perm , fmpq_mat_t mat , long r,

long c)

Helper function for row reduction. Returns 1 if the entry of mat at row r and column
c is nonzero. Otherwise searches for a nonzero entry in the same column among rows
r + 1, r + 2, . . .. If a nonzero entry is found at row s, swaps rows r and s and the
corresponding entries in perm (unless NULL) and returns -1. If no nonzero pivot entry is
found, leaves the inputs unchanged and returns 0.

long fmpq_mat_rref_classical(fmpq_mat_t B, const fmpq_mat_t

A)

Sets B to the reduced row echelon form of A and returns the rank. Performs Gauss-Jordan
elimination directly over the rational numbers. This algorithm is usually inefficient and
is mainly intended to be used for testing purposes.

long fmpq_mat_rref_fraction_free(fmpq_mat_t B, const

fmpq_mat_t A)

Sets B to the reduced row echelon form of A and returns the rank. Clears denominators
and performs fraction-free Gauss-Jordan elimination using fmpz_mat functions.

long fmpq_mat_rref(fmpq_mat_t B, const fmpq_mat_t A)

Sets B to the reduced row echelon form of A and returns the rank. This function auto-
matically chooses between the classical and fraction-free algorithms depending on the
size of the matrix.
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Polynomials over Q

17.1 Introduction

The fmpq_poly_t data type represents elements of Q[x]. The fmpq_poly module pro-
vides routines for memory management, basic arithmetic, and conversions from or to
other types.

A rational polynomial is stored as the quotient of an integer polynomial and an integer
denominator. To be more precise, the coefficient vector of the numerator can be accessed
with the function fmpq_poly_numref() and the denominator with fmpq_poly_denref().
Although one can construct use cases in which a representation as a list of rational co-
efficients would be beneficial, the choice made here is typically more efficient.

We can obtain a unique representation based on this choice by enforcing, for non-zero
polynomials, that the numerator and denominator are coprime and that the denominator
is positive. The unique representation of the zero polynomial is chosen as 0/1.

Similar to the situation in the fmpz_poly_t case, an fmpq_poly_t object also has a
length parameter, which denotes the length of the vector of coefficients of the numerator.
We say a polynomial is normalised either if this length is zero or if the leading coefficient
is non-zero.

We say a polynomial is in canonical form if it is given in the unique representation
discussed above and normalised.

The functions provided in this module roughly fall into two categories:

On the one hand, there are functions mainly provided for the user, whose names do not
begin with an underscore. These typically operate on polynomials of type fmpq_poly_t

in canonical form and, unless specified otherwise, permit aliasing between their input
arguments and between their output arguments.

On the other hand, there are versions of these functions whose names are prefixed with
a single underscore. These typically operate on polynomials given in the form of a triple
of object of types fmpz *, fmpz_t, and long, containing the numerator, denominator
and length, respectively. In general, these functions expect their input to be normalised,
i.e. they do not allow zero padding, and to be in lowest terms, and they do not allow
their input and output arguments to be aliased.

17.2 Memory management
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void fmpq_poly_init(fmpq_poly_t poly)

Initialises the polynomial for use. The length is set to zero.

void fmpq_poly_init2(fmpq_poly_t poly , long alloc)

Initialises the polynomial with space for at least alloc coefficients and set the length to
zero. The alloc coefficients are all set to zero.

void fmpq_poly_realloc(fmpq_poly_t poly , long alloc)

Reallocates the given polynomial to have space for alloc coefficients. If alloc is zero
then the polynomial is cleared and then reinitialised. If the current length is greater
than alloc then poly is first truncated to length alloc. Note that this might leave the
rational polynomial in non-canonical form.

void fmpq_poly_fit_length(fmpq_poly_t poly , long len)

If len is greater than the number of coefficients currently allocated, then the polynomial
is reallocated to have space for at least len coefficients. No data is lost when calling
this function. The function efficiently deals with the case where fit_length() is called
many times in small increments by at least doubling the number of allocated coefficients
when len is larger than the number of coefficients currently allocated.

void _fmpq_poly_set_length(fmpq_poly_t poly , long len)

Sets the length of the numerator polynomial to len, demoting coefficients beyond the
new length. Note that this method does not guarantee that the rational polynomial is
in canonical form.

void fmpq_poly_clear(fmpq_poly_t poly)

Clears the given polynomial, releasing any memory used. The polynomial must be
reinitialised in order to be used again.

void _fmpq_poly_normalise(fmpq_poly_t poly)

Sets the length of poly so that the top coefficient is non-zero. If all coefficients are zero,
the length is set to zero. Note that this function does not guarantee the coprimality of
the numerator polynomial and the integer denominator.

void _fmpq_poly_canonicalise(fmpz * poly , fmpz_t den , long

len)

Puts (poly, den) of length len into canonical form.

It is assumed that the array poly contains a non-zero entry in position len - 1 whenever
len > 0. Assumes that den is non-zero.

void fmpq_poly_canonicalise(fmpq_poly_t poly)

Puts the polynomial poly into canonical form. Firstly, the length is set to the actual
length of the numerator polynomial. For non-zero polynomials, it is then ensured that
the numerator and denominator are coprime and that the denominator is positive. The
canonical form of the zero polynomial is a zero numerator polynomial and a one denom-
inator.

int _fmpq_poly_is_canonical(const fmpz * poly , const fmpz_t

den , long len)

Returns whether the polynomial is in canonical form.
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int fmpq_poly_is_canonical(const fmpq_poly_t poly)

Returns whether the polynomial is in canonical form.

17.3 Polynomial parameters

long fmpq_poly_degree(fmpq_poly_t poly)

Returns the degree of poly, which is one less than its length, as a long.

long fmpq_poly_length(fmpq_poly_t poly)

Returns the length of poly.

17.4 Accessing the numerator and denominator

fmpz * fmpq_poly_numref(fmpq_poly_t poly)

Returns a reference to the numerator polynomial as an array.

Note that, because of a delayed initialisation approach, this might be NULL for zero
polynomials. This situation can be salvaged by calling either fmpq_poly_fit_length()
or fmpq_poly_realloc().

This function is implemented as a macro returning (poly)->coeffs.

fmpz_t fmpq_poly_denref(fmpq_poly_t poly)

Returns a reference to the denominator as a fmpz_t. The integer is guaranteed to be
properly initialised.

This function is implemented as a macro returning (poly)->den.

17.5 Random testing

The functions fmpq_poly_randtest_foo() provide random polynomials suitable for
testing. On an integer level, this means that long strings of zeros and ones in the binary
representation are favoured as well as the special absolute values 0, 1, COEFF_MAX, and
LONG_MAX. On a polynomial level, the integer numerator has a reasonable chance to have
a non-trivial content.

void fmpq_poly_randtest(fmpq_poly_t f, flint_rand_t state ,

long len , mp_bitcnt_t bits)

Sets f to a random polynomial with coefficients up to the given length and where each
coefficient has up to the given number of bits. The coefficients are signed randomly.
One must call flint_randinit() before calling this function.

void fmpq_poly_randtest_unsigned(fmpq_poly_t f,

flint_rand_t state , long len , mp_bitcnt_t bits)

Sets f to a random polynomial with coefficients up to the given length and where each
coefficient has up to the given number of bits. One must call flint_randinit() before
calling this function.

void fmpq_poly_randtest_not_zero(fmpq_poly_t f,

flint_rand_t state , long len , mp_bitcnt_t bits)

As for fmpq_poly_randtest() except that len and bits may not be zero and the
polynomial generated is guaranteed not to be the zero polynomial. One must call
flint_randinit() before calling this function.
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17.6 Assignment, swap, negation

void fmpq_poly_set(fmpq_poly_t poly1 , const fmpq_poly_t

poly2)

Sets poly1 to equal poly2.

void fmpq_poly_set_si(fmpq_poly_t poly , long x)

Sets poly to the integer x.

void fmpq_poly_set_ui(fmpq_poly_t poly , ulong x)

Sets poly to the integer x.

void fmpq_poly_set_fmpz(fmpq_poly_t poly , const fmpz_t x)

Sets poly to the integer x.

void fmpq_poly_set_fmpq(fmpq_poly_t poly , const fmpq_t x)

Sets poly to the rational x, which is assumed to be given in lowest terms.

void fmpq_poly_set_mpz(fmpq_poly_t poly , const mpz_t x)

Sets poly to the integer x.

void fmpq_poly_set_mpq(fmpq_poly_t poly , const mpq_t x)

Sets poly to the rational x, which is assumed to be given in lowest terms.

void fmpq_poly_set_fmpz_poly(fmpq_poly_t rop , const

fmpz_poly_t op)

Sets the rational polynomial rop to the same value as the integer polynomial op.

void _fmpq_poly_set_array_mpq(fmpz * poly , fmpz_t den ,

const mpq_t * a, long n)

Sets (poly, den) to the polynomial given by the first n ≥ 1 coefficients in the array a,
from lowest degree to highest degree.

The result is only guaranteed to be in lowest terms if all input coefficients are given in
lowest terms.

void fmpq_poly_set_array_mpq(fmpq_poly_t poly , const mpq_t

* a, long n)

Sets poly to the polynomial with coefficients as given in the array a of length n ≥ 0,
from lowest degree to highest degree.

The result is only guaranteed to be in canonical form if all input coefficients are given
in lowest terms.

int _fmpq_poly_set_str(fmpz * poly , fmpz_t den , const char

* str)

Sets (poly, den) to the polynomial specified by the null-terminated string str.

The result is only guaranteed to be in lowest terms if all coefficients in the input string
are in lowest terms.

Returns 0 if no error occurred. Otherwise, returns a non-zero value, in which case the
resulting value of (poly, den) is undefined. If str is not null-terminated, calling this
method might result in a segmentation fault.
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int fmpq_poly_set_str(fmpq_poly_t poly , const char * str)

Sets poly to the polynomial specified by the null-terminated string str.

The result is only guaranteed to be in canonical for if all coefficients in the input string
are in lowest terms.

Returns 0 if no error occurred. Otherwise, returns a non-zero value, in which case the
resulting value of poly is undefined. If str is not null-terminated, calling this method
might result in a segmentation fault.

char * fmpq_poly_get_str(const fmpq_poly_t poly)

Returns the string representation of poly.

char * fmpq_poly_get_str_pretty(const fmpq_poly_t poly ,

const char * var)

Returns the pretty representation of poly, using the null-terminated string var not equal
to "\0" as the variable name.

void fmpq_poly_zero(fmpq_poly_t poly)

Sets poly to zero.

void fmpq_poly_one(fmpq_poly_t poly)

Sets poly to the constant polynomial 1.

void fmpq_poly_neg(fmpq_poly_t poly1 , const fmpq_poly_t

poly2)

Sets poly1 to the additive inverse of poly2.

void fmpq_poly_inv(fmpq_poly_t poly1 , const fmpq_poly_t

poly2)

Sets poly1 to the multiplicative inverse of poly2 if possible. Otherwise, if poly2 is not
a unit, leaves poly1 unmodified and calls abort().

void fmpq_poly_swap(fmpq_poly_t poly1 , fmpq_poly_t poly2)

Efficiently swaps the polynomials poly1 and poly2.

void fmpq_poly_truncate(fmpq_poly_t poly , long n)

If the current length of poly is greater than n, it is truncated to the given length.
Discarded coefficients are demoted, but they are not necessarily set to zero.

void fmpq_poly_get_slice(fmpq_poly_t rop , const fmpq_poly_t

op, long i, long j)

Returns the slice with coefficients from xi (including) to xj (excluding).

17.7 Getting and setting coefficients

void fmpq_poly_get_coeff_fmpq(fmpq_t x, const fmpq_poly_t

poly , long n)

Retrieves the nth coefficient of poly, in lowest terms.

void fmpq_poly_get_coeff_mpq(mpq_t x, const fmpq_poly_t

poly , long n)
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Retrieves the nth coefficient of poly, in lowest terms.

void fmpq_poly_set_coeff_si(fmpq_poly_t poly , long n, long

x)

Sets the nth coefficient in poly to the integer x.

void fmpq_poly_set_coeff_ui(fmpq_poly_t poly , long n, ulong

x)

Sets the nth coefficient in poly to the integer x.

void fmpq_poly_set_coeff_fmpz(fmpq_poly_t poly , long n,

const fmpz_t x)

Sets the nth coefficient in poly to the integer x.

void fmpq_poly_set_coeff_fmpq(fmpq_poly_t poly , long n,

const fmpq_t x)

Sets the nth coefficient in poly to the rational x.

void fmpq_poly_set_coeff_mpz(fmpq_poly_t rop , long n, const

mpz_t x)

Sets the nth coefficient in poly to the integer x.

void fmpq_poly_set_coeff_mpq(fmpq_poly_t rop , long n, const

mpq_t x)

Sets the nth coefficient in poly to the rational x, which is expected to be provided in
lowest terms.

17.8 Comparison

int fmpq_poly_equal(const fmpq_poly_t poly1 , const

fmpq_poly_t poly2)

Returns 1 if poly1 is equal to poly2, otherwise returns 0.

int _fmpq_poly_cmp(const fmpz * lpoly , const fmpz_t lden ,

const fmpz * rpoly , const fmpz_t rden , long len)

Compares two non-zero polynomials, assuming they have the same length len > 0.

The polynomials are expected to be provided in canonical form.

int fmpq_poly_cmp(const fmpq_poly_t left , const fmpq_poly_t

right)

Compares the two polynomials left and right.

Compares the two polynomials left and right, returning −1, 0, or 1 as left is less
than, equal to, or greater than right. The comparison is first done by the degree, and
then, in case of a tie, by the individual coefficients from highest to lowest.

int fmpq_poly_is_one(const fmpq_poly_t poly)

Returns 1 if poly is the constant polynomial 1, otherwise returns 0.

int fmpq_poly_is_zero(const fmpq_poly_t poly)
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Returns 1 if poly is the zero polynomial, otherwise returns 0.

17.9 Addition and subtraction

void _fmpq_poly_add(fmpz * rpoly , fmpz_t rden , const fmpz *

poly1 , const fmpz_t den1 , long len1 , const fmpz * poly2 ,

const fmpz_t den2 , long len2)

Forms the sum (rpoly, rden) of (poly1, den1, len1) and (poly2, den2, len2),
placing the result into canonical form.

Assumes that rpoly is an array of length the maximum of len1 and len2. The input
operands are assumed to be in canonical form and are also allowed to be of length 0.

(rpoly, rden) and (poly1, den1) may be aliased, but (rpoly, rden) and (poly2,

den2) may not be aliased.

void fmpq_poly_add(fmpq_poly_t res , fmpq_poly poly1 ,

fmpq_poly poly2)

Sets res to the sum of poly1 and poly2, using Henrici’s algorithm.

void _fmpq_poly_sub(fmpz * rpoly , fmpz_t rden , const fmpz *

poly1 , const fmpz_t den1 , long len1 , const fmpz * poly2 ,

const fmpz_t den2 , long len2)

Forms the difference (rpoly, rden) of (poly1, den1, len1) and (poly2, den2,

len2), placing the result into canonical form.

Assumes that rpoly is an array of length the maximum of len1 and len2. The input
operands are assumed to be in canonical form and are also allowed to be of length 0.

(rpoly, rden) and (poly1, den1, len1) may be aliased, but (rpoly, rden) and
(poly2, den2, len2) may not be aliased.

void fmpq_poly_sub(fmpq_poly_t res , fmpq_poly poly1 ,

fmpq_poly poly2)

Sets res to the difference of poly1 and poly2, using Henrici’s algorithm.

17.10 Scalar multiplication and division

void _fmpq_poly_scalar_mul_si(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , long c)

Sets (rpoly, rden, len) to the product of c of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is
in lowest terms, then so is the output. However, even if neither of these conditions are
met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).

void _fmpq_poly_scalar_mul_ui(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , ulong c)

Sets (rpoly, rden, len) to the product of c of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is
in lowest terms, then so is the output. However, even if neither of these conditions are
met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).



120 fmpq poly

void _fmpq_poly_scalar_mul_fmpz(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t c)

Sets (rpoly, rden, len) to the product of c of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is
in lowest terms, then so is the output. However, even if neither of these conditions are
met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).

void _fmpq_poly_scalar_mul_fmpq(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t r, const fmpz_t s)

Sets (rpoly, rden) to the product of r/s and (poly, den, len), in lowest terms.

Assumes that (poly, den, len) and r/s are provided in lowest terms. Assumes that
rpoly is an array of length len. Supports aliasing of (rpoly, den) and (poly, den).
The fmpz_t’s r and s may not be part of (rpoly, rden).

void fmpq_poly_scalar_mul_si(fmpq_poly_t rop , const

fmpq_poly_t op, long c)

Sets rop to c times op.

void fmpq_poly_scalar_mul_ui(fmpq_poly_t rop , const

fmpq_poly_t op, ulong c)

Sets rop to c times op.

void fmpq_poly_scalar_mul_fmpz(fmpq_poly_t rop , const

fmpq_poly_t op, const fmpz_t c)

Sets rop to c times op. Assumes that the fmpz_t c is not part of rop.

void fmpq_poly_scalar_mul_fmpq(fmpq_poly_t rop , const

fmpq_poly_t op, const mpq_t c)

Sets rop to c times op.

void fmpq_poly_scalar_mul_mpz(fmpq_poly_t rop , const

fmpq_poly_t op, const mpz_t c)

Sets rop to c times op.

void fmpq_poly_scalar_mul_mpq(fmpq_poly_t rop , const

fmpq_poly_t op, const fmpq_t c)

Sets rop to c times op.

void _fmpq_poly_scalar_div_fmpz(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t c)

Sets (rpoly, rden, len) to (poly, den, len) divided by c, in lowest terms.

Assumes that len is positive. Assumes that c is non-zero. Supports aliasing between
(rpoly, rden) and (poly, den). Assumes that c is not part of (rpoly, rden).

void _fmpq_poly_scalar_div_si(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , long c)
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Sets (rpoly, rden, len) to (poly, den, len) divided by c, in lowest terms.

Assumes that len is positive. Assumes that c is non-zero. Supports aliasing between
(rpoly, rden) and (poly, den).

void _fmpq_poly_scalar_div_ui(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , ulong c)

Sets (rpoly, rden, len) to (poly, den, len) divided by c, in lowest terms.

Assumes that len is positive. Assumes that c is non-zero. Supports aliasing between
(rpoly, rden) and (poly, den).

void _fmpq_poly_scalar_div_fmpq(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t r, const fmpz_t s)

Sets (rpoly, rden, len) to (poly, den, len) divided by r/s, in lowest terms.

Assumes that len is positive. Assumes that r/s is non-zero and in lowest terms. Sup-
ports aliasing between (rpoly, rden) and (poly, den). The fmpz_t’s r and s may
not be part of (rpoly, poly).

void fmpq_poly_scalar_div_si(fmpq_poly_t rop , const

fmpq_poly_t op, long c)

void fmpq_poly_scalar_div_ui(fmpq_poly_t rop , const

fmpq_poly_t op, ulong c)

void fmpq_poly_scalar_div_fmpz(fmpq_poly_t rop , const

fmpq_poly_t op, const fmpz_t c)

void fmpq_poly_scalar_div_fmpq(fmpq_poly_t rop , const

fmpq_poly_t op, const fmpq_t c)

void fmpq_poly_scalar_div_mpz(fmpq_poly_t rop , const

fmpq_poly_t op, const mpz_t c)

void fmpq_poly_scalar_div_mpq(fmpq_poly_t rop , const

fmpq_poly_t op, const mpq_t c)

17.11 Multiplication

void _fmpq_poly_mul(fmpz * rpoly , fmpz_t rden , const fmpz *

poly1 , const fmpz_t den1 , long len1 , const fmpz * poly2 ,

const fmpz_t den2 , long len2)

Sets (rpoly, rden, len1 + len2 - 1) to the product of (poly1, den1, len1) and
(poly2, den2, len2). If the input is provided in canonical form, then so is the output.

Assumes len1 >= len2 > 0. Allows zero-padding in the input. Does not allow aliasing
between the inputs and outputs.

void fmpq_poly_mul(fmpq_poly_t res , const fmpq_poly_t

poly1 , const fmpq_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpq_poly_mullow(fmpz * rpoly , fmpz_t rden , const

fmpz * poly1 , const fmpz_t den1 , long len1 , const fmpz *

poly2 , const fmpz_t den2 , long len2 , long n)
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Sets (rpoly, rden, n) to the low n coefficients of (poly1, den1) and (poly2, den2).
The output is not guaranteed to be in canonical form.

Assumes len1 >= len2 > 0 and 0 < n <= len1 + len2 - 1. Allows for zero-padding
in the inputs. Does not allow aliasing between the inputs and outputs.

void fmpq_poly_mullow(fmpq_poly_t res , const fmpq_poly_t

poly1 , const fmpq_poly_t poly2 , long n)

Sets res to the product of poly1 and poly2, truncated to length n.

void fmpq_poly_addmul(fmpq_poly_t rop , const fmpq_poly_t

op1 , fmpq_poly_t op2)

Adds the product of op1 and op2 to rop.

void fmpq_poly_submul(fmpq_poly_t rop , const fmpq_poly_t

op1 , fmpq_poly_t op2)

Subtracts the product of op1 and op2 from rop.

17.12 Powering

void _fmpq_poly_pow(fmpz * rpoly , fmpz_t rden , const fmpz *

poly , const fmpz_t den , long len , ulong e)

Sets (rpoly, rden) to (poly, den)^e, assuming e, len > 0. Assumes that rpoly is
an array of length at least e * (len - 1)+ 1. Supports aliasing of (rpoly, den) and
(poly, den).

void fmpq_poly_pow(fmpq_poly_t res , const fmpq_poly_t poly ,

ulong e)

Sets res to pow^e, where the only special case 00 is defined as 1.

17.13 Shifting

void fmpz_poly_shift_left(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Set res to poly shifted left by n coefficients. Zero coefficients are inserted.

void fmpz_poly_shift_right(fmpz_poly_t res , const

fmpz_poly_t poly , long n)

Set res to poly shifted right by n coefficients. If n is equal to or greater than the current
length of poly, res is set to the zero polynomial.

17.14 Euclidean division

void _fmpq_poly_divrem(fmpz * Q, fmpz_t q, fmpz * R, fmpz_t

r, const fmpz * A, const fmpz_t a, long lenA , const fmpz

* B, const fmpz_t b, long lenB)

Finds the quotient (Q, q) and remainder (R, r) of the Euclidean division of (A, a)

by (B, b).

Assumes that lenA >= lenB > 0. Assumes that R has space for lenA coefficients,
although only the bottom lenB - 1 will carry meaningful data on exit. Supports no
aliasing between the two outputs, or between the inputs and the outputs.
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void fmpq_poly_divrem(fmpq_poly_t Q, fmpq_poly_t R, const

fmpq_poly_t poly1 , const fmpq_poly_t poly2)

Finds the quotient Q and remainder R of the Euclidean division of poly1 by poly2.

void _fmpq_poly_div(fmpz * Q, fmpz_t q, const fmpz * A,

const fmpz_t a, long lenA , const fmpz * B, const fmpz_t

b, long lenB)

Finds the quotient (Q, q) of the Euclidean division of (A, a) by (B, b).

Assumes that lenA >= lenB > 0. Supports no aliasing between the inputs and the
outputs.

void fmpq_poly_div(fmpq_poly_t Q, const fmpq_poly_t poly1 ,

const fmpq_poly_t poly2)

Finds the quotient Q and remainder R of the Euclidean division of poly1 by poly2.

void _fmpq_poly_rem(fmpz * R, fmpz_t r, const fmpz * A,

const fmpz_t a, long lenA , const fmpz * B, const fmpz_t

b, long lenB)

Finds the remainder (R, r) of the Euclidean division of (A, a) by (B, b).

Assumes that lenA >= lenB > 0. Supports no aliasing between the inputs and the
outputs.

void fmpq_poly_rem(fmpq_poly_t R, const fmpq_poly_t poly1 ,

const fmpq_poly_t poly2)

Finds the remainder R of the Euclidean division of poly1 by poly2.

17.15 Power series division

void _fmpq_poly_inv_series_newton(fmpz * rpoly , fmpz_t

rden , const fmpz * poly , const fmpz_t den , long n)

Computes the first n terms of the inverse power series of poly using Newton iteration.

The result is produced in canonical form.

Assumes that n ≥ 1, that poly has length at least n and non-zero constant term. Does
not support aliasing.

void fmpq_poly_inv_series_newton(fmpq_poly_t res , const

fmpq_poly_t poly , long )

Computes the first n terms of the inverse power series of poly using Newton iteration,
assuming that poly has non-zero constant term and n ≥ 1.

void _fmpq_poly_inv_series(fmpz * rpoly , fmpz_t rden , const

fmpz * poly , const fmpz_t den , long n)

Computes the first n terms of the inverse power series of poly.

Assumes that n ≥ 1, that poly has length at least n and non-zero constant term. Does
not support aliasing.

void fmpq_poly_inv_series(fmpq_poly_t res , const

fmpq_poly_t poly , long n)

Computes the first n terms of the inverse power series of poly, assuming that poly has
non-zero constant term and n ≥ 1.
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void _fmpq_poly_div_series(fmpz * Q, fmpz_t denQ , const

fmpz * A, const fmpz_t denA , const fmpz * B, const

fmpz_t denB , long n)

Divides (A, denA, n) by (B, denB, n) as power series over Q, assuming B has non-
zero constant term and n ≥ 1.

Supports no aliasing other than that of (Q, denQ, n) and (B, denB, n).

This function does not ensure that the numerator and denominator are coprime on exit.

void fmpq_poly_div_series(fmpq_poly_t Q, const fmpq_poly_t

A, const fmpq_poly_t B, long n)

Performs power series division in Q[[x]]/(xn). The function considers the polynomials
A and B as power series of length n starting with the constant terms. The function
assumes that B has non-zero constant term and n ≥ 1.

17.16 Greatest common divisor

void _fmpq_poly_gcd(fmpz *G, fmpz_t denG , const fmpz *A,

long lenA , const fmpz *B, long lenB)

Computes the monic greatest common divisor G of A and B.

Assumes that G has space for len(B) coefficients, where len(A) ≥ len(B) > 0.

Aliasing between the output and input arguments is not supported.

Does not support zero-padding.

void fmpq_poly_gcd(fmpq_poly_t G, const fmpq_poly_t A,

const fmpq_poly_t B)

Computes the monic greatest common divisor G of A and B.

In the the special case when A = B = 0, sets G = 0.

void _fmpq_poly_xgcd(fmpz *G, fmpz_t denG , fmpz *S, fmpz_t

denS , fmpz *T, fmpz_t denT , const fmpz *A, const fmpz_t

denA , long lenA , const fmpz *B, const fmpz_t denB , long

lenB)

Computes polynomials G, S, and T such that G = gcd(A,B) = SA + TB, where G is
the monic greatest common divisor of A and B.

Assumes that G, S, and T have space for len(B), len(B), and len(A) coefficients, re-
spectively, where it is also assumed that len(A) ≥ len(B) > 0.

Does not support zero padding of the input arguments.

void fmpq_poly_xgcd(fmpq_poly_t G, fmpz_poly_t S,

fmpz_poly_t T, const fmpq_poly_t A, const fmpq_poly_t B)

Computes polynomials G, S, and T such that G = gcd(A,B) = SA + TB, where G is
the monic greatest common divisor of A and B.

Corner cases are handled as follows. If A = B = 0, returns G = S = T = 0. If A 6= 0,
B = 0, returns the suitable scalar multiple of G = A, S = 1, and T = 0. The case when
A = 0, B 6= 0 is handled similarly.

void _fmpq_poly_lcm(fmpz *L, fmpz_t denL , const fmpz *A,

long lenA , const fmpz *B, long lenB)
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Computes the monic least common multiple L of A and B.

Assumes that L has space for len(A)+len(B)−1 coefficients, where len(A) ≥ len(B) > 0.

Aliasing between the output and input arguments is not supported.

Does not support zero-padding.

void fmpq_poly_lcm(fmpq_poly_t L, const fmpq_poly_t A,

const fmpq_poly_t B)

Computes the monic least common multiple L of A and B.

In the special case when A = B = 0, sets L = 0.

void _fmpq_poly_resultant(fmpz_t rnum , fmpz_t rden , const

fmpz *poly1 , const fmpz_t den1 , long len1 , const fmpz

*poly2 , const fmpz_t den2 , long len2)

Sets (rnum, rden) to the resultant of the two input polynomials.

Assumes that len1 >= len2 > 0. Does not support zero-padding of the input polyno-
mials. Does not support aliasing of the input and output arguments.

void fmpq_poly_resultant(fmpq_t r, const fmpq_poly_t f,

const fmpq_poly_t g)

Returns the resultant of f and g.

Enumerating the roots of f and g over Q̄ as r1, . . . , rm and s1, . . . , sn, respectively, and
letting x and y denote the leading coefficients, the resultant is defined as

xdeg(f)ydeg(g)
∏

1≤i,j≤n

(ri − sj).

We handle special cases as follows: if one of the polynomials is zero, the resultant is
zero. Note that otherwise if one of the polynomials is constant, the last term in the
above expression is the empty product.

17.17 Derivative and integral

void _fmpq_poly_derivative(fmpz * rpoly , fmpz_t rden , const

fmpz * poly , const fmpz_t den , long len)

Sets (rpoly, rden, len - 1) to the derivative of (poly, den, len). Does nothing if
len <= 1. Supports aliasing between the two polynomials.

void fmpq_poly_derivative(fmpq_poly_t res , const

fmpq_poly_t poly)

Sets res to the derivative of poly.

void _fmpq_poly_integral(fmpz * rpoly , fmpz_t rden , const

fmpz * poly , const fmpz_t den , long len)

Sets (rpoly, rden, len) to the integral of (poly, den, len - 1). Assumes len >=

0. Supports aliasing between the two polynomials.

void fmpq_poly_integral(fmpq_poly_t res , const fmpq_poly_t

poly)
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Sets res to the integral of poly. The constant term is set to zero. In particular, the
integral of the zero polynomial is the zero polynomial.

17.18 Square roots

void _fmpq_poly_sqrt_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the square root of (f, fden, n). Assumes
n > 0 and that (f, fden, n) has constant term 1. Does not support aliasing between
the input and output polynomials.

void fmpq_poly_sqrt_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the square root of f to order n > 1. Requires f to
have constant term 1.

void _fmpq_poly_invsqrt_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the inverse square root of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 1. Does not support aliasing
between the input and output polynomials.

void fmpq_poly_invsqrt_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the inverse square root of f to order n > 0. Requires
f to have constant term 1.

17.19 Transcendental functions

void _fmpq_poly_log_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the logarithm of (f, fden, n). Assumes
n > 0 and that (f, fden, n) has constant term 1. Supports aliasing between the input
and output polynomials.

void fmpq_poly_log_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the logarithm of f to order n > 0. Requires f to have
constant term 1.

void _fmpq_poly_exp_series(fmpz * g, fmpz_t gden , const

fmpz * h, const fmpz_t hden , long n)

Sets (g, gden, n) to the series expansion of the exponential function of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Does not support aliasing
between the input and output polynomials.

void fmpq_poly_exp_series(fmpq_poly_t res , const

fmpq_poly_t h, long n)

Sets res to the series expansion of the exponential function of f to order n > 0. Requires
f to have constant term 0.
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void _fmpq_poly_atan_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the inverse tangent of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Supports aliasing between
the input and output polynomials.

void fmpq_poly_atan_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the inverse tangent of f to order n > 0. Requires f

to have constant term 0.

void _fmpq_poly_atanh_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the inverse hyperbolic tangent of (f,

fden, n). Assumes n > 0 and that (f, fden, n) has constant term 0. Supports
aliasing between the input and output polynomials.

void fmpq_poly_atanh_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the inverse hyperbolic tangent of f to order n > 0.
Requires f to have constant term 0.

void _fmpq_poly_asin_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the inverse sine of (f, fden, n). Assumes
n > 0 and that (f, fden, n) has constant term 0. Supports aliasing between the input
and output polynomials.

void fmpq_poly_asin_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the inverse sine of f to order n > 0. Requires f to
have constant term 0.

void _fmpq_poly_asinh_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the inverse hyperbolic sine of (f, fden,

n). Assumes n > 0 and that (f, fden, n) has constant term 0. Supports aliasing
between the input and output polynomials.

void fmpq_poly_asinh_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the inverse hyperbolic sine of f to order n > 0.
Requires f to have constant term 0.

void _fmpq_poly_tan_series(fmpz * g, fmpz_t gden , const

fmpz * h, const fmpz_t hden , long n)

Sets (g, gden, n) to the series expansion of the tangent function of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Does not support aliasing
between the input and output polynomials.

void fmpq_poly_tan_series(fmpq_poly_t res , const

fmpq_poly_t h, long n)



128 fmpq poly

Sets res to the series expansion of the tangent function of f to order n > 0. Requires f
to have constant term 0.

void _fmpq_poly_sin_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the sine of (f, fden, n). Assumes n > 0

and that (f, fden, n) has constant term 0. Supports aliasing between the input and
output polynomials.

void fmpq_poly_sin_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the sine of f to order n > 0. Requires f to have
constant term 0.

void _fmpq_poly_cos_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the cosine of (f, fden, n). Assumes n

> 0 and that (f, fden, n) has constant term 0. Supports aliasing between the input
and output polynomials.

void fmpq_poly_cos_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the cosine of f to order n > 0. Requires f to have
constant term 0.

void _fmpq_poly_sinh_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the hyperbolic sine of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Does not support aliasing
between the input and output polynomials.

void fmpq_poly_sinh_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the hyperbolic sine of f to order n > 0. Requires f

to have constant term 0.

void _fmpq_poly_cosh_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the hyperbolic cosine of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Does not support aliasing
between the input and output polynomials.

void fmpq_poly_cosh_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the hyperbolic cosine of f to order n > 0. Requires
f to have constant term 0.

void _fmpq_poly_tanh_series(fmpz * g, fmpz_t gden , const

fmpz * f, const fmpz_t fden , long n)

Sets (g, gden, n) to the series expansion of the hyperbolic tangent of (f, fden, n).
Assumes n > 0 and that (f, fden, n) has constant term 0. Does not support aliasing
between the input and output polynomials.
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void fmpq_poly_tanh_series(fmpq_poly_t res , const

fmpq_poly_t f, long n)

Sets res to the series expansion of the hyperbolic tangent of f to order n > 0. Requires
f to have constant term 0.

17.20 Evaluation

void _fmpq_poly_evaluate_fmpz(fmpz_t rnum , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t a)

Evaluates the polynomial (poly, den, len) at the integer a and sets (rnum, rden)

to the result in lowest terms.

void fmpq_poly_evaluate_fmpz(fmpq_t res , const fmpq_poly_t

poly , const fmpz_t a)

Evaluates the polynomial poly at the integer a and sets res to the result.

void _fmpq_poly_evaluate_fmpq(fmpz_t rnum , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len , const

fmpz_t anum , const fmpz_t aden)

Evaluates the polynomial (poly, den, len) at the rational (anum, aden) and sets
(rnum, rden) to the result in lowest terms. Aliasing between (rnum, rden) and
(anum, aden) is not supported.

void fmpq_poly_evaluate_fmpq(fmpq_t res , const fmpq_poly_t

poly , const fmpq_t a)

Evaluates the polynomial poly at the rational a and sets res to the result.

void fmpq_poly_evaluate_mpz(mpq_t res , const fmpq_poly_t

poly , const mpz_t a)

Evaluates the polynomial poly at the integer a of type mpz and sets res to the result.

void fmpq_poly_evaluate_mpq(mpq_t res , const fmpq_poly_t

poly , const mpq_t a)

Evaluates the polynomial poly at the rational a of type mpq and sets res to the result.

17.21 Interpolation

void _fmpq_poly_interpolate_fmpz_vec(fmpz * poly , fmpz_t

den , const fmpz * xs , const fmpz * ys , long n)

Sets poly / den to the unique interpolating polynomial of degree at most n−1 satisfying
f(xi) = yi for every pair xi, yi in xs and ys.

The vector poly must have room for n+1 coefficients, even if the interpolating polynomial
is shorter. Aliasing of poly or den with any other argument is not allowed.

It is assumed that the x values are distinct.

This function uses a simple O(n2) implementation of Lagrange interpolation, clearing
denominators to avoid working with fractions. It is currently not designed to be efficient
for large n.

fmpq_poly_interpolate_fmpz_vec(fmpq_poly_t poly , const fmpz

* xs, const fmpz * ys , long n)
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Sets poly to the unique interpolating polynomial of degree at most n − 1 satisfying
f(xi) = yi for every pair xi, yi in xs and ys. It is assumed that the x values are distinct.

17.22 Composition

void _fmpq_poly_compose(fmpz * res , fmpz_t den , const fmpz

* poly1 , const fmpz_t den1 , long len1 , const fmpz *

poly2 , const fmpz_t den2 , long len2)

Sets (res, den) to the composition of (poly1, den1, len1) and (poly2, den2,

len2), assuming len1, len2 > 0.

Assumes that res has space for (len1 - 1)* (len2 - 1)+ 1 coefficients. Does not
support aliasing.

void fmpq_poly_compose(fmpq_poly_t res , const fmpq_poly_t

poly1 , const fmpq_poly_t poly2)

Sets res to the composition of poly1 and poly2.

void _fmpq_poly_rescale(fmpz * res , fmpz_t denr , const fmpz

* poly , const fmpz_t den , long len , const fmpz_t anum ,

const fmpz_t aden)

Sets (res, denr, len) to (poly, den, len) with the indeterminate rescaled by (anum,

aden).

Assumes that len > 0 and that (anum, aden) is non-zero and in lowest terms. Supports
aliasing between (res, denr, len) and (poly, den, len).

void fmpz_poly_rescale(fmpq_poly_t res , const fmpq_poly_t

poly , const fmpq_t a)

Sets res to poly with the indeterminate rescaled by a.

17.23 Power series composition

void _fmpq_poly_compose_series_horner(fmpz * res , fmpz_t

den , const fmpz * poly1 , const fmpz_t den1 , long len1 ,

const fmpz * poly2 , const fmpz_t den2 , long len2 , long n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2,

len2) modulo xn, where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1)* (len2-1)+

1 <= n, and that res has space for n coefficients. Does not support aliasing between
any of the inputs and the output.

This implementation uses the Horner scheme. The default fmpz_poly composition algo-
rithm is automatically used when the composition can be performed over the integers.

void fmpq_poly_compose_series_horner(fmpq_poly_t res , const

fmpq_poly_t poly1 , const fmpq_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses the Horner scheme. The default fmpz_poly composition algo-
rithm is automatically used when the composition can be performed over the integers.



17.24 Power series reversion 131

void _fmpq_poly_compose_series_brent_kung(fmpz * res ,

fmpz_t den , const fmpz * poly1 , const fmpz_t den1 , long

len1 , const fmpz * poly2 , const fmpz_t den2 , long len2 ,

long n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2,

len2) modulo xn, where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1)* (len2-1)+

1 <= n, and that res has space for n coefficients. Does not support aliasing between
any of the inputs and the output.

This implementation uses Brent-Kung algorithm 2.1 [7]. The default fmpz_poly com-
position algorithm is automatically used when the composition can be performed over
the integers.

void fmpq_poly_compose_series_brent_kung(fmpq_poly_t res ,

const fmpq_poly_t poly1 , const fmpq_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses Brent-Kung algorithm 2.1 [7]. The default fmpz_poly com-
position algorithm is automatically used when the composition can be performed over
the integers.

void _fmpq_poly_compose_series(fmpz * res , fmpz_t den ,

const fmpz * poly1 , const fmpz_t den1 , long len1 , const

fmpz * poly2 , const fmpz_t den2 , long len2 , long n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2,

len2) modulo xn, where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1)* (len2-1)+

1 <= n, and that res has space for n coefficients. Does not support aliasing between
any of the inputs and the output.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs. The default fmpz_poly composition
algorithm is automatically used when the composition can be performed over the inte-
gers.

void fmpq_poly_compose_series(fmpq_poly_t res , const

fmpq_poly_t poly1 , const fmpq_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs. The default fmpz_poly composition
algorithm is automatically used when the composition can be performed over the inte-
gers.

17.24 Power series reversion

void _fmpq_poly_revert_series_lagrange(fmpz * res , fmpz_t

den , const fmpz * poly1 , const fmpz_t den1 , long n)

Sets (res, den) to the power series reversion of (poly1, den1) modulo xn, where the
input has length n (possibly being zero-padded).
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The constant term of poly2 is required to be zero and the linear term is required to be
nonzero. Assumes that n > 0. Does not support aliasing between any of the inputs and
the output.

This implementation uses the Lagrange inversion formula. The default fmpz_poly re-
version algorithm is automatically used when the reversion can be performed over the
integers.

void fmpq_poly_revert_series_lagrange(fmpq_poly_t res ,

const fmpq_poly_t poly , long n)

Sets res to the power series reversion of poly1 modulo xn. The constant term of poly2
is required to be zero and the linear term is required to be nonzero.

This implementation uses the Lagrange inversion formula. The default fmpz_poly re-
version algorithm is automatically used when the reversion can be performed over the
integers.

void _fmpq_poly_revert_series_lagrange_fast(fmpz * res ,

fmpz_t den , const fmpz * poly1 , const fmpz_t den1 , long

n)

Sets (res, den) to the power series reversion of (poly1, den1) modulo xn, where the
input has length n (possibly being zero-padded).

The constant term of poly2 is required to be zero and the linear term is required to be
nonzero. Assumes that n > 0. Does not support aliasing between any of the inputs and
the output.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula. The default fmpz_poly reversion algorithm is automatically used when
the reversion can be performed over the integers.

void fmpq_poly_revert_series_lagrange_fast(fmpq_poly_t res ,

const fmpq_poly_t poly , long n)

Sets res to the power series reversion of poly1 modulo xn. The constant term of poly2
is required to be zero and the linear term is required to be nonzero.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula. The default fmpz_poly reversion algorithm is automatically used when
the reversion can be performed over the integers.

void _fmpq_poly_revert_series_newton(fmpz * res , fmpz_t

den , const fmpz * poly1 , const fmpz_t den1 , long n)

Sets (res, den) to the power series reversion of (poly1, den1) modulo xn, where the
input has length n (possibly being zero-padded).

The constant term of poly2 is required to be zero and the linear term is required to be
nonzero. Assumes that n > 0. Does not support aliasing between any of the inputs and
the output.

This implementation uses Newton iteration. The default fmpz_poly reversion algorithm
is automatically used when the reversion can be performed over the integers.

void fmpq_poly_revert_series_newton(fmpq_poly_t res , const

fmpq_poly_t poly , long n)

Sets res to the power series reversion of poly1 modulo xn. The constant term of poly2
is required to be zero and the linear term is required to be nonzero.

This implementation uses Newton iteration. The default fmpz_poly reversion algorithm
is automatically used when the reversion can be performed over the integers.
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void _fmpq_poly_revert_series(fmpz * res , fmpz_t den , const

fmpz * poly1 , const fmpz_t den1 , long n)

Sets (res, den) to the power series reversion of (poly1, den1) modulo xn, where the
input has length n (possibly being zero-padded).

The constant term of poly2 is required to be zero and the linear term is required to be
nonzero. Assumes that n > 0. Does not support aliasing between any of the inputs and
the output.

This implementation defaults to using Newton iteration. The default fmpz_poly re-
version algorithm is automatically used when the reversion can be performed over the
integers.

void fmpq_poly_revert_series(fmpq_poly_t res , const

fmpq_poly_t poly , long n)

Sets res to the power series reversion of poly1 modulo xn. The constant term of poly2
is required to be zero and the linear term is required to be nonzero.

This implementation defaults to using Newton iteration. The default fmpz_poly re-
version algorithm is automatically used when the reversion can be performed over the
integers.

17.25 Gaussian content

void _fmpq_poly_content(fmpq_t res , const fmpz * poly ,

const fmpz_t den , long len)

Sets res to the content of (poly, den, len). If len == 0, sets res to zero.

void fmpq_poly_content(fmpq_t res , const fmpq_poly_t poly)

Sets res to the content of poly. The content of the zero polynomial is defined to be
zero.

void _fmpq_poly_primitive_part(fmpz * rpoly , fmpz_t rden ,

const fmpz * poly , const fmpz_t den , long len)

Sets (rpoly, rden, len) to the primitive part, with non-negative leading coefficient,
of (poly, den, len). Assumes that len > 0. Supports aliasing between the two poly-
nomials.

void fmpq_poly_primitive_part(fmpq_poly_t res , const

fmpq_poly_t poly)

Sets res to the primitive part, with non-negative leading coefficient, of poly.

int _fmpq_poly_is_monic(const fmpz * poly , const fmpz_t

den , long len)

Returns whether the polynomial (poly, den, len) is monic. The zero polynomial is
not monic by definition.

int fmpq_poly_is_monic(const fmpq_poly_t poly)

Returns whether the polynomial poly is monic. The zero polynomial is not monic by
definition.

void _fmpq_poly_make_monic(fmpz * rpoly , fmpz_t rden , const

fmpz * poly , const fmpz_t den , long len)
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Sets (rpoly, rden, len) to the monic scalar multiple of (poly, den, len). Assumes
that len > 0. Supports aliasing between the two polynomials.

void fmpq_poly_make_monic(fmpq_poly_t res , const

fmpq_poly_t poly)

Sets res to the monic scalar multiple of poly whenever poly is non-zero. If poly is the
zero polynomial, sets res to zero.

17.26 Square-free

int _fmpq_poly_is_squarefree(const fmpz * poly , const

fmpz_t den , long len)

Returns whether the polynomial (poly, den, len) is square-free.

int fmpq_poly_is_squarefree(const fmpq_poly_t poly)

Returns whether the polynomial poly is square-free. A non-zero polynomial is defined
to be square-free if it has no non-unit square factors. We also define the zero polynomial
to be square-free.

Returns 1 if the length of poly is at most 2. Returns whether the discriminant is zero
for quadratic polynomials. Otherwise, returns whether the greatest common divisor of
poly and its derivative has length 1.

17.27 Input and output

int _fmpq_poly_print(const fmpz * poly , const fmpz_t den ,

long len)

Prints the polynomial (poly, den, len) to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpq_poly_print(const fmpq_poly_t poly)

Prints the polynomial to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpq_poly_print_pretty(const fmpz *poly , const fmpz_t

den , long len , const char * x)

int fmpq_poly_print_pretty(const fmpq_poly_t poly , const

char * var)

Prints the pretty representation of poly to stdout, using the null-terminated string var

not equal to "\0" as the variable name.

In the current implementation always returns 1.

int _fmpq_poly_fprint(FILE * file , const fmpz * poly , const

fmpz_t den , long len)

Prints the polynomial (poly, den, len) to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.
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int fmpq_poly_fprint(FILE * file , const fmpq_poly_t poly)

Prints the polynomial to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int _fmpq_poly_fprint_pretty(FILE * file , const fmpz *poly ,

const fmpz_t den , long len , const char * x)

int fmpq_poly_print_pretty(const fmpq_poly_t poly , const

char * var)

Prints the pretty representation of poly to stdout, using the null-terminated string var

not equal to "\0" as the variable name.

In the current implementation, always returns 1.

int fmpq_poly_read(fmpq_poly_t poly)

Reads a polynomial from stdin, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.

int fmpq_poly_fread(FILE * file , fmpq_poly_t poly)

Reads a polynomial from the stream file, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive
value.
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Rational functions over Q

18.1 Introduction

The module fmpz_poly_q provides functions for performing arithmetic on rational func-
tions in Q(t), represented as quotients of integer polynomials of type fmpz_poly_t.
These functions start with the prefix fmpz_poly_q_.

Rational functions are stored in objects of type fmpz_poly_q_t, which is an array
of fmpz_poly_q_struct’s of length one. This permits passing parameters of type
fmpz_poly_q_t by reference.

The representation of a rational function as the quotient of two integer polynomials
can be made canonical by demanding the numerator and denominator to be coprime
(as integer polynomials) and the denominator to have positive leading coefficient. As
the only special case, we represent the zero function as 0/1. All arithmetic functions
assume that the operands are in this canonical form, and canonicalize their result. If
the numerator or denominator is modified individually, for example using the macros
fmpz_poly_q_numref() and fmpz_poly_q_denref(), it is the user’s responsibility to
canonicalise the rational function using the function fmpz_poly_q_canonicalise() if
necessary.

All methods support aliasing of their inputs and outputs unless explicitly stated oth-
erwise, subject to the following caveat. If different rational functions (as objects in
memory, not necessarily in the mathematical sense) share some of the underlying inte-
ger polynomial objects, the behaviour is undefined.

The basic arithmetic operations, addition, subtraction and multiplication, are all im-
plemented using adapted versions of Henrici’s algorithms, see [20]. Differentiation is
implemented in a way slightly improving on the algorithm described in [21].

18.2 Simple example

The following example computes the product of two rational functions and prints the
result:

#include "fmpz_poly_q.h"

...

char *str , *strf , *strg;

fmpz_poly_q_t f, g;
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fmpz_poly_q_init(f);

fmpz_poly_q_init(g);

fmpz_poly_q_set_str(f, "2 1 3/1 2");

fmpz_poly_q_set_str(g, "1 3/2 2 7");

strf = fmpz_poly_q_get_str_pretty(f, "t");

strg = fmpz_poly_q_get_str_pretty(g, "t");

fmpz_poly_q_mul(f, f, g);

str = fmpz_poly_q_get_str_pretty(f, "t");

printf("%s * %s = %s\n", strf , strg , str);

free(str);

free(strf);

free(strg);

fmpz_poly_q_clear(f);

fmpz_poly_q_clear(g);

The output is:

(3*t+1)/2 * 3/(7*t+2) = (9*t+3) /(14*t+4)

18.3 Memory management

We represent a rational function over Q as the quotient of two coprime integer polyno-
mials of type fmpz_poly_t, enforcing that the leading coefficient of the denominator is
positive. The zero function is represented as 0/1.

void fmpz_poly_q_init(fmpz_poly_q_t rop)

Initialises rop.

void fmpz_poly_q_clear(fmpz_poly_q_t rop)

Clears the object rop.

fmpz_poly_struct * fmpz_poly_q_numref(const fmpz_poly_q_t

op)

Returns a reference to the numerator of op.

fmpz_poly_struct * fmpz_poly_q_denref(const fmpz_poly_q_t

op)

Returns a reference to the denominator of op.

void fmpz_poly_q_canonicalise(fmpz_poly_q_t rop)

Brings rop into canonical form, only assuming that the denominator is non-zero.

int fmpz_poly_q_is_canonical(const fmpz_poly_q_t op)

Checks whether the rational function op is in canonical form.

18.4 Randomisation

void fmpz_poly_q_randtest(fmpz_poly_q_t poly , flint_rand_t

state , long len1 , mp_bitcnt_t bits1 , long len2 ,

mp_bitcnt_t bits2)
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Sets poly to a random rational function.

void fmpz_poly_q_randtest_not_zero(fmpz_poly_q_t poly ,

flint_rand_t state , long len1 , mp_bitcnt_t bits1 , long

len2 , mp_bitcnt_t bits2)

Sets poly to a random non-zero rational function.

18.5 Assignment

void fmpz_poly_q_set(fmpz_poly_q_t rop , const fmpz_poly_q_t

op)

Sets the element rop to the same value as the element op.

void fmpz_poly_q_set_si(fmpz_poly_q_t rop , long op)

Sets the element rop to the value given by the long op.

void fmpz_poly_q_swap(fmpz_poly_q_t op1 , fmpz_poly_q_t op2)

Swaps the elements op1 and op2.

This is done efficiently by swapping pointers.

void fmpz_poly_q_zero(fmpz_poly_q_t rop)

Sets rop to zero.

void fmpz_poly_q_one(fmpz_poly_q_t rop)

Sets rop to one.

void fmpz_poly_q_neg(fmpz_poly_q_t rop , const fmpz_poly_q_t

op)

Sets the element rop to the additive inverse of op.

void fmpz_poly_q_inv(fmpz_poly_q_t rop , const fmpz_poly_q_t

op)

Sets the element rop to the multiplicative inverse of op.

Assumes that the element op is non-zero.

18.6 Comparison

int fmpz_poly_q_is_zero(const fmpz_poly_q_t op)

Returns whether the element op is zero.

int fmpz_poly_q_is_one(const fmpz_poly_q_t op)

Returns whether the element rop is equal to the constant polynomial 1.

int fmpz_poly_q_equal(const fmpz_poly_q_t op1 , const

fmpz_poly_q_t op2)

Returns whether the two elements op1 and op2 are equal.

18.7 Addition and subtraction
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void fmpz_poly_q_add(fmpz_poly_q_t rop , const fmpz_poly_q_t

op1 , const fmpz_poly_q_t op2)

Sets rop to the sum of op1 and op2.

void fmpz_poly_q_sub(fmpz_poly_q_t rop , const fmpz_poly_q_t

op1 , const fmpz_poly_q_t op2)

Sets rop to the difference of op1 and op2.

void fmpz_poly_q_addmul(fmpz_poly_q_t rop , const

fmpz_poly_q_t op1 , const fmpz_poly_q_t op2)

Adds the product of op1 and op2 to rop.

void fmpz_poly_q_submul(fmpz_poly_q_t rop , const

fmpz_poly_q_t op1 , const fmpz_poly_q_t op2)

Subtracts the product of op1 and op2 from rop.

18.8 Scalar multiplication and division

void fmpz_poly_q_scalar_mul_si(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, long x)

Sets rop to the product of the rational function op and the long integer x.

void fmpz_poly_q_scalar_mul_mpz(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, const mpz_t x)

Sets rop to the product of the rational function op and the mpz_t integer x.

void fmpz_poly_q_scalar_mul_mpq(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, const mpq_t x)

Sets rop to the product of the rational function op and the mpq_t rational x.

void fmpz_poly_q_scalar_div_si(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, long x)

Sets rop to the quotient of the rational function op and the long integer x.

void fmpz_poly_q_scalar_div_mpz(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, const mpz_t x)

Sets rop to the quotient of the rational function op and the mpz_t integer x.

void fmpz_poly_q_scalar_div_mpq(fmpz_poly_q_t rop , const

fmpz_poly_q_t op, const mpq_t x)

Sets rop to the quotient of the rational function op and the mpq_t rational x.

18.9 Multiplication and division

void fmpz_poly_q_mul(fmpz_poly_q_t rop , const fmpz_poly_q_t

op1 , const fmpz_poly_q_t op2)

Sets rop to the product of op1 and op2.

void fmpz_poly_q_div(fmpz_poly_q_t rop , const fmpz_poly_q_t

op1 , const fmpz_poly_q_t op2)
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Sets rop to the quotient of op1 and op2.

18.10 Powering

void fmpz_poly_q_pow(fmpz_poly_q_t rop , const fmpz_poly_q_t

op, ulong exp)

Sets rop to the exp-th power of op.

The corner case of exp == 0 is handled by setting rop to the constant function 1. Note
that this includes the case 00 = 1.

18.11 Derivative

void fmpz_poly_q_derivative(fmpz_poly_q_t rop , const

fmpz_poly_q_t op)

Sets rop to the derivative of op.

18.12 Evaluation

int fmpz_poly_q_evaluate(mpq_t rop , const fmpz_poly_q_t f,

const mpq_t a)

Sets rop to f evaluated at the rational a.

If the denominator evaluates to zero at a, returns non-zero and does not modify any of
the variables. Otherwise, returns 0 and sets rop to the rational f(a).

18.13 Input and output

The following three methods enable users to construct elements of type
fmpz_poly_q_t from strings or to obtain string representations of such elements.

The format used is based on the FLINT format for integer polynomials of type fmpz_poly_t,
which we recall first:

A non-zero polynomial a0 +a1X+ · · ·+anX
n of length n+1 is represented by the string

"n+1 a_0 a_1 ... a_n", where there are two space characters following the length
and single space characters separating the individual coefficients. There is no leading or
trailing white-space. The zero polynomial is simply represented by "0".

We adapt this notation for rational functions as follows. We denote the zero function by
"0". Given a non-zero function with numerator and denominator string representations
num and den, respectively, we use the string num/den to represent the rational function,
unless the denominator is equal to one, in which case we simply use num.

There is also a _pretty variant available, which bases the string parts for the numer-
ator and denominator on the output of the function fmpz_poly_get_str_pretty and
introduces parentheses where necessary.

Note that currently these functions are not optimised for performance and are intended
to be used only for debugging purposes or one-off input and output, rather than as a
low-level parser.

int fmpz_poly_q_set_str(fmpz_poly_q_t rop , const char *s)

Sets rop to the rational function given by the string s.

char * fmpz_poly_q_get_str(const fmpz_poly_q_t op)
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Returns the string representation of the rational function op.

char * fmpz_poly_q_get_str_pretty(const fmpz_poly_q_t op,

const char *x)

Returns the pretty string representation of the rational function op.

int fmpz_poly_q_print(const fmpz_poly_q_t op)

Prints the representation of the rational function op to stdout.

int fmpz_poly_q_print_pretty(const fmpz_poly_q_t op, const

char *x)

Prints the pretty representation of the rational function op to stdout.
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Matrices over Z[x]

The fmpz_poly_mat_t data type represents matrices whose entries are integer polyno-
mials.

The fmpz_poly_mat_t type is defined as an array of fmpz_poly_mat_struct’s of length
one. This permits passing parameters of type fmpz_poly_mat_t by reference.

An integer polynomial matrix internally consists of a single array of fmpz_poly_struct’s,
representing a dense matrix in row-major order. This array is only directly indexed dur-
ing memory allocation and deallocation. A separate array holds pointers to the start of
each row, and is used for all indexing. This allows the rows of a matrix to be permuted
quickly by swapping pointers.

Matrices having zero rows or columns are allowed.

The shape of a matrix is fixed upon initialisation. The user is assumed to provide input
and output variables whose dimensions are compatible with the given operation.

19.1 Simple example

The following example constructs the matrix

(
2x+ 1 x
1− x −1

)
and computes its determi-

nant.

#include "fmpz_poly.h"

#include "fmpz_poly_mat.h"

...

fmpz_poly_mat_t A;

fmpz_poly_t P;

fmpz_poly_mat_init(A, 2, 2);

fmpz_poly_init(P);

fmpz_poly_set_str(fmpz_poly_mat_entry(A, 0, 0), "2 1 2");

fmpz_poly_set_str(fmpz_poly_mat_entry(A, 0, 1), "2 0 1");

fmpz_poly_set_str(fmpz_poly_mat_entry(A, 1, 0), "2 1 -1");

fmpz_poly_set_str(fmpz_poly_mat_entry(A, 1, 1), "1 -1");

fmpz_poly_mat_det(P, A);

fmpz_poly_print_pretty(P, "x");
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fmpz_poly_clear(P);

fmpz_poly_mat_clear(A);

The output is:

x^2-3*x-1

19.2 Memory management

void fmpz_poly_mat_init(fmpz_poly_mat_t mat , long rows ,

long cols)

Initialises a matrix with the given number of rows and columns for use.

void fmpz_poly_mat_init_set(fmpz_poly_mat_t mat , const

fmpz_poly_mat_t src)

Initialises a matrix mat of the same dimensions as src, and sets it to a copy of src.

void fmpz_poly_mat_clear(fmpz_poly_mat_t mat)

Frees all memory associated with the matrix. The matrix must be reinitialised if it is to
be used again.

19.3 Basic properties

long fmpz_poly_mat_nrows(const fmpz_poly_mat_t mat)

Returns the number of rows in mat.

long fmpz_poly_mat_ncols(const fmpz_poly_mat_t mat)

Returns the number of columns in mat.

19.4 Basic assignment and manipulation

MACRO fmpz_poly_mat_entry(mat ,i,j)

Gives a reference to the entry at row i and column j. The reference can be passed as
an input or output variable to any fmpz_poly function for direct manipulation of the
matrix element. No bounds checking is performed.

void fmpz_poly_mat_set(fmpz_poly_mat_t mat1 , const

fmpz_poly_mat_t mat2)

Sets mat1 to a copy of mat2.

void fmpz_poly_mat_swap(fmpz_poly_mat_t mat1 ,

fmpz_poly_mat_t mat2)

Swaps mat1 and mat2 efficiently.

19.5 Input and output

void fmpz_poly_mat_print(const fmpz_poly_mat_t mat , const

char * x)
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Prints the matrix mat to standard output, using the variable x.

19.6 Random matrix generation

void fmpz_poly_mat_randtest(fmpz_poly_mat_t mat ,

flint_rand_t state , long len , mp_bitcnt_t bits)

This is equivalent to applying fmpz_poly_randtest to all entries in the matrix.

void fmpz_poly_mat_randtest_sparse(fmpz_poly_mat_t A,

flint_rand_t state , long len , mp_bitcnt_t bits , float

density)

Creates a random matrix with the amount of nonzero entries given approximately by
the density variable, which should be a fraction between 0 (most sparse) and 1 (most
dense).

The nonzero entries will have random lengths between 1 and len.

19.7 Special matrices

void fmpz_poly_mat_zero(fmpz_poly_mat_t mat)

Sets mat to the zero matrix.

void fmpz_poly_mat_one(fmpz_poly_mat_t mat)

Sets mat to the unit or identity matrix of given shape, having the element 1 on the main
diagonal and zeros elsewhere. If mat is nonsquare, it is set to the truncation of a unit
matrix.

19.8 Basic comparison and properties

int fmpz_poly_mat_equal(const fmpz_poly_mat_t mat1 , const

fmpz_poly_mat_t mat2)

Returns nonzero if mat1 and mat2 have the same shape and all their entries agree, and
returns zero otherwise.

int fmpz_poly_mat_is_zero(const fmpz_poly_mat_t mat)

Returns nonzero if all entries in mat are zero, and returns zero otherwise.

int fmpz_poly_mat_is_one(const fmpz_poly_mat_t mat)

Returns nonzero if all entry of mat on the main diagonal are the constant polynomial 1
and all remaining entries are zero, and returns zero otherwise. The matrix need not be
square.

int fmpz_poly_mat_is_empty(const fmpz_poly_mat_t mat)

Returns a non-zero value if the number of rows or the number of columns in mat is zero,
and otherwise returns zero.

int fmpz_poly_mat_is_square(const fmpz_poly_mat_t mat)

Returns a non-zero value if the number of rows is equal to the number of columns in
mat, and otherwise returns zero.

19.9 Norms
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long fmpz_poly_mat_max_bits(const fmpz_poly_mat_t A)

Returns the maximum number of bits among the coefficients of the entries in A, or the
negative of that value if any coefficient is negative.

long fmpz_poly_mat_max_length(const fmpz_poly_mat_t A)

Returns the maximum polynomial length among all the entries in A.

19.10 Evaluation

void fmpz_poly_mat_evaluate_fmpz(fmpz_mat_t B, const

fmpz_poly_mat_t A, const fpz_t x)

Sets the fmpz_mat_t B to A evaluated entrywise at the point x.

19.11 Arithmetic

void fmpz_poly_mat_scalar_mul_fmpz_poly(fmpz_poly_mat_t B,

const fmpz_poly_mat_t A, const fmpz_poly_t c)

Sets B to A multiplied entrywise by the polynomial c.

void fmpz_poly_mat_scalar_mul_fmpz(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A, const fmpz_t c)

Sets B to A multiplied entrywise by the integer c.

void fmpz_poly_mat_add(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Sets C to the sum of A and B. All matrices must have the same shape. Aliasing is allowed.

void fmpz_poly_mat_sub(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Sets C to the sum of A and B. All matrices must have the same shape. Aliasing is allowed.

void fmpz_poly_mat_neg(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A)

Sets B to the negation of A. The matrices must have the same shape. Aliasing is allowed.

void fmpz_poly_mat_mul(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Sets C to the matrix product of A and B. The matrices must have compatible dimensions
for matrix multiplication. Aliasing is allowed. This function automatically chooses
between classical and KS multiplication.

void fmpz_poly_mat_mul_classical(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Sets C to the matrix product of A and B, computed using the classical algorithm. The
matrices must have compatible dimensions for matrix multiplication. Aliasing is allowed.

void fmpz_poly_mat_mul_KS(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Sets C to the matrix product of A and B, computed using Kronecker segmentation. The
matrices must have compatible dimensions for matrix multiplication. Aliasing is allowed.
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void fmpz_poly_mat_mullow(fmpz_poly_mat_t C, const

fmpz_poly_mat_t A, const fmpz_poly_mat_t B, long len)

Sets C to the matrix product of A and B, truncating each entry in the result to length len.
Uses classical matrix multiplication. The matrices must have compatible dimensions for
matrix multiplication. Aliasing is allowed.

void fmpz_poly_mat_sqr(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function automatically chooses between classical and KS squaring.

void fmpz_poly_mat_sqr_classical(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function uses direct formulas for very small matrices, and otherwise classical matrix
multiplication.

void fmpz_poly_mat_sqr_KS(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function uses Kronecker segmentation.

void fmpz_poly_mat_sqrlow(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A, long len)

Sets B to the square of A, which must be a square matrix, truncating all entries to length
len. Aliasing is allowed. This function uses direct formulas for very small matrices, and
otherwise classical matrix multiplication.

void fmpz_poly_mat_pow(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A, ulong exp)

Sets B to A raised to the power exp, where A is a square matrix. Uses exponentiation by
squaring. Aliasing is allowed.

void fmpz_poly_mat_pow_trunc(fmpz_poly_mat_t B, const

fmpz_poly_mat_t A, ulong exp , long len)

Sets B to A raised to the power exp, truncating all entries to length len, where A is a
square matrix. Uses exponentiation by squaring. Aliasing is allowed.

void fmpz_poly_mat_prod(fmpz_poly_mat_t res ,

fmpz_poly_mat_t * const factors , long n)

Sets res to the product of the n matrices given in the vector factors, all of which must
be square and of the same size. Uses binary splitting.

19.12 Row reduction

long fmpz_poly_mat_find_pivot_any(const fmpz_poly_mat_t

mat , long start_row , long end_row , long c)

Attempts to find a pivot entry for row reduction. Returns a row index r between
start_row (inclusive) and stop_row (exclusive) such that column c in mat has a nonzero
entry on row r, or returns -1 if no such entry exists.

This implementation simply chooses the first nonzero entry from it encounters. This is
likely to be a nearly optimal choice if all entries in the matrix have roughly the same
size, but can lead to unnecessary coefficient growth if the entries vary in size.
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long fmpz_poly_mat_find_pivot_partial(const fmpz_poly_mat_t

mat , long start_row , long end_row , long c)

Attempts to find a pivot entry for row reduction. Returns a row index r between
start_row (inclusive) and stop_row (exclusive) such that column c in mat has a nonzero
entry on row r, or returns -1 if no such entry exists.

This implementation searches all the rows in the column and chooses the nonzero entry of
smallest degree. If there are several entries with the same minimal degree, it chooses the
entry with the smallest coefficient bit bound. This heuristic typically reduces coefficient
growth when the matrix entries vary in size.

long fmpz_poly_mat_fflu(fmpz_poly_mat_t B, fmpz_poly_t den ,

long * perm , const fmpz_poly_mat_t A, int rank_check)

Uses fraction-free Gaussian elimination to set (B, den) to a fraction-free LU decomposi-
tion of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with fmpz_poly_mat_find_pivot_partial. If perm is non-
NULL, the permutation of rows in the matrix will also be applied to perm.

If rank_check is set, the function aborts and returns 0 if the matrix is detected not to
have full rank without completing the elimination.

The denominator den is set to ± det(A), where the sign is decided by the parity of the
permutation. Note that the determinant is not generally the minimal denominator.

long fmpz_poly_mat_rref(fmpz_poly_mat_t B, fmpz_poly_t den ,

const fmpz_poly_mat_t A)

Uses fraction-free Gauss-Jordan elimination to set (B, den) to the reduced row echelon
form of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with fmpz_poly_mat_find_pivot_partial.

The denominator den is set to ±det(A). Note that the determinant is not generally the
minimal denominator.

19.13 Trace

void fmpz_poly_mat_trace(fmpz_poly_t trace , const

fmpz_poly_mat_t mat)

Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The
matrix is required to be square.

19.14 Determinant and rank

void fmpz_poly_mat_det(fmpz_poly_t det , const

fmpz_poly_mat_t A)

Sets det to the determinant of the square matrix A. Uses a direct formula, fraction-free
LU decomposition, or interpolation, depending on the size of the matrix.

void fmpz_poly_mat_det_fflu(fmpz_poly_t det , const

fmpz_poly_mat_t A)

Sets det to the determinant of the square matrix A. The determinant is computed by
performing a fraction-free LU decomposition on a copy of A.

void fmpz_poly_mat_det_interpolate(fmpz_poly_t det , const

fmpz_poly_mat_t A)
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Sets det to the determinant of the square matrix A. The determinant is computed by
determing a bound n for its length, evaluating the matrix at n distinct points, computing
the determinant of each integer matrix, and forming the interpolating polynomial.

long fmpz_poly_mat_rank(const fmpz_poly_mat_t A)

Returns the rank of A. Performs fraction-free LU decomposition on a copy of A.

19.15 Inverse

int fmpz_poly_mat_inv(fmpz_poly_mat_t Ainv , fmpz_poly_t

den , const fmpz_poly_mat_t A)

Sets (Ainv, den) to the inverse matrix of A. Returns 1 if A is nonsingular and 0 if A is
singular. Aliasing of Ainv and A is allowed.

More precisely, det will be set to the determinant of A and Ainv will be set to the adjugate
matrix of A. Note that the determinant is not necessarily the minimal denominator.

Uses fraction-free LU decomposition, followed by solving for the identity matrix.

19.16 Nullspace

long fmpz_poly_mat_nullspace(fmpz_poly_mat_t res , const

fmpz_poly_mat_t mat)

Computes the right rational nullspace of the matrix mat and returns the nullity.

More precisely, assume that mat has rank r and nullity n. Then this function sets the
first n columns of res to linearly independent vectors spanning the nullspace of mat. As
a result, we always have rank(res) = n, and mat × res is the zero matrix.

The computed basis vectors will not generally be in a reduced form. In general, the
polynomials in each column vector in the result will have a nontrivial common GCD.

19.17 Solving

int fmpz_poly_mat_solve(fmpz_poly_mat_t X, fmpz_poly_t den ,

const fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

Uses fraction-free LU decomposition followed by fraction-free forward and back substi-
tution.

int fmpz_poly_mat_solve_fflu(fmpz_poly_mat_t X, fmpz_poly_t

den , const fmpz_poly_mat_t A, const fmpz_poly_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

Uses fraction-free LU decomposition followed by fraction-free forward and back substi-
tution.

void fmpz_poly_mat_solve_fflu_precomp(fmpz_poly_mat_t X,

const long * perm , const fmpz_poly_mat_t FFLU , const

fmpz_poly_mat_t B)

Performs fraction-free forward and back substitution given a precomputed fraction-free
LU decomposition and corresponding permutation.
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Vectors over Z/nZ for word-sized
moduli

20.1 Memory management

mp_ptr _nmod_vec_init(long len)

Returns a vector of the given length. The entries are not necessarily zero.

void _nmod_vec_clear(mp_ptr vec)

Frees the memory used by the given vector.

20.2 Modular reduction and arithmetic

void nmod_init(nmod_t * mod , mp_limb_t n)

Initialises the given nmod_t structure for reduction modulo n with a precomputed inverse.

NMOD_RED2(r, a_hi , a_lo , mod)

Macro to set r to a reduced modulo mod.n, where a consists of two limbs (a_hi, a_lo).
The mod parameter must be a valid nmod_t structure. It is assumed that a_hi is already
reduced modulo mod.n.

NMOD_RED(r, a, mod)

Macro to set r to a reduced modulo mod.n. The mod parameter must be a valid nmod_t

structure.

NMOD2_RED2(r, a_hi , a_lo , mod)

Macro to set r to a reduced modulo mod.n, where a consists of two limbs (a_hi, a_lo).
The mod parameter must be a valid nmod_t structure. No assumptions are made about
a_hi.

NMOD_RED3(r, a_hi , a_me , a_lo , mod)

Macro to set r to a reduced modulo mod.n, where a consists of three limbs (a_hi,

a_me, a_lo). The mod parameter must be a valid nmod_t structure. It is assumed that
a_hi is already reduced modulo mod.n.
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NMOD_ADDMUL(r, a, b, mod)

Macro to set r to r + ab reduced modulo mod.n. The mod parameter must be a valid
nmod_t structure. It is assumed that r, a, b are already reduced modulo mod.n.

mp_limb_t _nmod_add(mp_limb_t a, mp_limb_t b, nmod_t mod)

Returns a+ b modulo mod.n. It is assumed that mod is no more than FLINT_BITS - 1

bits. It is assumed that a and b are already reduced modulo mod.n.

mp_limb_t nmod_add(mp_limb_t a, mp_limb_t b, nmod_t mod)

Returns a+b modulo mod.n. No assumptions are made about mod.n. It is assumed that
a and b are already reduced modulo mod.n.

mp_limb_t _nmod_sub(mp_limb_t a, mp_limb_t b, nmod_t mod)

Returns a− b modulo mod.n. It is assumed that mod is no more than FLINT_BITS - 1

bits. It is assumed that a and b are already reduced modulo mod.n.

mp_limb_t nmod_sub(mp_limb_t a, mp_limb_t b, nmod_t mod)

Returns a−b modulo mod.n. No assumptions are made about mod.n. It is assumed that
a and b are already reduced modulo mod.n.

mp_limb_t nmod_neg(mp_limb_t a, nmod_t mod)

Returns −a modulo mod.n. It is assumed that a is already reduced modulo mod.n, but
no assumptions are made about the latter.

20.3 Random functions

void _nmod_vec_randtest(mp_ptr vec , flint_rand_t state ,

long len , nmod_t mod)

Sets vec to a random vector of the given length with entries reduced modulo mod.n.

20.4 Basic manipulation and comparison

void _nmod_vec_set(mp_ptr res , mp_srcptr vec , long len)

Copies len entries from the vector vec to res.

void _nmod_vec_zero(mp_ptr vec , long len)

Zeros the given vector of the given length.

void _nmod_vec_swap(mp_ptr a, mp_ptr b, long length)

Swaps the vectors a and b of length n by actually swapping the entries.

void _nmod_vec_reduce(mp_ptr res , mp_srcptr vec , long len ,

nmod_t mod)

Reduces the entries of (vec, len) modulo mod.n and set res to the result.

mp_bitcnt_t _nmod_vec_max_bits(mp_srcptr vec , long len)

Returns the maximum number of bits of any entry in the vector.

int _nmod_vec_equal(mp_ptr vec , mp_srcptr vec2 , long len)
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Returns 1 if (vec, len) is equal to (vec2, len), otherwise returns 0.

20.5 Arithmetic operations

void _nmod_vec_add(mp_ptr res , mp_srcptr vec1 , mp_srcptr

vec2 , long len , nmod_t mod)

Sets (res, len) to the sum of (vec1, len) and (vec2, len).

void _nmod_vec_sub(mp_ptr res , mp_srcptr vec1 , mp_srcptr

vec2 , long len , nmod_t mod)

Sets (res, len) to the difference of (vec1, len) and (vec2, len).

void _nmod_vec_neg(mp_ptr res , mp_srcptr vec , long len ,

nmod_t mod)

Sets (res, len) to the negation of (vec, len).

void _nmod_vec_scalar_mul_nmod(mp_ptr res , mp_srcptr vec ,

long len , mp_limb_t c, nmod_t mod)

Sets (res, len) to (vec, len) multiplied by c.

void _nmod_vec_scalar_addmul_nmod(mp_ptr res , mp_srcptr

vec , long len , mp_limb_t c, nmod_t mod)

Adds (vec, len) times c to the vector (res, len).

20.6 Dot products

int _nmod_vec_dot_bound_limbs(long len , nmod_t mod)

Returns the number of limbs (0, 1, 2 or 3) needed to represent the unreduced dot
product of two vectors of length len having entries modulo mod.n, assuming that len is
nonnegative and that mod.n is nonzero. The computed bound is tight. In other words,
this function returns the precise limb size of len times (mod.n - 1)^ 2.

macro NMOD_VEC_DOT(res , i, len , expr1 , expr2 , mod , nlimbs)

Effectively performs the computation

res = 0;

for (i = 0; i < len; i++)

res += (expr1) * (expr2);

but with the arithmetic performed modulo mod. The nlimbs parameter should be 0, 1,
2 or 3, specifying the number of limbs needed to represent the unreduced result.

mp_limb_t _nmod_vec_dot(mp_srcptr vec1 , mp_srcptr vec2 ,

long len , nmod_t mod , int nlimb_l)

Returns the dot product of (vec1, len) and (vec2, len). The nlimbs parameter should
be 0, 1, 2 or 3, specifying the number of limbs needed to represent the unreduced result.

mp_limb_t _nmod_vec_dot_ptr(mp_srcptr vec1 , mp_ptr * const

vec2 , long offset , long len , nmod_t mod , int nlimbs)

Returns the dot product of (vec1, len) and the values at vec2[i][offset]. The nlimbs
parameter should be 0, 1, 2 or 3, specifying the number of limbs needed to represent the
unreduced result.
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Polynomials over Z/nZ for
word-sized moduli

21.1 Introduction

The nmod_poly_t data type represents elements of Z/nZ[x] for a fixed modulus n. The
nmod_poly module provides routines for memory management, basic arithmetic and
some higher level functions such as GCD, etc.

Each coefficient of an nmod_poly_t is of type mp_limb_t and represents an integer
reduced modulo the fixed modulus n.

Unless otherwise specified, all functions in this section permit aliasing between their
input arguments and between their input and output arguments.

21.2 Simple example

The following example computes the square of the polynomial 5x3 + 6 in Z/7Z[x].

#include "nmod_poly.h"

...

nmod_poly_t x, y;

nmod_poly_init(x, 7);

nmod_poly_init(y, 7);

nmod_poly_set_coeff_ui(x, 3, 5);

nmod_poly_set_coeff_si(x, 0, 6);

nmod_poly_mul(y, x, x);

nmod_poly_print(x); printf("\n");

nmod_poly_print(y); printf("\n");

nmod_poly_clear(x);

nmod_poly_clear(y);

The output is:

4 7 6 0 0 5

7 7 1 0 0 4 0 0 4
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21.3 Definition of the nmod poly t type

The nmod_poly_t type is a typedef for an array of length 1 of nmod_poly_struct’s.
This permits passing parameters of type nmod_poly_t by reference.

In reality one never deals directly with the struct and simply deals with objects of type
nmod_poly_t. For simplicity we will think of an nmod_poly_t as a struct, though in
practice to access fields of this struct, one needs to dereference first, e.g. to access the
length field of an nmod_poly_t called poly1 one writes poly1->length.

An nmod_poly_t is said to be normalised if either length is zero, or if the leading
coefficient of the polynomial is non-zero. All nmod_poly functions expect their inputs
to be normalised and for all coefficients to be reduced modulo n, and unless otherwise
specified they produce output that is normalised with coefficients reduced modulo n.

It is recommended that users do not access the fields of an nmod_poly_t or its coefficient
data directly, but make use of the functions designed for this purpose, detailed below.

Functions in nmod_poly do all the memory management for the user. One does not need
to specify the maximum length in advance before using a polynomial object. FLINT
reallocates space automatically as the computation proceeds, if more space is required.

We now describe the functions available in nmod_poly.

21.4 Memory management

void nmod_poly_init(nmod_poly_t poly , mp_limb_t n)

Initialises poly. It will have coefficients modulo n.

void nmod_poly_init_preinv(nmod_poly_t poly , mp_limb_t n,

mp_limb_t ninv)

Initialises poly. It will have coefficients modulo n. The caller supplies a precomputed
inverse limb generated by n_preinvert_limb().

void nmod_poly_init2(nmod_poly_t poly , mp_limb_t n, long

alloc)

Initialises poly. It will have coefficients modulo n. Up to alloc coefficients may be
stored in poly.

void nmod_poly_init2_preinv(nmod_poly_t poly , mp_limb_t n,

mp_limb_t ninv , long alloc)

Initialises poly. It will have coefficients modulo n. The caller supplies a precomputed
inverse limb generated by n_preinvert_limb(). Up to alloc coefficients may be stored
in poly.

void nmod_poly_realloc(nmod_poly_t poly , long alloc)

Reallocates poly to the given length. If the current length is less than alloc, the
polynomial is truncated and normalised. If alloc is zero, the polynomial is cleared.

void nmod_poly_clear(nmod_poly_t poly)

Clears the polynomial and releases any memory it used. The polynomial cannot be used
again until it is initialised.

void nmod_poly_fit_length(nmod_poly_t poly , long alloc)
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Ensures poly has space for at least alloc coefficients. This function only ever grows
the allocated space, so no data loss can occur.

void _nmod_poly_normalise(nmod_poly_t poly)

Internal function for normalising a polynomial so that the top coefficient, if there is one
at all, is not zero.

21.5 Polynomial properties

long nmod_poly_length(const nmod_poly_t poly)

Returns the length of the polynomial poly. The zero polynomial has length zero.

long nmod_poly_degree(const nmod_poly_t poly)

Returns the degree of the polynomial poly. The zero polynomial is deemed to have
degree −1.

mp_limb_t nmod_poly_modulus(const nmod_poly_t poly)

Returns the modulus of the polynomial poly. This will be a positive integer.

mp_bitcnt_t nmod_poly_max_bits(const nmod_poly_t poly)

Returns the maximum number of bits of any coefficient of poly.

21.6 Assignment and basic manipulation

void nmod_poly_set(nmod_poly_t a, const nmod_poly_t b)

Sets a to a copy of b.

void nmod_poly_swap(nmod_poly_t poly1 , nmod_poly_t poly2)

Efficiently swaps poly1 and poly2 by swapping pointers internally.

void nmod_poly_zero(nmod_poly_t res)

Sets res to the zero polynomial.

void nmod_poly_truncate(nmod_poly_t poly , long len)

Truncates poly to the given length and normalises it. If len is greater than the current
length of poly, then nothing happens.

void _nmod_poly_reverse(mp_ptr output , mp_srcptr input ,

long len , long m)

Sets output to the reverse of input, which is of length len, but thinking of it as a
polynomial of length m, notionally zero-padded if necessary. The length m must be non-
negative, but there are no other restrictions. The polynomial output must have space
for m coefficients.

void nmod_poly_reverse(nmod_poly_t output , const

nmod_poly_t input , long m)

Sets output to the reverse of input, thinking of it as a polynomial of length m, notionally
zero-padded if necessary). The length m must be non-negative, but there are no other
restrictions. The output polynomial will be set to length m and then normalised.

21.7 Randomisation
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void nmod_poly_randtest(nmod_poly_t poly , flint_rand_t

state , long len)

Generates a random polynomial with up to the given length.

21.8 Getting and setting coefficients

ulong nmod_poly_get_coeff_ui(const nmod_poly_t poly , long j)

Returns the coefficient of poly at index j, where coefficients are numbered with zero
being the constant coefficient, and returns it as an unsigned long. If j refers to a
coefficient beyond the end of poly, zero is returned.

void nmod_poly_set_coeff_ui(nmod_poly_t poly , long j, ulong

c)

Sets the coefficient of poly at index j, where coefficients are numbered with zero being
the constant coefficient, to the value c reduced modulo the modulus of poly. If j refers
to a coefficient beyond the current end of poly, the polynomial is first resized, with
intervening coefficients being set to zero.

21.9 Input and output

char * nmod_poly_get_str(const nmod_poly_t poly)

Writes poly to a string representation. The format is as described for nmod_poly_print().
The string must be freed by the user when finished. For this it is sufficient to call
flint_free().

int nmod_poly_set_str(nmod_poly_t poly , const char * s)

Reads poly from a string s. The format is as described for nmod_poly_print(). If
a polynomial in the correct format is read, a positive value is returned, otherwise a
non-positive value is returned.

int nmod_poly_print(const nmod_poly_t a)

Prints the polynomial to stdout. The length is printed, followed by a space, then the
modulus. If the length is zero this is all that is printed, otherwise two spaces followed by
a space separated list of coefficients is printed, beginning with the constant coefficient.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int nmod_poly_fread(FILE * f, nmod_poly_t poly)

Reads poly from the file stream f. If this is a file that has just been written, the file
should be closed then opened again. The format is as described for nmod_poly_print().
If a polynomial in the correct format is read, a positive value is returned, otherwise a
non-positive value is returned.

int nmod_poly_fprint(FILE * f, const nmod_poly_t poly)

Writes a polynomial to the file stream f. If this is a file then the file should be closed
and reopened before being read. The format is as described for nmod_poly_print().
If a polynomial in the correct format is read, a positive value is returned, otherwise
a non-positive value is returned. If an error occurs whilst writing to the file, an error
message is printed.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.
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int nmod_poly_read(nmod_poly_t poly)

Read poly from stdin. The format is as described for nmod_poly_print(). If a polyno-
mial in the correct format is read, a positive value is returned, otherwise a non-positive
value is returned.

21.10 Comparison

int nmod_poly_equal(const nmod_poly_t a, const nmod_poly_t

b)

Returns 1 if the polynomials are equal, otherwise 0.

int nmod_poly_is_zero(const nmod_poly_t poly)

Returns 1 if the polynomial poly is the zero polynomial, otherwise returns 0.

int nmod_poly_is_one(const nmod_poly_t poly)

Returns 1 if the polynomial poly is the constant polynomial 1, otherwise returns 0.

21.11 Shifting

void _nmod_poly_shift_left(mp_ptr res , mp_srcptr poly , long

len , long k)

Sets (res, len + k) to (poly, len) shifted left by k coefficients. Assumes that res

has space for len + k coefficients.

void nmod_poly_shift_left(nmod_poly_t res , const

nmod_poly_t poly , long k)

Sets res to poly shifted left by k coefficients, i.e. multiplied by xk.

void _nmod_poly_shift_right(mp_ptr res , mp_srcptr poly ,

long len , long k)

Sets (res, len - k) to (poly, len) shifted left by k coefficients. It is assumed that
k <= len and that res has space for at least len - k coefficients.

void nmod_poly_shift_right(nmod_poly_t res , const

nmod_poly_t poly , long k)

Sets res to poly shifted right by k coefficients, i.e. divide by xk and throws away the
remainder. If k is greater than or equal to the length of poly, the result is the zero
polynomial.

21.12 Addition and subtraction

void _nmod_poly_add(mp_ptr res , mp_srcptr poly1 , long len1 ,

mp_srcptr poly2 , long len2 , nmod_t mod)

Sets res to the sum of (poly1, len1) and (poly2, len2). There are no restrictions
on the lengths.

void nmod_poly_add(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2)

Sets res to the sum of poly1 and poly2.
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void _nmod_poly_sub(mp_ptr res , mp_srcptr poly1 , long len1 ,

mp_srcptr poly2 , long len2 , nmod_t mod)

Sets res to the difference of (poly1, len1) and (poly2, len2). There are no restric-
tions on the lengths.

void nmod_poly_sub(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2)

Sets res to the difference of poly1 and poly2.

void nmod_poly_neg(nmod_poly_t res , const nmod_poly_t poly)

Sets res to the negation of poly.

21.13 Scalar multiplication and division

void nmod_poly_scalar_mul_nmod(nmod_poly_t res , const

nmod_poly_t poly , ulong c)

Sets res to (poly, len) multiplied by c, where c is reduced modulo the modulus of
poly.

void _nmod_poly_make_monic(mp_ptr output , mp_srcptr input ,

long len , nmod_t mod)

Sets output to be the scalar multiple of input of length len > 0 that has leading
coefficient one, if such a polynomial exists. If the leading coefficient of input is not
invertible, output is set to the multiple of input whose leading coefficient is the greatest
common divisor of the leading coefficient and the modulus of input.

void nmod_poly_make_monic(nmod_poly_t output , const

nmod_poly_t input)

Sets output to be the scalar multiple of input with leading coefficient one, if such a
polynomial exists. If input is zero an exception is raised. If the leading coefficient of
input is not invertible, output is set to the multiple of input whose leading coefficient
is the greatest common divisor of the leading coefficient and the modulus of input.

21.14 Bit packing and unpacking

void _nmod_poly_bit_pack(mp_ptr res , mp_srcptr poly , long

len , mp_bitcnt_t bits)

Packs len coefficients of poly into fields of the given number of bits in the large integer
res, i.e. evaluates poly at 2^bits and store the result in res. Assumes len > 0 and
bits > 0. Also assumes that no coefficient of poly is bigger than bits/2 bits. We also
assume bits < 3 * FLINT_BITS.

void _nmod_poly_bit_unpack(mp_ptr res , long len , mp_srcptr

mpn , ulong bits , nmod_t mod)

Unpacks len coefficients stored in the big integer mpn in bit fields of the given number
of bits, reduces them modulo the given modulus, then stores them in the polynomial
res. We assume len > 0 and 3 * FLINT_BITS > bits > 0. There are no restrictions
on the size of the actual coefficients as stored within the bitfields.

void nmod_poly_bit_pack(fmpz_t f, const nmod_poly_t poly ,

mp_bitcnt_t bit_size)
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Packs poly into bitfields of size bit_size, writing the result to f.

void nmod_poly_bit_unpack(nmod_poly_t poly , const fmpz_t f,

mp_bitcnt_t bit_size)

Unpacks the polynomial from fields of size bit_size as represented by the integer f.

21.15 Multiplication

void _nmod_poly_mul_classical(mp_ptr res , mp_srcptr poly1 ,

long len1 , mp_srcptr poly2 , long len2 , nmod_t mod)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).
Assumes len1 >= len2 > 0. Aliasing of inputs and output is not permitted.

void nmod_poly_mul_classical(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _nmod_poly_mullow_classical(mp_ptr res , mp_srcptr

poly1 , long len1 , mp_srcptr poly2 , long len2 , long

trunc , nmod_t mod)

Sets res to the lower trunc coefficients of the product of (poly1, len1) and (poly2,

len2). Assumes that len1 >= len2 > 0 and trunc > 0. Aliasing of inputs and output
is not permitted.

void nmod_poly_mullow_classical(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2 , long trunc)

Sets res to the lower trunc coefficients of the product of poly1 and poly2.

void _nmod_poly_mulhigh_classical(mp_ptr res , mp_srcptr

poly1 , long len1 , mp_srcptr poly2 , long len2 , long

start , nmod_t mod)

Computes the product of (poly1, len1) and (poly2, len2) and writes the coefficients
from start onwards into the high coefficients of res, the remaining coefficients being
arbitrary but reduced. Assumes that len1 >= len2 > 0. Aliasing of inputs and output
is not permitted.

void nmod_poly_mulhigh_classical(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2 , long start)

Computes the product of poly1 and poly2 and writes the coefficients from start on-
wards into the high coefficients of res, the remaining coefficients being arbitrary but
reduced.

void _nmod_poly_mul_KS(mp_ptr out , mp_srcptr in1 , long

len1 , mp_srcptr in2 , long len2 , mp_bitcnt_t bits , nmod_t

mod)

Sets res to the product of poly1 and poly2 assuming the output coefficients are at
most the given number of bits wide. If bits is set to 0 an appropriate value is computed
automatically. Assumes that len1 >= len2 > 0.

void nmod_poly_mul_KS(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2 , mp_bitcnt_t bits)



162 nmod poly

Sets res to the product of poly1 and poly2 assuming the output coefficients are at
most the given number of bits wide. If bits is set to 0 an appropriate value is computed
automatically.

void _nmod_poly_mullow_KS(mp_ptr out , mp_srcptr in1 , long

len1 , mp_srcptr in2 , long len2 , mp_bitcnt_t bits , long

n, nmod_t mod)

Sets out to the low n coefficients of in1 of length len1 times in2 of length len2. The
output must have space for n coefficients. We assume that len1 >= len2 > 0 and that
0 < n <= len1 + len2 - 1.

void nmod_poly_mullow_KS(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2 , mp_bitcnt_t bits , long n)

Set res to the low n coefficients of in1 of length len1 times in2 of length len2.

void _nmod_poly_mul(mp_ptr res , mp_srcptr poly1 , long len1 ,

mp_srcptr poly2 , long len2 , nmod_t mod)

Sets res to the product of poly1 of length len1 and poly2 of length len2. Assumes
len1 >= len2 > 0. No aliasing is permitted between the inputs and the output.

void nmod_poly_mul(nmod_poly_t res , const nmod_poly_t poly ,

const nmod_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _nmod_poly_mullow(mp_ptr res , mp_srcptr poly1 , long

len1 , mp_srcptr poly2 , long len2 , long n, nmod_t mod)

Sets res to the first n coefficients of the product of poly1 of length len1 and poly2 of
length len2. It is assumed that 0 < n <= len1 + len2 - 1 and that len1 >= len2

> 0. No aliasing of inputs and output is permitted.

void nmod_poly_mullow(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2 , long trunc)

Sets res to the first trunc coefficients of the product of poly1 and poly2.

void _nmod_poly_mulhigh(mp_ptr res , mp_srcptr poly1 , long

len1 , mp_srcptr poly2 , long len2 , long n, nmod_t mod)

Sets all but the low n coefficients of res to the corresponding coefficients of the product
of poly1 of length len1 and poly2 of length len2, the other coefficients being arbitrary.
It is assumed that len1 >= len2 > 0 and that 0 < n <= len1 + len2 - 1. Aliasing
of inputs and output is not permitted.

void nmod_poly_mulhigh(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2 , long n)

Sets all but the low n coefficients of res to the corresponding coefficients of the product
of poly1 and poly2, the remaining coefficients being arbitrary.

void _nmod_poly_mulmod(mp_ptr res , mp_srcptr poly1 , long

len1 , mp_srcptr poly2 , long len2 , mp_srcptr f, long

lenf , nmod_t mod)

Sets res to the remainder of the product of poly1 and poly2 upon polynomial division
by f.
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It is required that len1 + len2 - lenf > 0, which is equivalent to requiring that the
result will actually be reduced. Otherwise, simply use _nmod_poly_mul instead.

Aliasing of f and res is not permitted.

void nmod_poly_mulmod(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2 , const nmod_poly_t f)

Sets res to the remainder of the product of poly1 and poly2 upon polynomial division
by f.

21.16 Powering

void _nmod_poly_pow_binexp(mp_ptr res , mp_srcptr poly , long

len , ulong e, nmod_t mod)

Raises poly of length len to the power e and sets res to the result. We require that
res has enough space for (len - 1)*e + 1 coefficients. Assumes that len > 0, e > 1.
Aliasing is not permitted. Uses the binary exponentiation method.

void nmod_poly_pow_binexp(nmod_poly_t res , const

nmod_poly_t poly , ulong e)

Raises poly to the power e and sets res to the result. Uses the binary exponentiation
method.

void _nmod_poly_pow(mp_ptr res , mp_srcptr poly , long len ,

ulong e, nmod_t mod)

Raises poly of length len to the power e and sets res to the result. We require that
res has enough space for (len - 1)*e + 1 coefficients. Assumes that len > 0, e > 1.
Aliasing is not permitted.

void nmod_poly_pow(nmod_poly_t res , const nmod_poly_t poly ,

ulong e)

Raises poly to the power e and sets res to the result.

void _nmod_poly_pow_trunc_binexp(mp_ptr res , mp_srcptr

poly , ulong e, long trunc , nmod_t mod)

Sets res to the low trunc coefficients of poly (assumed to be zero padded if necessary
to length trunc) to the power e. This is equivalent to doing a powering followed by a
truncation. We require that res has enough space for trunc coefficients, that trunc > 0

and that e > 1. Aliasing is not permitted. Uses the binary exponentiation method.

void nmod_poly_pow_trunc_binexp(nmod_poly_t res , const

nmod_poly_t poly , ulong e, long trunc)

Sets res to the low trunc coefficients of poly to the power e. This is equivalent to doing
a powering followed by a truncation. Uses the binary exponentiation method.

void _nmod_poly_pow_trunc(mp_ptr res , mp_srcptr poly , ulong

e, long trunc , nmod_t mod)

Sets res to the low trunc coefficients of poly (assumed to be zero padded if necessary
to length trunc) to the power e. This is equivalent to doing a powering followed by a
truncation. We require that res has enough space for trunc coefficients, that trunc > 0

and that e > 1. Aliasing is not permitted.
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void nmod_poly_pow_trunc(nmod_poly_t res , const nmod_poly_t

poly , ulong e, long trunc)

Sets res to the low trunc coefficients of poly to the power e. This is equivalent to doing
a powering followed by a truncation.

void _nmod_poly_powmod_ui_binexp(mp_ptr res , mp_srcptr

poly , ulong e, mp_srcptr f, long lenf , nmod_t mod)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We
require e > 0.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-
padded as necessary to have length exactly lenf - 1. The output res must have room
for lenf - 1 coefficients.

void nmod_poly_powmod_ui_binexp(nmod_poly_t res , const

nmod_poly_t poly , ulong e, const nmod_poly_t f)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We
require e >= 0.

void _nmod_poly_powmod_mpz_binexp(mp_ptr res , mp_srcptr

poly , mpz_srcptr e, mp_srcptr f, long lenf , nmod_t mod)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We
require e > 0.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-
padded as necessary to have length exactly lenf - 1. The output res must have room
for lenf - 1 coefficients.

void nmod_poly_powmod_mpz_binexp(nmod_poly_t res , const

nmod_poly_t poly , mpz_srcptr e, const nmod_poly_t f)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We
require e >= 0.

21.17 Division

void _nmod_poly_divrem_basecase(mp_ptr Q, mp_ptr R, mp_ptr

W, mp_srcptr A, long A_len , mp_srcptr B, long B_len ,

nmod_t mod)

Finds Q and R such that A = BQ+R with len(R) < len(B). If len(B) = 0 an exception
is raised. We require that W is temporary space of NMOD_DIVREM_BC_ITCH(A_len,

B_len, mod) coefficients.

void nmod_poly_divrem_basecase(nmod_poly_t Q, nmod_poly_t

R, const nmod_poly_t A, const nmod_poly_t B)

Finds Q and R such that A = BQ+R with len(R) < len(B). If len(B) = 0 an exception
is raised.

void _nmod_poly_div_basecase(mp_ptr Q, mp_ptr W, mp_srcptr

A, long A_len , mp_srcptr B, long B_len , nmod_t mod)

Notionally finds polynomials Q and R such that A = BQ + R with len(R) < len(B),
but returns only Q. If len(B) = 0 an exception is raised. We require that W is temporary
space of NMOD_DIV_BC_ITCH(A_len, B_len, mod) coefficients.
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void nmod_poly_div_basecase(nmod_poly_t Q, const

nmod_poly_t A, const nmod_poly_t B)

Notionally finds polynomials Q and R such that A = BQ + R with len(R) < len(B),
but returns only Q. If len(B) = 0 an exception is raised.

void _nmod_poly_divrem_divconquer_recursive(mp_ptr Q,

mp_ptr BQ, mp_ptr W, mp_ptr V, mp_srcptr A, mp_srcptr B,

long lenB , nmod_t mod)

Computes Q and R such that A = BQ + R with len(R) less than lenB, where A is of
length 2 * lenB - 1 and B is of length lenB. Sets BQ to the low lenB - 1 coefficients
of B * Q. We require that Q have space for lenB coefficients, that W be temporary space
of size lenB - 1 and V be temporary space for a number of coefficients computed by
NMOD_DIVREM_DC_ITCH(lenB, mod).

void _nmod_poly_divrem_divconquer(mp_ptr Q, mp_ptr R,

mp_srcptr A, long lenA , mp_srcptr B, long lenB , nmod_t

mod)

Computes Q and R such that A = BQ + R with len(R) less than lenB, where A is of
length lenA and B is of length lenB. We require that Q have space for lenA - lenB + 1

coefficients.

void nmod_poly_divrem_divconquer(nmod_poly_t Q, nmod_poly_t

R, const nmod_poly_t A, const nmod_poly_t B)

Computes Q and R such that A = BQ+R with len(R) < len(B).

void _nmod_poly_divrem_q0(mp_ptr Q, mp_ptr R, mp_srcptr A,

mp_srcptr B, long lenA , nmod_t mod)

Computes Q and R such that A = BQ + R with len(R) < len(B), where len(A) =
len(B) > 0.

Requires that Q and R have space for 1 and len(B)− 1 coefficients, respectively.

Does not support aliasing or zero-padding.

void _nmod_poly_divrem_q1(mp_ptr Q, mp_ptr R, mp_srcptr A,

long lenA , mp_srcptr B, long lenB , nmod_t mod)

Computes Q and R such that A = BQ + R with len(R) < len(B), where len(A) =
len(B) + 1 ≥ len(B) > 0.

Requires that Q and R have space for len(A) − len(B) + 1 and len(B) − 1 coefficients,
respectively.

Does not support aliasing or zero-padding.

void _nmod_poly_divrem(mp_ptr Q, mp_ptr R, mp_srcptr A,

long lenA , mp_srcptr B, long lenB , nmod_t mod)

Computes Q and R such that A = BQ + R with len(R) less than lenB, where A is of
length lenA and B is of length lenB. We require that Q have space for lenA - lenB + 1

coefficients.

void nmod_poly_divrem(nmod_poly_t Q, nmod_poly_t R, const

nmod_poly_t A, const nmod_poly_t B)

Computes Q and R such that A = BQ+R with len(R) < len(B).
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void _nmod_poly_div_divconquer_recursive(mp_ptr Q, mp_ptr

W, mp_ptr V, mp_srcptr A, mp_srcptr B, long lenB , nmod_t

mod)

Computes Q and R such that A = BQ + R with len(R) less than lenB, where A is of
length 2 * lenB - 1 and B is of length lenB. We require that Q have space for lenB

coefficients and that W be temporary space of size lenB - 1 and V be temporary space
for a number of coefficients computed by NMOD_DIV_DC_ITCH(lenB, mod).

void _nmod_poly_div_divconquer(mp_ptr Q, mp_srcptr A, long

lenA , mp_srcptr B, long lenB , nmod_t mod)

Notionally computes polynomials Q and R such that A = BQ+R with len(R) less than
lenB, where A is of length lenA and B is of length lenB, but returns only Q. We require
that Q have space for lenA - lenB + 1 coefficients.

void nmod_poly_div_divconquer(nmod_poly_t Q, const

nmod_poly_t A, const nmod_poly_t B)

Notionally computes Q and R such that A = BQ+R with len(R) < len(B), but returns
only Q.

void _nmod_poly_div(mp_ptr Q, mp_srcptr A, long lenA ,

mp_srcptr B, long lenB , nmod_t mod)

Notionally computes polynomials Q and R such that A = BQ+R with len(R) less than
lenB, where A is of length lenA and B is of length lenB, but returns only Q. We require
that Q have space for lenA - lenB + 1 coefficients.

void nmod_poly_div(nmod_poly_t Q, const nmod_poly_t A,

const nmod_poly_t B)

Computes the quotient Q on polynomial division of A and B.

void _nmod_poly_rem_basecase(mp_ptr R, mp_ptr W, mp_srcptr

A, long lenA , mp_srcptr B, long lenB , nmod_t mod)

void nmod_poly_rem_basecase(nmod_poly_t R, const

nmod_poly_t A, const nmod_poly_t B)

void _nmod_poly_rem_q1(mp_ptr R, mp_srcptr A, long lenA ,

mp_srcptr B, long lenB , nmod_t mod)

Notationally, computes Q and R such that A = BQ + R with len(R) < len(B), where
len(A) = len(B) + 1 ≥ len(B) > 0, but returns only the remainder.

Requires that R has space for len(B)− 1 coefficients, respectively.

Does not support aliasing or zero-padding.

void _nmod_poly_rem(mp_ptr R, mp_srcptr A, long lenA ,

mp_srcptr B, long lenB , nmod_t mod)

Computes the remainder R on polynomial division of A by B.

void nmod_poly_rem(nmod_poly_t R, const nmod_poly_t A,

const nmod_poly_t B)

Computes the remainder R on polynomial division of A by B.

void _nmod_poly_inv_series_basecase(mp_ptr Qinv , mp_srcptr

Q, long n, nmod_t mod)
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Given Q of length n whose leading coefficient is invertible modulo the given modulus,
finds a polynomial Qinv of length n such that the top n coefficients of the product Q *

Qinv is xn−1. Requires that n > 0. This function can be viewed as inverting a power
series.

void nmod_poly_inv_series_basecase(nmod_poly_t Qinv , const

nmod_poly_t Q, long n)

Given Q of length at least n find Qinv of length n such that the top n coefficients of the
product Q * Qinv is xn−1. An exception is raised if n = 0 or if the length of Q is less
than n. The leading coefficient of Q must be invertible modulo the modulus of Q. This
function can be viewed as inverting a power series.

void _nmod_poly_inv_series_newton(mp_ptr Qinv , mp_srcptr Q,

long n, nmod_t mod)

Given Q of length n whose constant coefficient is invertible modulo the given modulus,
find a polynomial Qinv of length n such that Q * Qinv is 1 modulo xn. Requires n > 0.
This function can be viewed as inverting a power series via Newton iteration.

void nmod_poly_inv_series_newton(nmod_poly_t Qinv , const

nmod_poly_t Q, long n)

Given Q find Qinv such that Q * Qinv is 1 modulo xn. The constant coefficient of Q
must be invertible modulo the modulus of Q. An exception is raised if this is not the
case or if n = 0. This function can be viewed as inverting a power series via Newton
iteration.

void _nmod_poly_inv_series(mp_ptr Qinv , mp_srcptr Q, long

n, nmod_t mod)

Given Q of length n whose constant coefficient is invertible modulo the given modulus,
find a polynomial Qinv of length n such that Q * Qinv is 1 modulo xn. Requires n > 0.
This function can be viewed as inverting a power series.

void nmod_poly_inv_series(nmod_poly_t Qinv , const

nmod_poly_t Q, long n)

Given Q find Qinv such that Q * Qinv is 1 modulo xn. The constant coefficient of Q
must be invertible modulo the modulus of Q. An exception is raised if this is not the
case or if n = 0. This function can be viewed as inverting a power series.

void _nmod_poly_div_series(mp_ptr Q, mp_srcptr A, mp_srcptr

B, long n, nmod_t mod)

Given polynomials A and B of length n, finds the polynomial Q of length n such that Q *

B = A modulo xn. We assume n > 0 and that the constant coefficient of B is invertible
modulo the given modulus. The polynomial Q must have space for n coefficients.

void nmod_poly_div_series(nmod_poly_t Q, const nmod_poly_t

A, const nmod_poly_t B, long n)

Given polynomials A and B considered modulo n, finds the polynomial Q of length at most
n such that Q * B = A modulo xn. We assume n > 0 and that the constant coefficient
of B is invertible modulo the modulus. An exception is raised if n == 0 or the constant
coefficient of B is zero.

void _nmod_poly_div_newton(mp_ptr Q, mp_srcptr A, long

Alen , mp_srcptr B, long Blen , nmod_t mod)
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Notionally computes polynomials Q and R such that A = BQ+R with len(R) less than
lenB, where A is of length lenA and B is of length lenB, but return only Q.

We require that Q have space for lenA - lenB + 1 coefficients and assume that the
leading coefficient of B is a unit.

The algorithm used is to reverse the polynomials and divide the resulting power series,
then reverse the result.

void nmod_poly_div_newton(nmod_poly_t Q, const nmod_poly_t

A, const nmod_poly_t B)

Notionally computes Q and R such that A = BQ+R with len(R) < len(B), but returns
only Q.

We assume that the leading coefficient of B is a unit.

The algorithm used is to reverse the polynomials and divide the resulting power series,
then reverse the result.

void _nmod_poly_divrem_newton(mp_ptr Q, mp_ptr R, mp_srcptr

A, long Alen , mp_srcptr B, long Blen , nmod_t mod)

Computes Q and R such that A = BQ + R with len(R) less than lenB, where A is of
length lenA and B is of length lenB. We require that Q have space for lenA - lenB

+ 1 coefficients. The algorithm used is to call div_newton() and then multiply out and
compute the remainder.

void nmod_poly_divrem_newton(nmod_poly_t Q, nmod_poly_t R,

const nmod_poly_t A, const nmod_poly_t B)

Computes Q and R such that A = BQ+ R with len(R) < len(B). The algorithm used
is to call div_newton() and then multiply out and compute the remainder.

mp_limb_t _nmod_poly_div_root(mp_ptr Q, mp_srcptr A, long

len , mp_limb_t c, nmod_t mod)

Sets (Q, len-1) to the quotient of (A, len) on division by (x − c), and returns the
remainder, equal to the value of A evaluated at c. A and Q are allowed to be the same,
but may not overlap partially in any other way.

mp_limb_t nmod_poly_div_root(nmod_poly_t Q, const

nmod_poly_t A, mp_limb_t c)

Sets Q to the quotient of A on division by (x− c), and returns the remainder, equal to
the value of A evaluated at c.

21.18 Derivative and integral

void _nmod_poly_derivative(mp_ptr x_prime , mp_srcptr x,

long len , nmod_t mod)

Sets the first len - 1 coefficients of x_prime to the derivative of x which is assumed to
be of length len. It is assumed that len > 0.

void nmod_poly_derivative(nmod_poly_t x_prime , const

nmod_poly_t x)

Sets x_prime to the derivative of x.

void _nmod_poly_integral(mp_ptr x_int , mp_srcptr x, long

len , nmod_t mod)
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Set the first len coefficients of x_int to the integral of x which is assumed to be of
length len - 1. The constant term of x_int is set to zero. It is assumed that len > 0.
The result is only well-defined if the modulus is a prime number strictly larger than the
degree of x.

void nmod_poly_integral(nmod_poly_t x_int , const

nmod_poly_t x)

Set x_int to the indefinite integral of x with constant term zero. The result is only
well-defined if the modulus is a prime number strictly larger than the degree of x.

21.19 Evaluation

mp_limb_t _nmod_poly_evaluate_nmod(mp_srcptr poly , long

len , mp_limb_t c, nmod_t mod)

Evaluates poly at the value c and reduces modulo the given modulus of poly. The
value c should be reduced modulo the modulus. The algorithm used is Horner’s method.

mp_limb_t nmod_poly_evaluate_nmod(nmod_poly_t poly ,

mp_limb_t c)

Evaluates poly at the value c and reduces modulo the modulus of poly. The value c

should be reduced modulo the modulus. The algorithm used is Horner’s method.

21.20 Multipoint evaluation

void _nmod_poly_evaluate_nmod_vec_iter(mp_ptr ys, mp_srcptr

poly , long len , mp_srcptr xs, long n, nmod_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values
to ys. The values in xs should be reduced modulo the modulus.

Uses Horner’s method iteratively.

void nmod_poly_evaluate_nmod_vec_iter(mp_ptr ys, const

nmod_poly_t poly , mp_srcptr xs, long n)

Evaluates poly at the n values given in the vector xs, writing the output values to ys.
The values in xs should be reduced modulo the modulus.

Uses Horner’s method iteratively.

void _nmod_poly_evaluate_nmod_vec_fast_precomp(mp_ptr vs,

mp_srcptr poly , long plen , mp_ptr * tree , long len ,

nmod_t mod)

Evaluates (poly, plen) at the len values given by the precomputed subproduct tree
tree.

void _nmod_poly_evaluate_nmod_vec_fast(mp_ptr ys, mp_srcptr

poly , long len , mp_srcptr xs, long n, nmod_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values
to ys. The values in xs should be reduced modulo the modulus.

Uses fast multipoint evaluation, building a temporary subproduct tree.

void nmod_poly_evaluate_nmod_vec_fast(mp_ptr ys, const

nmod_poly_t poly , mp_srcptr xs, long n)
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Evaluates poly at the n values given in the vector xs, writing the output values to ys.
The values in xs should be reduced modulo the modulus.

Uses fast multipoint evaluation, building a temporary subproduct tree.

void _nmod_poly_evaluate_nmod_vec(mp_ptr ys, mp_srcptr

poly , long len , mp_srcptr xs, long n, nmod_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values
to ys. The values in xs should be reduced modulo the modulus.

void nmod_poly_evaluate_nmod_vec(mp_ptr ys, const

nmod_poly_t poly , mp_srcptr xs, long n)

Evaluates poly at the n values given in the vector xs, writing the output values to ys.
The values in xs should be reduced modulo the modulus.

21.21 Interpolation

void _nmod_poly_interpolate_nmod_vec(mp_ptr poly , mp_srcptr

xs, mp_srcptr ys , long n, nmod_t mod)

Sets poly to the unique polynomial of length at most n that interpolates the n given
evaluation points xs and values ys. If the interpolating polynomial is shorter than length
n, the leading coefficients are set to zero.

The values in xs and ys should be reduced modulo the modulus, and all xs must be
distinct. Aliasing between poly and xs or ys is not allowed.

void nmod_poly_interpolate_nmod_vec(nmod_poly_t poly ,

mp_srcptr xs, mp_srcptr ys, long n)

Sets poly to the unique polynomial of length n that interpolates the n given evaluation
points xs and values ys. The values in xs and ys should be reduced modulo the modulus,
and all xs must be distinct.

void _nmod_poly_interpolation_weights(mp_ptr w, mp_ptr *

tree , long len , nmod_t mod)

Sets w to the barycentric interpolation weights for fast Lagrange interpolation with
respect to a given subproduct tree.

void _nmod_poly_interpolate_nmod_vec_fast_precomp(mp_ptr

poly , mp_srcptr ys, mp_ptr * tree , mp_srcptr weights ,

long len , nmod_t mod)

Performs interpolation using the fast Lagrange interpolation algorithm, generating a
temporary subproduct tree.

The function values are given as ys. The function takes a precomputed subproduct tree
tree and barycentric interpolation weights weights corresponding to the roots.

void _nmod_poly_interpolate_nmod_vec_fast(mp_ptr poly ,

mp_srcptr xs, mp_srcptr ys, long n, nmod_t mod)

Performs interpolation using the fast Lagrange interpolation algorithm, generating a
temporary subproduct tree.

void nmod_poly_interpolate_nmod_vec_fast(nmod_poly_t poly ,

mp_srcptr xs, mp_srcptr ys, long n)
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Performs interpolation using the fast Lagrange interpolation algorithm, generating a
temporary subproduct tree.

void _nmod_poly_interpolate_nmod_vec_newton(mp_ptr poly ,

mp_srcptr xs, mp_srcptr ys, long n, nmod_t mod)

Forms the interpolating polynomial in the Newton basis using the method of divided
differences and then converts it to monomial form.

void nmod_poly_interpolate_nmod_vec_newton(nmod_poly_t

poly , mp_srcptr xs, mp_srcptr ys, long n)

Forms the interpolating polynomial in the Newton basis using the method of divided
differences and then converts it to monomial form.

void _nmod_poly_interpolate_nmod_vec_barycentric(mp_ptr

poly , mp_srcptr xs, mp_srcptr ys, long n, nmod_t mod)

Forms the interpolating polynomial using a naive implementation of the barycentric
form of Lagrange interpolation.

void nmod_poly_interpolate_nmod_vec_barycentric(nmod_poly_t

poly , mp_srcptr xs, mp_srcptr ys, long n)

Forms the interpolating polynomial using a naive implementation of the barycentric
form of Lagrange interpolation.

21.22 Composition

void _nmod_poly_compose_horner(mp_ptr res , mp_srcptr poly1 ,

long len1 , mp_srcptr poly2 , long len2 , nmod_t mod)

Composes poly1 of length len1 with poly2 of length len2 and sets res to the result,
i.e. evaluates poly1 at poly2. The algorithm used is Horner’s algorithm. We require
that res have space for (len1 - 1)*(len2 - 1)+ 1 coefficients. It is assumed that
len1 > 0 and len2 > 0.

void nmod_poly_compose_horner(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2)

Composes poly1 with poly2 and sets res to the result, i.e. evaluates poly1 at poly2.
The algorithm used is Horner’s algorithm.

void _nmod_poly_compose_divconquer(mp_ptr res , mp_srcptr

poly1 , long len1 , mp_srcptr poly2 , long len2 , nmod_t mod)

Composes poly1 of length len1 with poly2 of length len2 and sets res to the result, i.e.
evaluates poly1 at poly2. The algorithm used is the divide and conquer algorithm. We
require that res have space for (len1 - 1)*(len2 - 1)+ 1 coefficients. It is assumed
that len1 > 0 and len2 > 0.

void nmod_poly_compose_divconquer(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2)

Composes poly1 with poly2 and sets res to the result, i.e. evaluates poly1 at poly2.
The algorithm used is the divide and conquer algorithm.

void _nmod_poly_compose(mp_ptr res , mp_srcptr poly1 , long

len1 , mp_srcptr poly2 , long len2 , nmod_t mod)
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Composes poly1 of length len1 with poly2 of length len2 and sets res to the result,
i.e. evaluates poly1 at poly2. We require that res have space for (len1 - 1)*(len2

- 1)+ 1 coefficients. It is assumed that len1 > 0 and len2 > 0.

void nmod_poly_compose(nmod_poly_t res , const nmod_poly_t

poly1 , const nmod_poly_t poly2)

Composes poly1 with poly2 and sets res to the result, that is, evaluates poly1 at
poly2.

21.23 Taylor shift

void _nmod_poly_taylor_shift_horner(mp_ptr poly , mp_limb_t

c, long len , nmod_t mod)

Performs the Taylor shift composing poly by x + c in-place. Uses an efficient version
Horner’s rule.

void nmod_poly_taylor_shift_horner(nmod_poly_t g, const

nmod_poly_t f, mp_limb_t c)

Performs the Taylor shift composing f by x+ c.

void _nmod_poly_taylor_shift_convolution(mp_ptr poly ,

mp_limb_t c, long len , nmod_t mod)

Performs the Taylor shift composing poly by x+c in-place. Writes the composition as a
single convolution with cost O(M(n)). We require that the modulus is a prime at least
as large as the length.

void nmod_poly_taylor_shift_convolution(nmod_poly_t g,

const nmod_poly_t f, mp_limb_t c)

Performs the Taylor shift composing f by x + c. Writes the composition as a single
convolution with cost O(M(n)). We require that the modulus is a prime at least as
large as the length.

void _nmod_poly_taylor_shift(mp_ptr poly , mp_limb_t c, long

len , nmod_t mod)

Performs the Taylor shift composing poly by x+c in-place. We require that the modulus
is a prime.

void nmod_poly_taylor_shift(nmod_poly_t g, const

nmod_poly_t f, mp_limb_t c)

Performs the Taylor shift composing f by x+c. We require that the modulus is a prime.

21.24 Modular composition

void _nmod_poly_compose_mod_horner(mp_ptr res , mp_srcptr f,

long lenf , mp_srcptr g, mp_srcptr h, long lenh , nmod_t

mod)

Sets res to the composition f(g) modulo h. We require that h is nonzero and that the
length of g is one less than the length of h (possibly with zero padding). The output is
not allowed to be aliased with any of the inputs.

The algorithm used is Horner’s rule.
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void nmod_poly_compose_mod_horner(nmod_poly_t res , const

nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)

Sets res to the composition f(g) modulo h. We require that h is nonzero. The algorithm
used is Horner’s rule.

void _nmod_poly_compose_mod_brent_kung(mp_ptr res ,

mp_srcptr f, long lenf , mp_srcptr g, mp_srcptr h, long

lenh , nmod_t mod)

Sets res to the composition f(g) modulo h. We require that h is nonzero and that the
length of g is one less than the length of h (possibly with zero padding). We also require
that the length of f is less than the length of h. The output is not allowed to be aliased
with any of the inputs.

The algorithm used is the Brent-Kung matrix algorithm.

void nmod_poly_compose_mod_brent_kung(nmod_poly_t res ,

const nmod_poly_t f, const nmod_poly_t g, const

nmod_poly_t h)

Sets res to the composition f(g) modulo h. We require that h is nonzero and that f
has smaller degree than h. The algorithm used is the Brent-Kung matrix algorithm.

void _nmod_poly_compose_mod(mp_ptr res , mp_srcptr f, long

lenf , mp_srcptr g, mp_srcptr h, long lenh , nmod_t mod)

Sets res to the composition f(g) modulo h. We require that h is nonzero and that the
length of g is one less than the length of h (possibly with zero padding). The output is
not allowed to be aliased with any of the inputs.

void nmod_poly_compose_mod(nmod_poly_t res , const

nmod_poly_t f, const nmod_poly_t g, const nmod_poly_t h)

Sets res to the composition f(g) modulo h. We require that h is nonzero.

21.25 Greatest common divisor

long _nmod_poly_gcd_euclidean(mp_ptr G, mp_srcptr A, long

lenA , mp_srcptr B, long lenB , nmod_t mod)

Computes the GCD of A of length lenA and B of length lenB, where lenA >= lenB >

0. The length of the GCD G is returned by the function. No attempt is made to make
the GCD monic. It is required that G have space for lenB coefficients.

void nmod_poly_gcd_euclidean(nmod_poly_t G, const

nmod_poly_t A, const nmod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

long _nmod_poly_hgcd(mp_ptr *M, long *lenM , mp_ptr A, long

*lenA , mp_ptr B, long *lenB , mp_srcptr a, long lena ,

mp_srcptr b, long lenb , nmod_t mod)

Computes the HGCD of a and b, that is, a matrix M , a sign σ and two polynomials A
and B such that

(A,B)t = σM−1(a, b)t.

Assumes that len(a) > len(b) > 0.
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Assumes that A and B have space of size at least len(a) and len(b), respectively. On
exit, *lenA and *lenB will contain the correct lengths of A and B.

Assumes that M[0], M[1], M[2], and M[3] each point to a vector of size at least len(a).

long _nmod_poly_gcd_hgcd(mp_ptr G, mp_srcptr A, long lenA ,

mp_srcptr B, long lenB , nmod_t mod)

Computes the monic GCD of A and B, assuming that len(A) ≥ len(B) > 0.

Assumes that G has space for len(B) coefficients and returns the length of G on output.

void nmod_poly_gcd_hgcd(nmod_poly_t G, const nmod_poly_t A,

const nmod_poly_t B)

Computes the monic GCD of A and B using the HGCD algorithm.

As a special case, the GCD of two zero polynomials is defined to be the zero polynomial.

The time complexity of the algorithm is O(n log2 n). For further details, see [30].

long _nmod_poly_gcd(mp_ptr G, mp_srcptr A, long lenA ,

mp_srcptr B, long lenB , nmod_t mod)

Computes the GCD of A of length lenA and B of length lenB, where lenA >= lenB >

0. The length of the GCD G is returned by the function. No attempt is made to make
the GCD monic. It is required that G have space for lenB coefficients.

void nmod_poly_gcd(nmod_poly_t G, const nmod_poly_t A,

const nmod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

long _nmod_poly_xgcd_euclidean(mp_ptr G, mp_ptr S, mp_ptr

T, mp_srcptr A, long A_len , mp_srcptr B, long B_len ,

nmod_t mod)

Computes the GCD of A and B together with cofactors S and T such that SA+TB = G.
Returns the length of G.

Assumes that len(A) ≥ len(B) ≥ 1 and (len(A), len(B)) 6= (1, 1).

No attempt is made to make the GCD monic.

Requires that G have space for len(B) coefficients. Writes len(B) − 1 and len(A) − 1
coefficients to S and T , respectively. Note that, in fact, len(S) ≤ max(len(B)−len(G), 1)
and len(T ) ≤ max(len(A)− len(G), 1).

No aliasing of input and output operands is permitted.

void nmod_poly_xgcd_euclidean(nmod_poly_t G, nmod_poly_t S,

nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be
at most lenB and the length of T will be at most lenA.

long _nmod_poly_xgcd_hgcd(mp_ptr G, mp_ptr S, mp_ptr T,

mp_srcptr A, long A_len , mp_srcptr B, long B_len , nmod_t

mod)
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Computes the GCD of A and B, where len(A) ≥ len(B) > 0, together with cofactors S
and T such that SA+ TB = G. Returns the length of G.

No attempt is made to make the GCD monic.

Requires that G have space for len(B) coefficients. Writes len(B) − 1 and len(A) − 1
coefficients to S and T , respectively. Note that, in fact, len(S) ≤ len(B) − len(G) and
len(T ) ≤ len(A)− len(G).

No aliasing of input and output operands is permitted.

void nmod_poly_xgcd_hgcd(nmod_poly_t G, nmod_poly_t S,

nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be
at most lenB and the length of T will be at most lenA.

long _nmod_poly_xgcd(mp_ptr G, mp_ptr S, mp_ptr T,

mp_srcptr A, long lenA , mp_srcptr B, long lenB , nmod_t

mod)

Computes the GCD of A and B, where len(A) ≥ len(B) > 0, together with cofactors S
and T such that SA+ TB = G. Returns the length of G.

No attempt is made to make the GCD monic.

Requires that G have space for len(B) coefficients. Writes len(B) − 1 and len(A) − 1
coefficients to S and T , respectively. Note that, in fact, len(S) ≤ len(B) − len(G) and
len(T ) ≤ len(A)− len(G).

No aliasing of input and output operands is permitted.

void nmod_poly_xgcd(nmod_poly_t G, nmod_poly_t S,

nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

The polynomials S and T are set such that S*A + T*B = G. The length of S will be at
most lenB and the length of T will be at most lenA.

mp_limb_t _nmod_poly_resultant_euclidean(mp_srcptr poly1 ,

long len1 , mp_srcptr poly2 , long len2 , nmod_t mod)

Returns the resultant of (poly1, len1) and (poly2, len2) using the Euclidean algo-
rithm.

Assumes that len1 >= len2 > 0.

Asumes that the modulus is prime.

mp_limb_t nmod_poly_resultant_euclidean(const nmod_poly_t

f, const nmod_poly_t ol)

Computes the resultant of f and g using the Euclidean algorithm.

For two non-zero polynomials f(x) = amx
m + · · · + a0 and g(x) = bnx

n + · · · + b0 of
degrees m and n, the resultant is defined to be

anmb
m
n

∏
(x,y):f(x)=g(y)=0

(x− y).
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For convenience, we define the resultant to be equal to zero if either of the two polyno-
mials is zero.

mp_limb_t _nmod_poly_resultant(mp_srcptr poly1 , long len1 ,

mp_srcptr poly2 , long len2 , nmod_t mod)

Returns the resultant of (poly1, len1) and (poly2, len2).

Assumes that len1 >= len2 > 0.

Asumes that the modulus is prime.

mp_limb_t nmod_poly_resultant(const nmod_poly_t f, const

nmod_poly_t ol)

Computes the resultant of f and g.

For two non-zero polynomials f(x) = amx
m + · · · + a0 and g(x) = bnx

n + · · · + b0 of
degrees m and n, the resultant is defined to be

anmb
m
n

∏
(x,y):f(x)=g(y)=0

(x− y).

For convenience, we define the resultant to be equal to zero if either of the two polyno-
mials is zero.

21.26 Power series composition

void _nmod_poly_compose_series_horner(mp_ptr res , mp_srcptr

poly1 , long len1 , mp_srcptr poly2 , long len2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that (len1-1)* (len2-1)+

1 <= n, and that res has space for n coefficients. Does not support aliasing between
any of the inputs and the output.

This implementation uses the Horner scheme.

void nmod_poly_compose_series_horner(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses the Horner scheme.

void _nmod_poly_compose_series_brent_kung(mp_ptr res ,

mp_srcptr poly1 , long len1 , mp_srcptr poly2 , long len2 ,

long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that
(len1-1)* (len2-1)+ 1 <= n, and that res has space for n coefficients. Does not
support aliasing between any of the inputs and the output.

This implementation uses Brent-Kung algorithm 2.1 [7].

void nmod_poly_compose_series_brent_kung(nmod_poly_t res ,

const nmod_poly_t poly1 , const nmod_poly_t poly2 , long n)
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Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation uses Brent-Kung algorithm 2.1 [7].

void _nmod_poly_compose_series_divconquer(mp_ptr res ,

mp_srcptr poly1 , long len1 , mp_srcptr poly2 , long len2 ,

long N, nmod_t mod)

Composes poly1 of length `1 with poly2 of length `2 modulo xN and sets res to the
result, i.e. evaluates poly1 at poly2.

Writes min{(`1 − 1)(`2 − 2) + 1, N} coefficients to the vector res.

The algorithm used is the divide and conquer algorithm. It is assumed that 0 < `1 and
0 < `2 ≤ N .

Does not support aliasing between the inputs and the output.

void nmod_poly_compose_series_divconquer(nmod_poly_t res ,

const nmod_poly_t poly1 , const nmod_poly_t poly2 , long N)

Composes poly1 with poly2 modulo xN and sets res to the result, i.e. evaluates poly1
at poly2.

The algorithm used is the divide and conquer algorithm.

void _nmod_poly_compose_series(mp_ptr res , mp_srcptr poly1 ,

long len1 , mp_srcptr poly2 , long len2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, and that
(len1-1)* (len2-1)+ 1 <= n, and that res has space for n coefficients. Does not
support aliasing between any of the inputs and the output.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs.

void nmod_poly_compose_series(nmod_poly_t res , const

nmod_poly_t poly1 , const nmod_poly_t poly2 , long n)

Sets res to the composition of poly1 and poly2 modulo xn, where the constant term
of poly2 is required to be zero.

This implementation automatically switches between the Horner scheme and Brent-Kung
algorithm 2.1 depending on the size of the inputs.

21.27 Power series reversion

void _nmod_poly_revert_series_lagrange(mp_ptr Qinv ,

mp_srcptr Q, long n, nmod_t mod)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses the Lagrange inversion formula.
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void nmod_poly_revert_series_lagrange(nmod_poly_t Qinv ,

const nmod_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses the Lagrange inversion formula.

void _nmod_poly_revert_series_lagrange_fast(mp_ptr Qinv ,

mp_srcptr Q, long n, nmod_t mod)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula.

void nmod_poly_revert_series_lagrange_fast(nmod_poly_t

Qinv , const nmod_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses a reduced-complexity implementation of the Lagrange inver-
sion formula.

void _nmod_poly_revert_series_newton(mp_ptr Qinv , mp_srcptr

Q, long n, nmod_t mod)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses Newton iteration [7].

void nmod_poly_revert_series_newton(nmod_poly_t Qinv , const

nmod_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation uses Newton iteration [7].

void _nmod_poly_revert_series(mp_ptr Qinv , mp_srcptr Q,

long n, nmod_t mod)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn. The arguments must both have
length n and may not be aliased.
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It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation automatically chooses between the Lagrange inversion formula and
Newton iteration based on the size of the input.

void nmod_poly_revert_series(nmod_poly_t Qinv , const

nmod_poly_t Q, long n)

Sets Qinv to the compositional inverse or reversion of Q as a power series, i.e. computes
Q−1 such that Q(Q−1(x)) = Q−1(Q(x)) = x mod xn.

It is required that Q0 = 0 and that Q1 as well as the integers 1, 2, . . . , n−1 are invertible
modulo the modulus.

This implementation automatically chooses between the Lagrange inversion formula and
Newton iteration based on the size of the input.

21.28 Square roots

The series expansions for
√
h and 1/

√
h are defined by means of the generalised binomial

theorem

hr = (1 + y)r =
∞∑
k=0

(
r

k

)
yk.

It is assumed that h has constant term 1 and that the coefficients 2−k exist in the
coefficient ring (i.e. 2 must be invertible).

void _nmod_poly_invsqrt_series(mp_ptr g, mp_srcptr h, long

n, nmod_t mod)

Set the first n terms of g to the series expansion of 1/
√
h. It is assumed that n > 0,

that h has constant term 1 and that h is zero-padded as necessary to length n. Aliasing
is not permitted.

void nmod_poly_invsqrt_series(nmod_poly_t g, const

nmod_poly_t h, long n)

Set g to the series expansion of 1/
√
h to order O(xn). It is assumed that h has constant

term 1.

void _nmod_poly_sqrt_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set the first n terms of g to the series expansion of
√
h. It is assumed that n > 0, that

h has constant term 1 and that h is zero-padded as necessary to length n. Aliasing is
not permitted.

void nmod_poly_sqrt_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g to the series expansion of
√
h to order O(xn). It is assumed that h has constant

term 1.

void _nmod_poly_sqrt(mp_ptr s, mp_srcptr p, long n, nmod_t

mod)

If (p, len) is a perfect square, sets (s, n / 2 + 1) to a square root of p and returns
1. Otherwise returns 0.

void nmod_poly_sqrt(nmod_poly_t s, const nmod_poly_t p,

long n)

If p is a perfect square, sets s to a square root of a and returns 1. Otherwise returns 0.
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21.29 Transcendental functions

The elementary transcendental functions of a formal power series h are defined as

exp(h(x)) =

∞∑
k=0

(h(x))k

k!

log(h(x)) =

∫ x

0

h′(t)

h(t)
dt

atan(h(x)) =

∫ x

0

h′(t)

1 + (h(t))2
dt

atanh(h(x)) =

∫ x

0

h′(t)

1− (h(t))2
dt

asin(h(x)) =

∫ x

0

h′(t)√
1− (h(t))2

dt

asinh(h(x)) =

∫ x

0

h′(t)√
1 + (h(t))2

dt

The functions sin, cos, tan, etc. are defined using standard inverse or functional relations.

The logarithm function assumes that h has constant term 1. All other functions assume
that h has constant term 0.

All functions assume that the coefficient 1/k or 1/k! exists for all indices k. When
computing to order O(xn), the modulus p must therefore be a prime satisfying p ≥ n.
Further, we always require that p > 2 in order to be able to multiply by 1/2 for internal
purposes.

If the input does not satisfy all these conditions, results are undefined.

Except where otherwise noted, functions are implemented with optimal (up to constants)
complexity O(M(n)), where M(n) is the cost of polynomial multiplication.

void _nmod_poly_log_series_monomial_ui(mp_ptr g, mp_limb_t

c, ulong r, long n, nmod_t mod)

Set g = log(1 + cxr) +O(xn). Assumes n > 0, r > 0, and that the coefficient is reduced
by the modulus. Works efficiently in linear time.

void nmod_poly_log_series_monomial_ui(nmod_poly_t g,

mp_limb_t c, ulong r, long n)

Set g = log(1 + cxr) +O(xn). Works efficiently in linear time.

void _nmod_poly_log_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = log(h)+O(xn). Assumes n > 0 and that h is zero-padded as necessary to length
n. Aliasing of g and h is allowed.

void nmod_poly_log_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = log(h) + O(xn). The case h = 1 + cxr is automatically detected and handled
efficiently.
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void _nmod_poly_exp_series_monomial_ui(mp_ptr g, mp_limb_t

c, ulong r, long n, nmod_t mod)

Set g = exp(cxr) +O(xn). Assumes n > 0, r > 0, and that the coefficient is reduced by
the modulus. Works efficiently in linear time.

void nmod_poly_exp_series_monomial_ui(nmod_poly_t g,

mp_limb_t c, ulong r, long n)

Set g = exp(cxr) +O(xn). Works efficiently in linear time.

void _nmod_poly_exp_series_basecase(mp_ptr g, mp_srcptr h,

long hlen , long n, nmod_t mod)

Set g = exp(h) + O(xn) using a simple O(n2) algorithm. Assumes n > 0 and hlen > 0.
Only the first hlen coefficients of h will be read. Aliasing of f and h is allowed.

void nmod_poly_exp_series_basecase(nmod_poly_t g, const

nmod_poly_t h, long n)

Set g = exp(h) +O(xn) using a simple O(n2) algorithm.

void _nmod_poly_exp_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = exp(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is not allowed.

Uses Newton iteration (the version given in [18]). For small n, falls back to the basecase
algorithm.

void _nmod_poly_exp_expinv_series(mp_ptr f, mp_ptr g,

mp_srcptr h, long n, nmod_t mod)

Set f = exp(h) + O(xn) and g = exp(−h) + O(xn), more efficiently for large n than
performing a separate inversion to obtain g. Assumes n > 0 and that h is zero-padded
as necessary to length n. Aliasing is not allowed.

Uses Newton iteration (the version given in [18]). For small n, falls back to the basecase
algorithm.

void nmod_poly_exp_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = exp(h) + O(xn). The case h = cxr is automatically detected and handled
efficiently. Otherwise this function automatically uses the basecase algorithm for small
n and Newton iteration otherwise.

void _nmod_poly_atan_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = atan(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed.

void nmod_poly_atan_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = atan(h) +O(xn).

void _nmod_poly_atanh_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)



182 nmod poly

Set g = atanh(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed.

void nmod_poly_atanh_series(nmod_poly_t g, const

nmod_poly_t h, long n)

Set g = atanh(h) +O(xn).

void _nmod_poly_asin_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = asin(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed.

void nmod_poly_asin_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = asin(h) +O(xn).

void _nmod_poly_asinh_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = asinh(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed.

void nmod_poly_asinh_series(nmod_poly_t g, const

nmod_poly_t h, long n)

Set g = asinh(h) +O(xn).

void _nmod_poly_sin_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = sin(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed. The value is computed using the identity
sin(x) = 2 tan(x/2))/(1 + tan2(x/2)).

void nmod_poly_sin_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = sin(h) +O(xn).

void _nmod_poly_cos_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = cos(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is allowed. The value is computed using the identity
cos(x) = (1− tan2(x/2))/(1 + tan2(x/2)).

void nmod_poly_cos_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = cos(h) +O(xn).

void _nmod_poly_tan_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = tan(h)+O(xn). Assumes n > 0 and that h is zero-padded as necessary to length
n. Aliasing of g and h is not allowed. Uses Newton iteration to invert the atan function.

void nmod_poly_tan_series(nmod_poly_t g, const nmod_poly_t

h, long n)
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Set g = tan(h) +O(xn).

void _nmod_poly_sinh_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = sinh(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Aliasing of g and h is not allowed. Uses the identity sinh(x) = (ex − e−x)/2.

void nmod_poly_sinh_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = sinh(h) +O(xn).

void _nmod_poly_cosh_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = cos(h)+O(xn). Assumes n > 0 and that h is zero-padded as necessary to length
n. Aliasing of g and h is not allowed. Uses the identity cosh(x) = (ex + e−x)/2.

void nmod_poly_cosh_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = cosh(h) +O(xn).

void _nmod_poly_tanh_series(mp_ptr g, mp_srcptr h, long n,

nmod_t mod)

Set g = tanh(h) + O(xn). Assumes n > 0 and that h is zero-padded as necessary to
length n. Uses the identity tanh(x) = (e2x − 1)/(e2x + 1).

void nmod_poly_tanh_series(nmod_poly_t g, const nmod_poly_t

h, long n)

Set g = tanh(h) +O(xn).

21.30 Products

void _nmod_poly_product_roots_nmod_vec(mp_ptr poly ,

mp_srcptr xs, long n, nmod_t mod)

Sets (poly, n + 1) to the monic polynomial which is the product of (x − x0)(x −
x1) · · · (x− xn−1), the roots xi being given by xs.

Aliasing of the input and output is not allowed.

void nmod_poly_product_roots_nmod_vec(nmod_poly_t poly ,

mp_srcptr xs, long n)

Sets poly to the monic polynomial which is the product of (x−x0)(x−x1) · · · (x−xn−1),
the roots xi being given by xs.

21.31 Subproduct trees

mp_ptr * _nmod_poly_tree_alloc(long len)

Allocates space for a subproduct tree of the given length, having linear factors at the
lowest level.

Entry i in the tree is a pointer to a single array of limbs, capable of storing bn/2ic
subproducts of degree 2i adjacently, plus a trailing entry if n/2i is not an integer.
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For example, a tree of length 7 built from monic linear factors has the following structure,
where spaces have been inserted for illustrative purposes:

X1 X1 X1 X1 X1 X1 X1

XX1 XX1 XX1 X1

XXXX1 XX1 X1

XXXXXXX1

void _nmod_poly_tree_free(mp_ptr * tree , long len)

Free the allocated space for the subproduct.

void _nmod_poly_tree_build(mp_ptr * tree , mp_srcptr roots ,

long len , nmod_t mod)

Builds a subproduct tree in the preallocated space from the len monic linear factors
(x− ri). The top level product is not computed.

21.32 Inflation and deflation

void nmod_poly_inflate(nmod_poly_t result , const

nmod_poly_t input , ulong inflation)

Sets result to the inflated polynomial p(xn) where p is given by input and n is given
by deflation.

void nmod_poly_deflate(nmod_poly_t result , const

nmod_poly_t input , ulong deflation)

Sets result to the deflated polynomial p(x1/n) where p is given by input and n is given
by deflation. Requires n > 0.

ulong nmod_poly_deflation(const nmod_poly_t input)

Returns the largest integer by which input can be deflated. As special cases, returns 0
if input is the zero polynomial and 1 of input is a constant polynomial.

21.33 Factorisation

void nmod_poly_factor_init(nmod_poly_factor_t fac)

Initialises fac for use. An nmod_poly_factor_t represents a polynomial in factorised
form as a product of polynomials with associated exponents.

void nmod_poly_factor_clear(nmod_poly_factor_t fac)

Frees all memory associated with fac.

void nmod_poly_factor_realloc(nmod_poly_factor_t fac , long

alloc)

Reallocates the factor structure to provide space for precisely alloc factors.

void nmod_poly_factor_fit_length(nmod_poly_factor_t fac ,

long len)

Ensures that the factor structure has space for at least len factors. This functions takes
care of the case of repeated calls by always at least doubling the number of factors the
structure can hold.
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void nmod_poly_factor_set(nmod_poly_factor_t res , const

nmod_poly_factor_t fac)

Sets res to the same factorisation as fac.

void nmod_poly_factor_print(const nmod_poly_factor_t fac)

Prints the entries of fac to standard output.

void nmod_poly_factor_insert(nmod_poly_factor_t fac , const

nmod_poly_t poly , long exp)

Inserts the factor poly with multiplicity exp into the factorisation fac.

If fac already contains poly, then exp simply gets added to the exponent of the existing
entry.

void nmod_poly_factor_concat(nmod_poly_factor_t res , const

nmod_poly_factor_t fac)

Concatenates two factorisations.

This is equivalent to calling nmod_poly_factor_insert() repeatedly with the individual
factors of fac.

Does not support aliasing between res and fac.

void nmod_poly_factor_pow(nmod_poly_factor_t fac , long exp)

Raises fac to the power exp.

ulong nmod_poly_remove(nmod_poly_t f, const nmod_poly_t p)

Removes the highest possible power of p from f and returns the exponent.

int nmod_poly_is_irreducible(const nmod_poly_t f)

Returns 1 if the polynomial f is irreducible, otherwise returns 0.

int _nmod_poly_is_squarefree(mp_srcptr f, long len , nmod_t

mod)

Returns 1 if (f, len) is squarefree, and 0 otherwise. As a special case, the zero poly-
nomial is not considered squarefree. There are no restrictions on the length.

int nmod_poly_is_squarefree(nmod_poly_t f)

Returns 1 if f is squarefree, and 0 otherwise. As a special case, the zero polynomial is
not considered squarefree.

void nmod_poly_factor_squarefree(nmod_poly_factor_t res ,

const nmod_poly_t f)

Sets res to a square-free factorization of f.

int nmod_poly_factor_equal_deg_prob(nmod_poly_t factor ,

flint_rand_t state , const nmod_poly_t pol , long d)

Probabilistic equal degree factorisation of pol into irreducible factors of degree d. If it
passes, a factor is placed in factor and 1 is returned, otherwise 0 is returned and the
value of factor is undetermined.

Requires that pol be monic, non-constant and squarefree.
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void nmod_poly_factor_equal_deg(nmod_poly_factor_t factors ,

const nmod_poly_t pol , long d)

Assuming pol is a product of irreducible factors all of degree d, finds all those factors
and places them in factors. Requires that pol be monic, non-constant and squarefree.

void nmod_poly_factor_cantor_zassenhaus(nmod_poly_factor_t

res , const nmod_poly_t f)

Factorises a non-constant polynomial f into monic irreducible factors using the Cantor-
Zassenhaus algorithm.

void nmod_poly_factor_berlekamp(nmod_poly_factor_t res ,

const nmod_poly_t f)

Factorises a non-constant, squarefree polynomial f into monic irreducible factors using
the Berlekamp algorithm.

mp_limb_t

nmod_poly_factor_with_berlekamp(nmod_poly_factor_t res ,

const nmod_poly_t f)

Factorises a general polynomial f into monic irreducible factors and returns the leading
coefficient of f, or 0 if f is the zero polynomial.

This function first checks for small special cases, deflates f if it is of the form p(xm) for
some m > 1, then performs a square-free factorisation, and finally runs Berlekamp on
all the individual square-free factors.

mp_limb_t

nmod_poly_factor_with_cantor_zassenhaus(nmod_poly_factor_t

res , const nmod_poly_t f)

Factorises a general polynomial f into monic irreducible factors and returns the leading
coefficient of f, or 0 if f is the zero polynomial.

This function first checks for small special cases, deflates f if it is of the form p(xm)
for some m > 1, then performs a square-free factorisation, and finally runs Cantor-
Zassenhaus on all the individual square-free factors.

mp_limb_t nmod_poly_factor(nmod_poly_factor_t res , const

nmod_poly_t f)

Factorises a general polynomial f into monic irreducible factors and returns the leading
coefficient of f, or 0 if f is the zero polynomial.

This function first checks for small special cases, deflates f if it is of the form p(xm) for
some m > 1, then performs a square-free factorisation, and finally runs either Cantor-
Zassenhaus or Berlekamp on all the individual square-free factors. Currently Cantor-
Zassenhaus is used by default unless the modulus is 2, in which case Berlekamp is used.
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Matrices over Z/nZ for word-sized
moduli

22.1 Introduction

An nmod_mat_t represents a matrix of integers modulo n, for any non-zero modulus n
that fits in a single limb, up to 232 − 1 or 264 − 1.

The nmod_mat_t type is defined as an array of nmod_mat_struct’s of length one. This
permits passing parameters of type nmod_mat_t by reference.

An nmod_mat_t internally consists of a single array of mp_limb_t’s, representing a dense
matrix in row-major order. This array is only directly indexed during memory allocation
and deallocation. A separate array holds pointers to the start of each row, and is used
for all indexing. This allows the rows of a matrix to be permuted quickly by swapping
pointers.

Matrices having zero rows or columns are allowed.

The shape of a matrix is fixed upon initialisation. The user is assumed to provide input
and output variables whose dimensions are compatible with the given operation.

It is assumed that all matrices passed to a function have the same modulus. The modulus
is assumed to be a prime number in functions that perform some kind of division, solving,
or Gaussian elimination (including computation of rank and determinant), but can be
composite in functions that only perform basic manipulation and ring operations (e.g.
transpose and matrix multiplication).

The user can manipulate matrix entries directly, but must assume responsibility for
normalising all values to the range [0, n).

22.2 Memory management

void nmod_mat_init(nmod_mat_t mat , long rows , long cols ,

mp_limb_t n)

Initialises mat to a rows-by-cols matrix with coefficients modulo n, where n can be any
nonzero integer that fits in a limb. All elements are set to zero.

void nmod_mat_init_set(nmod_mat_t mat , nmod_mat_t src)

Initialises mat and sets its dimensions, modulus and elements to those of src.
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void nmod_mat_clear(nmod_mat_t mat)

Clears the matrix and releases any memory it used. The matrix cannot be used again
until it is initialised. This function must be called exactly once when finished using an
nmod_mat_t object.

void nmod_mat_set(nmod_mat_t mat , nmod_mat_t src)

Sets mat to a copy of src. It is assumed that mat and src have identical dimensions.

22.3 Basic properties and manipulation

MACRO nmod_mat_entry(nmod_mat_t mat , long i, long j)

Directly accesses the entry in mat in row i and column j, indexed from zero. No bounds
checking is performed. This macro can be used both for reading and writing coefficients.

long nmod_mat_nrows(nmod_mat_t mat)

Returns the number of rows in mat. This function is implemented as a macro.

long nmod_mat_ncols(nmod_mat_t mat)

Returns the number of columns in mat. This function is implemented as a macro.

22.4 Printing

void nmod_mat_print_pretty(nmod_mat_t mat)

Pretty-prints mat to stdout. A header is printed followed by the rows enclosed in
brackets. Each column is right-aligned to the width of the modulus written in decimal,
and the columns are separated by spaces. For example:

<2 x 3 integer matrix mod 2903>

[ 0 0 2607]

[ 622 0 0]

22.5 Random matrix generation

void nmod_mat_randtest(nmod_mat_t mat , flint_rand_t state)

Sets the elements to a random matrix with entries between 0 and m−1 inclusive, where
m is the modulus of mat. A sparse matrix is generated with increased probability.

void nmod_mat_randfull(nmod_mat_t mat , flint_rand_t state)

Sets the element to random numbers likely to be close to the modulus of the matrix.
This is used to test potential overflow-related bugs.

int nmod_mat_randpermdiag(nmod_mat_t mat , mp_limb_t * diag ,

long n, flint_rand_t state)

Sets mat to a random permutation of the diagonal matrix with n leading entries given
by the vector diag. It is assumed that the main diagonal of mat has room for at least n
entries.

Returns 0 or 1, depending on whether the permutation is even or odd respectively.

void nmod_mat_randrank(nmod_mat_t mat , long rank ,

flint_rand_t state)
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Sets mat to a random sparse matrix with the given rank, having exactly as many non-
zero elements as the rank, with the non-zero elements being uniformly random integers
between 0 and m− 1 inclusive, where m is the modulus of mat.

The matrix can be transformed into a dense matrix with unchanged rank by subsequently
calling nmod_mat_randops().

void nmod_mat_randops(nmod_mat_t mat , long count ,

flint_rand_t state)

Randomises mat by performing elementary row or column operations. More precisely,
at most count random additions or subtractions of distinct rows and columns will be
performed. This leaves the rank (and for square matrices, determinant) unchanged.

void nmod_mat_randtril(nmod_mat_t mat , flint_rand_t state ,

int unit)

Sets mat to a random lower triangular matrix. If unit is 1, it will have ones on the main
diagonal, otherwise it will have random nonzero entries on the main diagonal.

void nmod_mat_randtriu(nmod_mat_t mat , flint_rand_t state ,

int unit)

Sets mat to a random upper triangular matrix. If unit is 1, it will have ones on the
main diagonal, otherwise it will have random nonzero entries on the main diagonal.

22.6 Comparison

int nmod_mat_equal(nmod_mat_t mat1 , nmod_mat_t mat2)

Returns nonzero if mat1 and mat2 have the same dimensions and elements, and zero
otherwise. The moduli are ignored.

22.7 Transpose

void nmod_mat_transpose(nmod_mat_t B, nmod_mat_t A)

Sets B to the transpose of A. Dimensions must be compatible. B and A may be the
same object if and only if the matrix is square.

22.8 Addition and subtraction

void nmod_mat_add(nmod_mat_t C, nmod_mat_t A, nmod_mat_t B)

Computes C = A+B. Dimensions must be identical.

void nmod_mat_sub(nmod_mat_t C, nmod_mat_t A, nmod_mat_t B)

Computes C = A−B. Dimensions must be identical.

void nmod_mat_neg(nmod_mat_t A, nmod_mat_t B)

Sets B = −A. Dimensions must be identical.

22.9 Matrix-scalar arithmetic

void nmod_mat_scalar_mul(nmod_mat_t B, const nmod_mat_t A,

mp_limb_t c)
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Sets B = cA, where the scalar c is assumed to be reduced modulo the modulus. Dimen-
sions of A and B must be identical.

22.10 Matrix multiplication

void nmod_mat_mul(nmod_mat_t C, nmod_mat_t A, nmod_mat_t B)

Sets C = AB. Dimensions must be compatible for matrix multiplication. C is not
allowed to be aliased with A or B. This function automatically chooses between classical
and Strassen multiplication.

void nmod_mat_mul_classical(nmod_mat_t C, nmod_mat_t A,

nmod_mat_t B)

Sets C = AB. Dimensions must be compatible for matrix multiplication. C is not
allowed to be aliased with A or B. Uses classical matrix multiplication, creating a
temporary transposed copy of B to improve memory locality if the matrices are large
enough, and packing several entries of B into each word if the modulus is very small.

void nmod_mat_mul_strassen(nmod_mat_t C, nmod_mat_t A,

nmod_mat_t B)

Sets C = AB. Dimensions must be compatible for matrix multiplication. C is not
allowed to be aliased with A or B. Uses Strassen multiplication (the Strassen-Winograd
variant).

void nmod_mat_addmul(nmod_mat_t D, const nmod_mat_t C,

const nmod_mat_t A, const nmod_mat_t B)

Sets D = C + AB. C and D may be aliased with each other but not with A or B.
Automatically selects between classical and Strassen multiplication.

void nmod_mat_submul(nmod_mat_t D, const nmod_mat_t C,

const nmod_mat_t A, const nmod_mat_t B)

Sets D = C +AB. C and D may be aliased with each other but not with A or B.

22.11 Trace

mp_limb_t nmod_mat_trace(const nmod_mat_t mat)

Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The
matrix is required to be square.

22.12 Determinant and rank

mp_limb_t nmod_mat_det(nmod_mat_t A)

Returns the determinant of A. The modulus of A must be a prime number.

long nmod_mat_rank(nmod_mat_t A)

Returns the rank of A. The modulus of A must be a prime number.

22.13 Inverse

int nmod_mat_inv(nmod_mat_t B, nmod_mat_t A)
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Sets B = A−1 and returns 1 if A is invertible. If A is singular, returns 0 and sets the
elements of B to undefined values.

A and B must be square matrices with the same dimensions and modulus. The modulus
must be prime.

22.14 Triangular solving

void nmod_mat_solve_tril(nmod_mat_t X, const nmod_mat_t L,

const nmod_mat_t B, int unit)

Sets X = L−1B where L is a full rank lower triangular square matrix. If unit = 1, L is
assumed to have ones on its main diagonal, and the main diagonal will not be read. X
and B are allowed to be the same matrix, but no other aliasing is allowed. Automatically
chooses between the classical and recursive algorithms.

void nmod_mat_solve_tril_classical(nmod_mat_t X, const

nmod_mat_t L, const nmod_mat_t B, int unit)

Sets X = L−1B where L is a full rank lower triangular square matrix. If unit = 1, L is
assumed to have ones on its main diagonal, and the main diagonal will not be read. X
and B are allowed to be the same matrix, but no other aliasing is allowed. Uses forward
substitution.

void nmod_mat_solve_tril_recursive(nmod_mat_t X, const

nmod_mat_t L, const nmod_mat_t B, int unit)

Sets X = L−1B where L is a full rank lower triangular square matrix. If unit = 1, L is
assumed to have ones on its main diagonal, and the main diagonal will not be read. X
and B are allowed to be the same matrix, but no other aliasing is allowed.

Uses the block inversion formula

(
A 0
C D

)−1(
X
Y

)
=

(
A−1X

D−1(Y − CA−1X)

)
to reduce the problem to matrix multiplication and triangular solving of smaller systems.

void nmod_mat_solve_triu(nmod_mat_t X, const nmod_mat_t U,

const nmod_mat_t B, int unit)

Sets X = U−1B where U is a full rank upper triangular square matrix. If unit = 1, U is
assumed to have ones on its main diagonal, and the main diagonal will not be read. X
and B are allowed to be the same matrix, but no other aliasing is allowed. Automatically
chooses between the classical and recursive algorithms.

void nmod_mat_solve_triu_classical(nmod_mat_t X, const

nmod_mat_t U, const nmod_mat_t B, int unit)

Sets X = U−1B where U is a full rank upper triangular square matrix. If unit = 1, U is
assumed to have ones on its main diagonal, and the main diagonal will not be read. X
and B are allowed to be the same matrix, but no other aliasing is allowed. Uses forward
substitution.

void nmod_mat_solve_triu_recursive(nmod_mat_t X, const

nmod_mat_t U, const nmod_mat_t B, int unit)

Sets X = U−1B where U is a full rank upper triangular square matrix. If unit = 1, U
is assumed to have ones on its main diagonal, and the main diagonal will not be read.
X and B are allowed to be the same matrix, but no other aliasing is allowed.
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Uses the block inversion formula

(
A B
0 D

)−1(
X
Y

)
=

(
A−1(X −BD−1Y )

D−1Y

)
to reduce the problem to matrix multiplication and triangular solving of smaller systems.

22.15 Nonsingular square solving

int nmod_mat_solve(nmod_mat_t X, nmod_mat_t A, nmod_mat_t B)

Solves the matrix-matrix equation AX = B over Z/pZ where p is the modulus of X
which must be a prime number. X, A, and B should have the same moduli.

Returns 1 if A has full rank; otherwise returns 0 and sets the elements of X to undefined
values.

int nmod_mat_solve_vec(mp_limb_t * x, nmod_mat_t A,

mp_limb_t * b)

Solves the matrix-vector equation Ax = b over Z/pZ where p is the modulus of A which
must be a prime number.

Returns 1 if A has full rank; otherwise returns 0 and sets the elements of x to undefined
values.

22.16 LU decomposition

long nmod_mat_lu(long * P, nmod_mat_t A, int rank_check)

Computes a generalised LU decomposition LU = PA of a given matrix A, returning the
rank of A.

If A is a nonsingular square matrix, it will be overwritten with a unit diagonal lower
triangular matrix L and an upper triangular matrix U (the diagonal of L will not be
stored explicitly).

If A is an arbitrary matrix of rank r, U will be in row echelon form having r nonzero
rows, and L will be lower triangular but truncated to r columns, having implicit ones
on the r first entries of the main diagonal. All other entries will be zero.

If a nonzero value for rank_check is passed, the function will abandon the output matrix
in an undefined state and return 0 if A is detected to be rank-deficient.

This function calls nmod_mat_lu_recursive.

long nmod_mat_lu_classical(long * P, nmod_mat_t A, int

rank_check)

Computes a generalised LU decomposition LU = PA of a given matrix A, returning
the rank of A. The behavior of this function is identical to that of nmod_mat_lu. Uses
Gaussian elimination.

long nmod_mat_lu_recursive(long * P, nmod_mat_t A, int

rank_check)

Computes a generalised LU decomposition LU = PA of a given matrix A, returning
the rank of A. The behavior of this function is identical to that of nmod_mat_lu. Uses
recursive block decomposition, switching to classical Gaussian elimination for sufficiently
small blocks.

22.17 Reduced row echelon form
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long nmod_mat_rref(nmod_mat_t A)

Puts A in reduced row echelon form and returns the rank of A.

The rref is computed by first obtaining an unreduced row echelon form via LU decom-
position and then solving an additional triangular system.

22.18 Nullspace

long nmod_mat_nullspace(nmod_mat_t X, const nmod_mat_t A)

Computes the nullspace of A and returns the nullity.

More precisely, this function sets X to a maximum rank matrix such that AX = 0 and
returns the rank of X. The columns of X will form a basis for the nullspace of A.

X must have sufficient space to store all basis vectors in the nullspace.

This function computes the reduced row echelon form and then reads off the basis
vectors.
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Matrices over Z/nZ[x] for word-sized
moduli

The nmod_poly_mat_t data type represents matrices whose entries are polynomials hav-
ing coefficients in Z/nZ. We generally assume that n is a prime number.

The nmod_poly_mat_t type is defined as an array of nmod_poly_mat_struct’s of length
one. This permits passing parameters of type nmod_poly_mat_t by reference.

A matrix internally consists of a single array of nmod_poly_struct’s, representing a
dense matrix in row-major order. This array is only directly indexed during memory
allocation and deallocation. A separate array holds pointers to the start of each row,
and is used for all indexing. This allows the rows of a matrix to be permuted quickly by
swapping pointers.

Matrices having zero rows or columns are allowed.

The shape of a matrix is fixed upon initialisation. The user is assumed to provide input
and output variables whose dimensions are compatible with the given operation.

23.1 Memory management

void nmod_poly_mat_init(nmod_poly_mat_t mat , long rows ,

long cols , mp_limb_t n)

Initialises a matrix with the given number of rows and columns for use. The modulus is
set to n.

void nmod_poly_mat_init_set(nmod_poly_mat_t mat , const

nmod_poly_mat_t src)

Initialises a matrix mat of the same dimensions and modulus as src, and sets it to a
copy of src.

void nmod_poly_mat_clear(nmod_poly_mat_t mat)

Frees all memory associated with the matrix. The matrix must be reinitialised if it is to
be used again.

23.2 Basic properties

long nmod_poly_mat_nrows(const nmod_poly_mat_t mat)
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Returns the number of rows in mat.

long nmod_poly_mat_ncols(const nmod_poly_mat_t mat)

Returns the number of columns in mat.

mp_limb_t nmod_poly_mat_modulus(const nmod_poly_mat_t mat)

Returns the modulus of mat.

23.3 Basic assignment and manipulation

MACRO nmod_poly_mat_entry(mat ,i,j)

Gives a reference to the entry at row i and column j. The reference can be passed as
an input or output variable to any nmod_poly function for direct manipulation of the
matrix element. No bounds checking is performed.

void nmod_poly_mat_set(nmod_poly_mat_t mat1 , const

nmod_poly_mat_t mat2)

Sets mat1 to a copy of mat2.

void nmod_poly_mat_swap(nmod_poly_mat_t mat1 ,

nmod_poly_mat_t mat2)

Swaps mat1 and mat2 efficiently.

23.4 Input and output

void nmod_poly_mat_print(const nmod_poly_mat_t mat , const

char * x)

Prints the matrix mat to standard output, using the variable x.

23.5 Random matrix generation

void nmod_poly_mat_randtest(nmod_poly_mat_t mat ,

flint_rand_t state , long len)

This is equivalent to applying nmod_poly_randtest to all entries in the matrix.

void nmod_poly_mat_randtest_sparse(nmod_poly_mat_t A,

flint_rand_t state , long len , float density)

Creates a random matrix with the amount of nonzero entries given approximately by
the density variable, which should be a fraction between 0 (most sparse) and 1 (most
dense).

The nonzero entries will have random lengths between 1 and len.

23.6 Special matrices

void nmod_poly_mat_zero(nmod_poly_mat_t mat)

Sets mat to the zero matrix.

void nmod_poly_mat_one(nmod_poly_mat_t mat)
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Sets mat to the unit or identity matrix of given shape, having the element 1 on the main
diagonal and zeros elsewhere. If mat is nonsquare, it is set to the truncation of a unit
matrix.

23.7 Basic comparison and properties

int nmod_poly_mat_equal(const nmod_poly_mat_t mat1 , const

nmod_poly_mat_t mat2)

Returns nonzero if mat1 and mat2 have the same shape and all their entries agree, and
returns zero otherwise.

int nmod_poly_mat_is_zero(const nmod_poly_mat_t mat)

Returns nonzero if all entries in mat are zero, and returns zero otherwise.

int nmod_poly_mat_is_one(const nmod_poly_mat_t mat)

Returns nonzero if all entry of mat on the main diagonal are the constant polynomial 1
and all remaining entries are zero, and returns zero otherwise. The matrix need not be
square.

int nmod_poly_mat_is_empty(const nmod_poly_mat_t mat)

Returns a non-zero value if the number of rows or the number of columns in mat is zero,
and otherwise returns zero.

int nmod_poly_mat_is_square(const nmod_poly_mat_t mat)

Returns a non-zero value if the number of rows is equal to the number of columns in
mat, and otherwise returns zero.

23.8 Norms

long nmod_poly_mat_max_length(const nmod_poly_mat_t A)

Returns the maximum polynomial length among all the entries in A.

23.9 Evaluation

void nmod_poly_mat_evaluate_nmod(nmod_mat_t B, const

nmod_poly_mat_t A, mp_limb_t x)

Sets the nmod_mat_t B to A evaluated entrywise at the point x.

23.10 Arithmetic

void nmod_poly_mat_scalar_mul_nmod_poly(nmod_poly_mat_t B,

const nmod_poly_mat_t A, const nmod_poly_t c)

Sets B to A multiplied entrywise by the polynomial c.

void nmod_poly_mat_scalar_mul_nmod(nmod_poly_mat_t B, const

nmod_poly_mat_t A, mp_limb_t c)

Sets B to A multiplied entrywise by the coefficient c, which is assumed to be reduced
modulo the modulus.
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void nmod_poly_mat_add(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the sum of A and B. All matrices must have the same shape. Aliasing is allowed.

void nmod_poly_mat_sub(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the sum of A and B. All matrices must have the same shape. Aliasing is allowed.

void nmod_poly_mat_neg(nmod_poly_mat_t B, const

nmod_poly_mat_t A)

Sets B to the negation of A. The matrices must have the same shape. Aliasing is allowed.

void nmod_poly_mat_mul(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the matrix product of A and B. The matrices must have compatible dimensions
for matrix multiplication. Aliasing is allowed. This function automatically chooses
between classical, KS and evaluation-interpolation multiplication.

void nmod_poly_mat_mul_classical(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the matrix product of A and B, computed using the classical algorithm. The
matrices must have compatible dimensions for matrix multiplication. Aliasing is allowed.

void nmod_poly_mat_mul_KS(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the matrix product of A and B, computed using Kronecker segmentation. The
matrices must have compatible dimensions for matrix multiplication. Aliasing is allowed.

void nmod_poly_mat_mul_interpolate(nmod_poly_mat_t C, const

nmod_poly_mat_t A, const nmod_poly_mat_t B)

Sets C to the matrix product of A and B, computed through evaluation and interpo-
lation. The matrices must have compatible dimensions for matrix multiplication. For
interpolation to be well-defined, we require that the modulus is a prime at least as large
as m + n − 1 where m and n are the maximum lengths of polynomials in the input
matrices. Aliasing is allowed.

void nmod_poly_mat_sqr(nmod_poly_mat_t B, const

nmod_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function automatically chooses between classical and KS squaring.

void nmod_poly_mat_sqr_classical(nmod_poly_mat_t B, const

nmod_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function uses direct formulas for very small matrices, and otherwise classical matrix
multiplication.

void nmod_poly_mat_sqr_KS(nmod_poly_mat_t B, const

nmod_poly_mat_t A)

Sets B to the square of A, which must be a square matrix. Aliasing is allowed. This
function uses Kronecker segmentation.
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void nmod_poly_mat_sqr_interpolate(nmod_poly_mat_t B, const

nmod_poly_mat_t A)

Sets B to the square of A, which must be a square matrix, computed through evaluation
and interpolation. For interpolation to be well-defined, we require that the modulus is
a prime at least as large as 2n− 1 where n is the maximum length of polynomials in the
input matrix. Aliasing is allowed.

void nmod_poly_mat_pow(nmod_poly_mat_t B, const

nmod_poly_mat_t A, ulong exp)

Sets B to A raised to the power exp, where A is a square matrix. Uses exponentiation by
squaring. Aliasing is allowed.

23.11 Row reduction

long nmod_poly_mat_find_pivot_any(const nmod_poly_mat_t

mat , long start_row , long end_row , long c)

Attempts to find a pivot entry for row reduction. Returns a row index r between
start_row (inclusive) and stop_row (exclusive) such that column c in mat has a nonzero
entry on row r, or returns -1 if no such entry exists.

This implementation simply chooses the first nonzero entry from it encounters. This is
likely to be a nearly optimal choice if all entries in the matrix have roughly the same
size, but can lead to unnecessary coefficient growth if the entries vary in size.

long nmod_poly_mat_find_pivot_partial(const nmod_poly_mat_t

mat , long start_row , long end_row , long c)

Attempts to find a pivot entry for row reduction. Returns a row index r between
start_row (inclusive) and stop_row (exclusive) such that column c in mat has a nonzero
entry on row r, or returns -1 if no such entry exists.

This implementation searches all the rows in the column and chooses the nonzero entry
of smallest degree. This heuristic typically reduces coefficient growth when the matrix
entries vary in size.

long nmod_poly_mat_fflu(nmod_poly_mat_t B, nmod_poly_t den ,

long * perm , const nmod_poly_mat_t A, int rank_check)

Uses fraction-free Gaussian elimination to set (B, den) to a fraction-free LU decomposi-
tion of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with nmod_poly_mat_find_pivot_partial. If perm is non-
NULL, the permutation of rows in the matrix will also be applied to perm.

If rank_check is set, the function aborts and returns 0 if the matrix is detected not to
have full rank without completing the elimination.

The denominator den is set to ±det(A), where the sign is decided by the parity of the
permutation. Note that the determinant is not generally the minimal denominator.

long nmod_poly_mat_rref(nmod_poly_mat_t B, nmod_poly_t den ,

const nmod_poly_mat_t A)

Uses fraction-free Gauss-Jordan elimination to set (B, den) to the reduced row echelon
form of A and returns the rank of A. Aliasing of A and B is allowed.

Pivot elements are chosen with nmod_poly_mat_find_pivot_partial.
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The denominator den is set to ±det(A). Note that the determinant is not generally the
minimal denominator.

23.12 Trace

void nmod_poly_mat_trace(nmod_poly_t trace , const

nmod_poly_mat_t mat)

Computes the trace of the matrix, i.e. the sum of the entries on the main diagonal. The
matrix is required to be square.

23.13 Determinant and rank

void nmod_poly_mat_det(nmod_poly_t det , const

nmod_poly_mat_t A)

Sets det to the determinant of the square matrix A. Uses a direct formula, fraction-free
LU decomposition, or interpolation, depending on the size of the matrix.

void nmod_poly_mat_det_fflu(nmod_poly_t det , const

nmod_poly_mat_t A)

Sets det to the determinant of the square matrix A. The determinant is computed by
performing a fraction-free LU decomposition on a copy of A.

void nmod_poly_mat_det_interpolate(nmod_poly_t det , const

nmod_poly_mat_t A)

Sets det to the determinant of the square matrix A. The determinant is computed by
determing a bound n for its length, evaluating the matrix at n distinct points, computing
the determinant of each coefficient matrix, and forming the interpolating polynomial.

If the coefficient ring does not contain n distinct points (that is, if working over Z/pZ
where p < n), this function automatically falls back to nmod_poly_mat_det_fflu.

long nmod_poly_mat_rank(const nmod_poly_mat_t A)

Returns the rank of A. Performs fraction-free LU decomposition on a copy of A.

23.14 Inverse

int nmod_poly_mat_inv(nmod_poly_mat_t Ainv , nmod_poly_t

den , const nmod_poly_mat_t A)

Sets (Ainv, den) to the inverse matrix of A. Returns 1 if A is nonsingular and 0 if A is
singular. Aliasing of Ainv and A is allowed.

More precisely, det will be set to the determinant of A and Ainv will be set to the adjugate
matrix of A. Note that the determinant is not necessarily the minimal denominator.

Uses fraction-free LU decomposition, followed by solving for the identity matrix.

23.15 Nullspace

long nmod_poly_mat_nullspace(nmod_poly_mat_t res , const

nmod_poly_mat_t mat)

Computes the right rational nullspace of the matrix mat and returns the nullity.

More precisely, assume that mat has rank r and nullity n. Then this function sets the
first n columns of res to linearly independent vectors spanning the nullspace of mat. As
a result, we always have rank(res) = n, and mat × res is the zero matrix.
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The computed basis vectors will not generally be in a reduced form. In general, the
polynomials in each column vector in the result will have a nontrivial common GCD.

23.16 Solving

int nmod_poly_mat_solve(nmod_poly_mat_t X, nmod_poly_t den ,

const nmod_poly_mat_t A, const nmod_poly_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

Uses fraction-free LU decomposition followed by fraction-free forward and back substi-
tution.

int nmod_poly_mat_solve_fflu(nmod_poly_mat_t X, nmod_poly_t

den , const nmod_poly_mat_t A, const nmod_poly_mat_t B)

Solves the equation AX = B for nonsingular A. More precisely, computes (X, den) such
that AX = B×den. Returns 1 if A is nonsingular and 0 if A is singular. The computed
denominator will not generally be minimal.

Uses fraction-free LU decomposition followed by fraction-free forward and back substi-
tution.

void nmod_poly_mat_solve_fflu_precomp(nmod_poly_mat_t X,

const long * perm , const nmod_poly_mat_t FFLU , const

nmod_poly_mat_t B)

Performs fraction-free forward and back substitution given a precomputed fraction-free
LU decomposition and corresponding permutation.





§24. fmpz mod poly

Polynomials over Z/nZ for general
moduli

24.1 Introduction

The fmpz_mod_poly_t data type represents elements of Z/nZ[x] for a fixed modulus n.
The fmpz_mod_poly module provides routines for memory management, basic arithmetic
and some higher level functions such as GCD, etc.

Each coefficient of an fmpz_mod_poly_t is of type fmpz and represents an integer reduced
modulo the fixed modulus n in the range [0, n).

Unless otherwise specified, all functions in this section permit aliasing between their
input arguments and between their input and output arguments.

24.2 Simple example

The following example computes the square of the polynomial 5x3 + 6 in Z/7Z[x].

#include "fmpz_mod_poly.h"

...

fmpz_t n;

fmpz_mod_poly_t x, y;

fmpz_init_set_ui(n, 7);

fmpz_mod_poly_init(x, n);

fmpz_mod_poly_init(y, n);

fmpz_mod_poly_set_coeff_ui(x, 3, 5);

fmpz_mod_poly_set_coeff_ui(x, 0, 6);

fmpz_mod_poly_sqr(y, x);

fmpz_mod_poly_print(x); printf("\n");

fmpz_mod_poly_print(y); printf("\n");

fmpz_mod_poly_clear(x);

fmpz_mod_poly_clear(y);

fmpz_clear(n);

The output is:

4 7 6 0 0 5

7 7 1 0 0 4 0 0 4
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24.3 Definition of the fmpz mod poly t type

The fmpz_mod_poly_t type is a typedef for an array of length 1 of
fmpz_mod_poly_struct’s. This permits passing parameters of type fmpz_mod_poly_t

by reference.

In reality one never deals directly with the struct and simply deals with objects of type
fmpz_mod_poly_t. For simplicity we will think of an fmpz_mod_poly_t as a struct,
though in practice to access fields of this struct, one needs to dereference first, e.g. to
access the length field of an fmpz_mod_poly_t called poly1 one writes poly1->length.

An fmpz_mod_poly_t is said to be normalised if either length is zero, or if the leading
coefficient of the polynomial is non-zero. All fmpz_mod_poly functions expect their
inputs to be normalised and all coefficients to be reduced modulo n, and unless otherwise
specified they produce output that is normalised with coefficients reduced modulo n.

It is recommended that users do not access the fields of an fmpz_mod_poly_t or its
coefficient data directly, but make use of the functions designed for this purpose, detailed
below.

Functions in fmpz_mod_poly do all the memory management for the user. One does
not need to specify the maximum length in advance before using a polynomial object.
FLINT reallocates space automatically as the computation proceeds, if more space is
required.

We now describe the functions available in fmpz_mod_poly.

24.4 Memory management

void fmpz_mod_poly_init(fmpz_mod_poly_t poly , const fmpz_t

p)

Initialises poly for use over Z/pZ, setting its length to zero.

A corresponding call to fmpz_mod_poly_clear() must be made after finishing with
the fmpz_mod_poly_t to free the memory used by the polynomial. The user is also
responsible to clearing the integer p.

void fmpz_mod_poly_init2(fmpz_mod_poly_t poly , const fmpz_t

p, long alloc)

Initialises poly with space for at least alloc coefficients and sets the length to zero.
The allocated coefficients are all set to zero.

void fmpz_mod_poly_clear(fmpz_mod_poly_t poly)

Clears the given polynomial, releasing any memory used. It must be reinitialised in
order to be used again.

void fmpz_mod_poly_realloc(fmpz_mod_poly_t poly , long alloc)

Reallocates the given polynomial to have space for alloc coefficients. If alloc is zero
the polynomial is cleared and then reinitialised. If the current length is greater than
alloc the polynomial is first truncated to length alloc.

void fmpz_mod_poly_fit_length(fmpz_mod_poly_t poly , long

len)

If len is greater than the number of coefficients currently allocated, then the polynomial
is reallocated to have space for at least len coefficients. No data is lost when calling this
function.
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The function efficiently deals with the case where it is called many times in small in-
crements by at least doubling the number of allocated coefficients when length is larger
than the number of coefficients currently allocated.

void _fmpz_mod_poly_normalise(fmpz_mod_poly_t poly)

Sets the length of poly so that the top coefficient is non-zero. If all coefficients are
zero, the length is set to zero. This function is mainly used internally, as all functions
guarantee normalisation.

void _fmpz_mod_poly_set_length(fmpz_mod_poly_t poly , long

len)

Demotes the coefficients of poly beyond len and sets the length of poly to len.

void fmpz_mod_poly_truncate(fmpz_mod_poly_t poly , long len)

If the current length of poly is greater than len, it is truncated to have the given length.
Discarded coefficients are not necessarily set to zero.

24.5 Randomisation

void fmpz_mod_poly_randtest(fmpz_mod_poly_t f, flint_rand_t

state , long len)

Sets the polynomial f to a random polynomial of length up len.

void fmpz_mod_poly_randtest_not_zero(fmpz_mod_poly_t f,

flint_rand_t state , long len)

Sets the polynomial f to a random polynomial of length up len, assuming len is positive.

24.6 Attributes

fmpz * fmpz_mod_poly_modulus(const fmpz_mod_poly_t poly)

Returns the modulus of this polynomial. This function is implemented as a macro.

long fmpz_mod_poly_degree(const fmpz_mod_poly_t poly)

Returns the degree of the polynomial. The degree of the zero polynomial is defined to
be −1.

long fmpz_mod_poly_length(const fmpz_mod_poly_t poly)

Returns the length of the polynomial, which is one more than its degree.

fmpz * fmpz_mod_poly_lead(const fmpz_mod_poly_t poly)

Returns a pointer to the first leading coefficient of poly if this is non-zero, otherwise
returns NULL.

24.7 Assignment and swap

void fmpz_mod_poly_set(fmpz_mod_poly_t poly1 , const

fmpz_mod_poly_t poly2)

Sets the polynomial poly1 to the value of poly2.

void fmpz_mod_poly_swap(fmpz_mod_poly_t poly1 ,

fmpz_mod_poly_t poly2)
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Swaps the two polynomials. This is done efficiently by swapping pointers rather than
individual coefficients.

void fmpz_mod_poly_zero(fmpz_mod_poly_t poly)

Sets poly to the zero polynomial.

void fmpz_mod_poly_zero_coeffs(fmpz_mod_poly_t poly , long

i, long j)

Sets the coefficients of Xk for k ∈ [i, j) in the polynomial to zero.

24.8 Conversion

void fmpz_mod_poly_set_ui(fmpz_mod_poly_t f, ulong c)

Sets the polynomial f to the constant c reduced modulo p.

void fmpz_mod_poly_set_fmpz(fmpz_mod_poly_t f, const fmpz_t

c)

Sets the polynomial f to the constant c reduced modulo p.

void fmpz_mod_poly_set_fmpz_poly(fmpz_mod_poly_t f, const

fmpz_poly_t g)

Sets f to g reduced modulo p, where p is the modulus that is part of the data structure
of f .

void fmpz_mod_poly_get_fmpz_poly(fmpz_poly_t f, const

fmpz_mod_poly_t g)

Sets f to g. This is done simply by lifting the coefficients of g taking representatives
[0, p) ⊂ Z.

24.9 Comparison

int fmpz_mod_poly_equal(const fmpz_mod_poly_t poly1 , const

fmpz_mod_poly_t poly2)

Returns non-zero if the two polynomials are equal.

int fmpz_mod_poly_is_zero(const fmpz_mod_poly_t poly)

Returns non-zero if the polynomial is zero.

24.10 Getting and setting coefficients

void fmpz_mod_poly_set_coeff_fmpz(fmpz_mod_poly_t poly ,

long n, const fmpz_t x)

Sets the coefficient of Xn in the polynomial to x, assuming n ≥ 0.

void fmpz_mod_poly_get_coeff_fmpz(fmpz_t x, const

fmpz_mod_poly_t poly , long n)

Sets x to the coefficient of Xn in the polynomial, assumng n ≥ 0.

24.11 Shifting
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void _fmpz_mod_poly_shift_left(fmpz * res , const fmpz *

poly , long len , long n)

Sets (res, len + n) to (poly, len) shifted left by n coefficients.

Inserts zero coefficients at the lower end. Assumes that len and n are positive, and that
res fits len + n elements. Supports aliasing between res and poly.

void fmpz_mod_poly_shift_left(fmpz_mod_poly_t f, const

fmpz_mod_poly_t g, long n)

Sets res to poly shifted left by n coeffs. Zero coefficients are inserted.

void _fmpz_mod_poly_shift_right(fmpz * res , const fmpz *

poly , long len , long n)

Sets (res, len - n) to (poly, len) shifted right by n coefficients.

Assumes that len and n are positive, that len > n, and that res fits len - n elements.
Supports aliasing between res and poly, although in this case the top coefficients of
poly are not set to zero.

void fmpz_mod_poly_shift_right(fmpz_mod_poly_t f, const

fmpz_mod_poly_t g, long n)

Sets res to poly shifted right by n coefficients. If n is equal to or greater than the
current length of poly, res is set to the zero polynomial.

24.12 Addition and subtraction

void _fmpz_mod_poly_add(fmpz *res , const fmpz *poly1 , long

len1 , const fmpz *poly2 , long len2 , const fmpz_t p)

Sets res to the sum of (poly1, len1) and (poly2, len2). It is assumed that res has
sufficient space for the longer of the two polynomials.

void fmpz_mod_poly_add(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)

Sets res to the sum of poly1 and poly2.

void _fmpz_mod_poly_sub(fmpz *res , const fmpz *poly1 , long

len1 , const fmpz *poly2 , long len2 , const fmpz_t p)

Sets res to (poly1, len1) minus (poly2, len2). It is assumed that res has sufficient
space for the longer of the two polynomials.

void fmpz_mod_poly_sub(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)

Sets res to poly1 minus poly2.

void _fmpz_mod_poly_neg(fmpz *res , const fmpz *poly , long

len , const fmpz_t p)

Sets (res, len) to the negative of (poly, len) modulo p.

void fmpz_mod_poly_neg(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly)

Sets res to the negative of poly modulo p.

24.13 Scalar multiplication
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void _fmpz_mod_poly_scalar_mul_fmpz(fmpz *res , const fmpz

*poly , long len , const fmpz_t x, const fmpz_t p)

Sets (res, len) to (poly, len) multiplied by x, reduced modulo p.

void fmpz_mod_poly_scalar_mul_fmpz(fmpz_mod_poly_t res ,

const fmpz_mod_poly_t poly , const fmpz_t x)

Sets res to poly multiplied by x.

24.14 Multiplication

void _fmpz_mod_poly_mul(fmpz *res , const fmpz *poly1 , long

len1 , const fmpz *poly2 , long len2 , const fmpz_t p)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2).
Assumes len1 >= len2 > 0. Allows zero-padding of the two input polynomials.

void fmpz_mod_poly_mul(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpz_mod_poly_mullow(fmpz *res , const fmpz *poly1 ,

long len1 , const fmpz *poly2 , long len2 , const fmpz_t p,

long n)

Sets (res, n) to the lowest n coefficients of the product of (poly1, len1) and (poly2,

len2).

Assumes len1 >= len2 > 0 and 0 < n <= len1 + len2 - 1. Allows for zero-padding
in the inputs. Does not support aliasing between the inputs and the output.

void fmpz_mod_poly_mullow(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2 , long

n)

Sets res to the lowest n coefficients of the product of poly1 and poly2.

void _fmpz_mod_poly_sqr(fmpz *res , const fmpz *poly , long

len , const fmpz_t p)

Sets res to the square of poly.

void fmpz_mod_poly_sqr(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly)

Computes res as the square of poly.

24.15 Powering

void _fmpz_mod_poly_pow(fmpz *rop , const fmpz *op, long

len , ulong e, const fmpz_t p)

Sets res = poly^e, assuming that e > 1 and elen > 0, and that res has space for
e*(len - 1)+ 1 coefficients. Does not support aliasing.

void fmpz_mod_poly_pow(fmpz_mod_poly_t rop , const

fmpz_mod_poly_t op, ulong e)
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Computes res = poly^e. If e is zero, returns one, so that in particular 0^0 = 1.

24.16 Division

void _fmpz_mod_poly_divrem_basecase(fmpz * Q, fmpz * R,

const fmpz * A, long lenA , const fmpz * B, long lenB ,

const fmpz_t invB , const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ+R with 0 ≤ len(R) <
len(B).

Assumes that the leading coefficient of B is invertible modulo p, and that invB is the
inverse.

Assumes that len(A), len(B) > 0. Allows zero-padding in (A, lenA). R and A may be
aliased, but apart from this no aliasing of input and output operands is allowed.

void fmpz_mod_poly_divrem_basecase(fmpz_mod_poly_t Q,

fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Computes Q, R such that A = BQ+R with 0 ≤ len(R) < len(B).

Assumes that the leading coefficient of B is invertible modulo p.

void _fmpz_mod_poly_div_basecase(fmpz * Q, fmpz * R, const

fmpz * A, long lenA , const fmpz * B, long lenB , const

fmpz_t invB , const fmpz_t p)

Notationally, computes Q, R such that A = BQ+R with 0 ≤ len(R) < len(B) but only
sets (Q, lenA - lenB + 1).

Requires temporary space (R, lenA). Allows aliasing only between A and R. Allows
zero-padding in A but not in B. Assumes that the leading coefficient of B is a unit
modulo p.

void fmpz_mod_poly_div_basecase(fmpz_mod_poly_t Q, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes Q, R such that A = BQ+R with 0 ≤ len(R) < len(B) assuming
that the leading term of B is a unit.

void _fmpz_mod_poly_rem_basecase(fmpz * R, const fmpz * A,

long lenA , const fmpz * B, long lenB , const fmpz_t invB ,

const fmpz_t p)

Notationally, computes Q, R such that A = BQ+R with 0 ≤ len(R) < len(B) but only
sets (R, lenA).

Allows aliasing only between A and R. Allows zero-padding in A but not in B. Assumes
that the leading coefficient of B is a unit modulo p.

void fmpz_mod_poly_rem_basecase(fmpz_mod_poly_t R, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes Q, R such that A = BQ+R with 0 ≤ len(R) < len(B) assuming
that the leading term of B is a unit.

void _fmpz_mod_poly_divrem_divconquer_recursive(fmpz * Q,

fmpz * BQ, fmpz * W, const fmpz * A, const fmpz * B,

long lenB , const fmpz_t invB , const fmpz_t p)
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Computes (Q, lenB), (BQ, 2 lenB - 1) such that BQ = B × Q and A = BQ + R
where 0 ≤ len(R) < len(B).

Assumes that the leading coefficient of B is invertible modulo p, and that invB is the
inverse.

Assumes len(B) > 0. Allows zero-padding in (A, lenA). Requires a temporary array
(W, 2 lenB - 1). No aliasing of input and output operands is allowed.

This function does not read the bottom len(B) − 1 coefficients from A, which means
that they might not even need to exist in allocated memory.

void _fmpz_mod_poly_divrem_divconquer(fmpz * Q, fmpz * R,

const fmpz * A, long lenA , const fmpz * B, long lenB ,

const fmpz_t invB , const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ+R and 0 ≤ len(R) <
len(B).

Assumes that the leading coefficient of B is invertible modulo p, and that invB is the
inverse.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.

void fmpz_mod_poly_divrem_divconquer(fmpz_mod_poly_t Q,

fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Computes Q, R such that A = BQ+R and 0 ≤ len(R) < len(B).

Assumes that B is non-zero and that the leading coefficient of B is invertible modulo p.

void _fmpz_mod_poly_divrem(fmpz * Q, fmpz * R, const fmpz *

A, long lenA , const fmpz * B, long lenB , const fmpz_t

invB , const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ+R and 0 ≤ len(R) <
len(B).

Assumes that B is non-zero, that the leading coefficient of B is invertible modulo p and
that invB is the inverse.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.

void fmpz_mod_poly_divrem(fmpz_mod_poly_t Q,

fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Computes Q, R such that A = BQ+R and 0 ≤ len(R) < len(B).

Assumes that B is non-zero and that the leading coefficient of B is invertible modulo p.

void fmpz_mod_poly_divrem_f(fmpz_t f, fmpz_mod_poly_t Q,

fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Either finds a non-trivial factor f of the modulus p, or computes Q, R such that A =
BQ+R and 0 ≤ len(R) < len(B).

If the leading coefficient of B is invertible in Z/(p), the division with remainder operation
is carried out, Q and R are computed correctly, and f is set to 1. Otherwise, f is set to
a non-trivial factor of p and Q and R are not touched.

Assumes that B is non-zero.
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void _fmpz_mod_poly_rem(fmpz *R, const fmpz *A, long lenA ,

const fmpz *B, long lenB , const fmpz_t invB , const

fmpz_t p)

Notationally, computes (Q, lenA - lenB + 1), (R, lenA) such that A = BQ+R and
0 ≤ len(R) < len(B), returning only the remainder part.

Assumes that B is non-zero, that the leading coefficient of B is invertible modulo p and
that invB is the inverse.

Assumes len(A) ≥ len(B) > 0. Allows zero-padding in (A, lenA). No aliasing of input
and output operands is allowed.

void fmpz_mod_poly_rem(fmpz_mod_poly_t R, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes Q, R such that A = BQ+R and 0 ≤ len(R) < len(B), returning
only the remainder part.

Assumes that B is non-zero and that the leading coefficient of B is invertible modulo p.

24.17 Power series inversion

void _fmpz_mod_poly_inv_series_newton(fmpz * Qinv , const

fmpz * Q, long n, const fmpz_t cinv , const fmpz_t p)

Sets (Qinv, n) to the inverse of (Q, n) modulo xn, where n ≥ 1, assuming that the
bottom coefficient of Q is invertible modulo p and that its inverse is cinv.

void fmpz_mod_poly_inv_series_newton(fmpz_mod_poly_t Qinv ,

const fmpz_mod_poly_t Q, long n)

Sets Qinv to the inverse of Q modulo xn, where n ≥ 1, assuming that the bottom
coefficient of Q is a unit.

24.18 Greatest common divisor

void fmpz_mod_poly_make_monic(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly)

If poly is non-zero, sets res to poly divided by its leading coefficient. This assumes
that the leading coefficient of poly is invertible modulo p.

Otherwise, if poly is zero, sets res to zero.

long _fmpz_mod_poly_gcd_euclidean(fmpz *G, const fmpz *A,

long lenA , const fmpz *B, long lenB , const fmpz_t invB ,

const fmpz_t p)

Sets G to the greatest common divisor of (A, len(A)) and (B, len(B)) and returns its
length.

Assumes that len(A) ≥ len(B) > 0 and that the vector G has space for sufficiently many
coefficients.

Assumes that invB is the inverse of the leading coefficients of B modulo the prime
number p.

void fmpz_mod_poly_gcd_euclidean(fmpz_mod_poly_t G, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)
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Sets G to the greatest common divisor of A and B.

The algorithm used to compute G is the classical Euclidean algorithm.

In general, the greatest common divisor is defined in the polynomial ring (Z/(pZ))[X]
if and only if p is a prime number. Thus, this function assumes that p is prime.

long _fmpz_mod_poly_gcd(fmpz *G, const fmpz *A, long lenA ,

const fmpz *B, long lenB , const fmpz_t invB , const

fmpz_t p)

Sets G to the greatest common divisor of (A, len(A)) and (B, len(B)) and returns its
length.

Assumes that len(A) ≥ len(B) > 0 and that the vector G has space for sufficiently many
coefficients.

Assumes that invB is the inverse of the leading coefficients of B modulo the prime
number p.

void fmpz_mod_poly_gcd(fmpz_mod_poly_t G, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Sets G to the greatest common divisor of A and B.

In general, the greatest common divisor is defined in the polynomial ring (Z/(pZ))[X]
if and only if p is a prime number. Thus, this function assumes that p is prime.

long _fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz *G,

const fmpz *A, long lenA , const fmpz *B, long lenB ,

const fmpz_t p)

Either sets f = 1 and G to the greatest common divisor of (A, len(A)) and (B, len(B))
and returns its length, or sets f ∈ (1, p) to a non-trivial factor of p and leaves the
contents of the vector (G, lenB) undefined.

Assumes that len(A) ≥ len(B) > 0 and that the vector G has space for sufficiently many
coefficients.

Does not support aliasing of any of the input arguments with any of the output argument.

void fmpz_mod_poly_gcd_euclidean_f(fmpz_t f,

fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Either sets f = 1 and G to the greatest common divisor of A and B, or ∈ (1, p) to a
non-trivial factor of p.

In general, the greatest common divisor is defined in the polynomial ring (Z/(pZ))[X]
if and only if p is a prime number.

long _fmpz_mod_poly_gcd_f(fmpz_t f, fmpz *G, const fmpz *A,

long lenA , const fmpz *B, long lenB , const fmpz_t p)

Either sets f = 1 and G to the greatest common divisor of (A, len(A)) and (B, len(B))
and returns its length, or sets f ∈ (1, p) to a non-trivial factor of p and leaves the
contents of the vector (G, lenB) undefined.

Assumes that len(A) ≥ len(B) > 0 and that the vector G has space for sufficiently many
coefficients.

Does not support aliasing of any of the input arguments with any of the output argument.
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void fmpz_mod_poly_gcd_f(fmpz_t f, fmpz_mod_poly_t G, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Either sets f = 1 and G to the greatest common divisor of A and B, or ∈ (1, p) to a
non-trivial factor of p.

In general, the greatest common divisor is defined in the polynomial ring (Z/(pZ))[X]
if and only if p is a prime number.

long _fmpz_mod_poly_xgcd_euclidean(fmpz *G, fmpz *S, fmpz

*T, const fmpz *A, long lenA , const fmpz *B, long lenB ,

const fmpz_t invB , const fmpz_t p)

Computes the GCD of A and B together with cofactors S and T such that SA+TB = G.
Returns the length of G.

Assumes that len(A) ≥ len(B) ≥ 1 and (len(A), len(B)) 6= (1, 1).

No attempt is made to make the GCD monic.

Requires that G have space for len(B) coefficients. Writes len(B) − 1 and len(A) − 1
coefficients to S and T , respectively. Note that, in fact, len(S) ≤ max(len(B)−len(G), 1)
and len(T ) ≤ max(len(A)− len(G), 1).

No aliasing of input and output operands is permitted.

void fmpz_mod_poly_xgcd_euclidean(fmpz_mod_poly_t G,

fmpz_mod_poly_t S, fmpz_mod_poly_t T, const

fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be
at most lenB and the length of T will be at most lenA.

long _fmpz_mod_poly_xgcd(fmpz *G, fmpz *S, fmpz *T, const

fmpz *A, long lenA , const fmpz *B, long lenB , const

fmpz_t invB , const fmpz_t p)

Computes the GCD of A and B together with cofactors S and T such that SA+TB = G.
Returns the length of G.

Assumes that len(A) ≥ len(B) ≥ 1 and (len(A), len(B)) 6= (1, 1).

No attempt is made to make the GCD monic.

Requires that G have space for len(B) coefficients. Writes len(B) − 1 and len(A) − 1
coefficients to S and T , respectively. Note that, in fact, len(S) ≤ max(len(B)−len(G), 1)
and len(T ) ≤ max(len(A)− len(G), 1).

No aliasing of input and output operands is permitted.

void fmpz_mod_poly_xgcd(fmpz_mod_poly_t G, fmpz_mod_poly_t

S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Computes the GCD of A and B. The GCD of zero polynomials is defined to be zero,
whereas the GCD of the zero polynomial and some other polynomial P is defined to be
P . Except in the case where the GCD is zero, the GCD G is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be
at most lenB and the length of T will be at most lenA.
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long _fmpz_mod_poly_gcdinv(fmpz *G, fmpz *S, const fmpz *A,

long lenA , const fmpz *B, long lenB , const fmpz_t p)

Computes (G, lenA), (S, lenB-1) such that G ∼= SA (mod B), returning the actual
length of G.

Assumes that 0 < len(A) < len(B).

void fmpz_mod_poly_gcdinv(fmpz_mod_poly_t G,

fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const

fmpz_mod_poly_t B)

Computes polynomials G and S, both reduced modulo B, such that G ∼= SA (mod B),
where B is assumed to have len(B) ≥ 2.

In the case that A = 0 (mod B), returns G = S = 0.

int _fmpz_mod_poly_invmod(fmpz *A, const fmpz *B, long

lenB , const fmpz *P, long lenP , const fmpz_t p)

Attempts to set (A, lenP-1) to the inverse of (B, lenB) modulo the polynomial (P,
lenP). Returns 1 if (B, lenB) is invertible and 0 otherwise.

Assumes that 0 < len(B) < len(P ), and hence also len(P ) ≥ 2, but supports zero-
padding in (B, lenB).

Does not support aliasing.

Assumes that p is a prime number.

int fmpz_mod_poly_invmod(fmpz_mod_poly_t A, const

fmpz_mod_poly_t B, const fmpz_mod_poly_t P)

Attempts to set A to the inverse of B modulo P in the polynomial ring (Z/pZ)[X],
where we assume that p is a prime number.

If deg(P ) < 2, raises an exception.

If the greatest common divisor of B and P is 1, returns 1 and sets A to the inverse of
B. Otherwise, returns 0 and the value of A on exit is undefined.

24.19 Derivative

void _fmpz_mod_poly_derivative(fmpz *res , const fmpz *poly ,

long len , const fmpz_t p)

Sets (res, len - 1) to the derivative of (poly, len). Also handles the cases where
len is 0 or 1 correctly. Supports aliasing of res and poly.

void fmpz_mod_poly_derivative(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly)

Sets res to the derivative of poly.

24.20 Evaluation

void _fmpz_mod_poly_evaluate_fmpz(fmpz_t res , const fmpz

*poly , long len , const fmpz_t a, const fmpz_t p)

Evaluates the polynomial (poly, len) at the integer a and sets res to the result.
Aliasing between res and a or any of the coefficients of poly is not supported.

void fmpz_mod_poly_evaluate_fmpz(fmpz_t res , const

fmpz_mod_poly_t poly , const fmpz_t a)
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Evaluates the polynomial poly at the integer a and sets res to the result.

As expected, aliasing between res and a is supported. However, res may not be aliased
with a coefficient of poly.

24.21 Composition

void _fmpz_mod_poly_compose_horner(fmpz *res , const fmpz

*poly1 , long len1 , const fmpz *poly2 , long len2 , const

fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2) using Horner’s al-
gorithm.

Assumes that res has space for (len1-1)*(len2-1)+ 1 coefficients, although in Zp[X]
this might not actually be the length of the resulting polynomial when p is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing
between any of the inputs and the output.

void fmpz_mod_poly_compose_horner(fmpz_mod_poly_t res ,

const fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)

Sets res to the composition of poly1 and poly2 using Horner’s algorithm.

To be precise about the order of composition, denoting res, poly1, and poly2 by f , g,
and h, respectively, sets f(t) = g(h(t)).

void _fmpz_mod_poly_compose_divconquer(fmpz *res , const

fmpz *poly1 , long len1 , const fmpz *poly2 , long len2 ,

const fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2) using a divide and
conquer algorithm which takes out factors of poly2 raised to 2i where possible.

Assumes that res has space for (len1-1)*(len2-1)+ 1 coefficients, although in Zp[X]
this might not actually be the length of the resulting polynomial when p is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing
between any of the inputs and the output.

void fmpz_mod_poly_compose_divconquer(fmpz_mod_poly_t res ,

const fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)

Sets res to the composition of poly1 and poly2 using a divide and conquer algorithm
which takes out factors of poly2 raised to 2i where possible.

To be precise about the order of composition, denoting res, poly1, and poly2 by f , g,
and h, respectively, sets f(t) = g(h(t)).

void _fmpz_mod_poly_compose(fmpz *res , const fmpz *poly1 ,

long len1 , const fmpz *poly2 , long len2 , const fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2).

Assumes that res has space for (len1-1)*(len2-1)+ 1 coefficients, although in Zp[X]
this might not actually be the length of the resulting polynomial when p is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing
between any of the inputs and the output.

void fmpz_mod_poly_compose(fmpz_mod_poly_t res , const

fmpz_mod_poly_t poly1 , const fmpz_mod_poly_t poly2)
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Sets res to the composition of poly1 and poly2.

To be precise about the order of composition, denoting res, poly1, and poly2 by f , g,
and h, respectively, sets f(t) = g(h(t)).

24.22 Radix conversion

The following functions provide the functionality to solve the radix conversion problems
for polynomials, which is to express a polynomial f(X) with respect to a given radix
r(X) as

f(X) =

N∑
i=0

bi(X)r(X)i

where N = bdeg(f)/deg(r)c.

The algorithm implemented here is a recursive one, which performs Euclidean divisions
by powers of r of the form r2

i

, and it has time complexity Θ(deg(f) log deg(f)).

It facilitates the repeated use of precomputed data, namely the powers of r and their
power series inverses. This data is stored in objects of type fmpz_mod_poly_radix_t and
it is computed using the function fmpz_mod_poly_radix_init(), which only depends
on r and an upper bound on the degree of f .

void _fmpz_mod_poly_radix_init(fmpz **Rpow , fmpz **Rinv ,

const fmpz *R, long lenR , long k, const fmpz_t invL ,

const fmpz_t p)

Computes powers of R of the form R2i and their Newton inverses modulo x2
i deg(R) for

i = 0, . . . , k − 1.

Assumes that the vectors Rpow[i] and Rinv[i] have space for 2i deg(R) + 1 and
2i deg(R) coefficients, respectively.

Assumes that the polynomial R is non-constant, i.e. deg(R) ≥ 1.

Assumes that the leading coefficient of R is a unit and that the argument invL is the
inverse of the coefficient modulo p.

The argument p is the modulus, which in p-adic applications is typically a prime power,
although this is not necessary. Here, we only assume that p ≥ 2.

Note that this precomputed data can be used for any F such that len(F ) ≤ 2k deg(R).

void fmpz_mod_poly_radix_init(fmpz_mod_poly_radix_t D,

const fmpz_mod_poly_t R, long degF)

Carries out the precomputation necessary to perform radix conversion to radix R for
polynomials F of degree at most degF.

Assumes that R is non-constant, i.e. deg(R) ≥ 1, and that the leading coefficient is a
unit.

void _fmpz_mod_poly_radix(fmpz **B, const fmpz *F, fmpz

**Rpow , fmpz **Rinv , long degR , long k, long i, fmpz *W,

const fmpz_t p)

This is the main recursive function used by the function fmpz_mod_poly_radix().

Assumes that, for all i = 0, . . . , N , the vector B[i] has space for deg(R) coefficients.

The variable k denotes the factors of r that have previously been counted for the polyno-
mial F , which is assumed to have length 2i+1 deg(R), possibly including zero-padding.

Assumes that W is a vector providing temporary space of length len(F ) = 2i+1 deg(R).
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The entire computation takes place over Z/pZ, where p ≥ 2 is a natural number.

Thus, the top level call will have F as in the original problem, and k = 0.

void fmpz_mod_poly_radix(fmpz_mod_poly_struct **B, const

fmpz_mod_poly_t F, const fmpz_mod_poly_radix_t D)

Given a polynomial F and the precomputed data D for the radix R, computes polyno-
mials B0, . . . , BN of degree less than deg(R) such that

F = B0 +B1R+ · · ·+BNR
N ,

where necessarily N = bdeg(F )/ deg(R)c.
Assumes that R is non-constant, i.e. deg(R) ≥ 1, and that the leading coefficient is a
unit.

24.23 Input and output

The printing options supported by this module are very similar to what can be found in
the two related modules fmpz_poly and nmod_poly.

Consider, for example, the polynomial f(x) = 5x3 + 2x + 1 in (Z/6Z)[x]. Its simple
string representation is "4 6 1 2 0 5", where the first two numbers denote the length
of the polynomial and the modulus. The pretty string representation is "5*x^3+2*x+1".

int _fmpz_mod_poly_fprint(FILE * file , const fmpz *poly ,

long len , const fmpz_t p)

Prints the polynomial (poly, len) to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_mod_poly_fprint(FILE * file , const fmpz_mod_poly_t

poly)

Prints the polynomial to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_mod_poly_fprint_pretty(FILE * file , const

fmpz_mod_poly_t poly , const char * x)

Prints the pretty representation of (poly, len) to the stream file, using the string x

to represent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_mod_poly_print(const fmpz_mod_poly_t poly)

Prints the polynomial to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.

int fmpz_mod_poly_print_pretty(const fmpz_mod_poly_t poly ,

const char * x)

Prints the pretty representation of poly to stdout, using the string x to represent the
indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive
value.
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p-Adic numbers in Qp

25.1 Introduction

The padic_t data type represents elements of Qp, stored in the form x = pvu with
u, v ∈ Z. Arithmetic operations can be carried out with respect to a context containing
the prime number p and precision N .

Independent of the context, we consider a p-adic number x = upv to be in canonical
form whenever either p - u or u = v = 0.

With a given context, i.e. a prime p and a precision N , in mind, we say a p-adic number
x = upv is reduced if either u = v = 0 or p - u and u ∈ (0, pN ).

The main idea behind the treatment of the precision is that where possible p-adic num-
bers that are input arguments to a function are interpreted as exact p-adic numbers and
the precision of the context object is only used as the precision to which the output is
to be computed.

25.2 Data structures

A p-adic number x in Qp is stored internally in the form x = upv, where u is the unit
part of x and v is its valuation.

We say such a number is in canonical form if either u = v = 0 or p - u.

When working modulo pN , we say that the number is reduced if it is in canonical form
and moreover, when u 6= 0, we have that 0 < u < pN−v.

fmpz * padic_unit(const padic_t op)

Returns the unit part of the p-adic number as a FLINT integer, which can be used as
an operand for the fmpz functions.

Note that this function is implemented as a macro.

long padic_val(const padic_t op)

Returns the valuation part of the p-adic number.

Note that this function is implemented as a macro and that the expression padic_val(op)

can be used as both an lvalue and an rvalue.
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25.3 Context

At the bare minimum, a context object for p-adic arithmetic contains the prime number
p, the precision N and the printing mode.

In addition, various other useful objects may be stored in the context, such as a pre-
computed double inverse of the prime p or various powers of p near pN .

void padic_ctx_init(padic_ctx_t ctx , const fmpz_t p, long

N, enum padic_print_mode mode)

Initialises the context ctx with prime p, precision N , and printing mode.

Assumes that p is a prime.

Assumes that the printing mode is one of PADIC_TERSE, PADIC_SERIES, or
PADIC_VAL_UNIT. Using the example x = 7−112 in Q7, these behave as follows:

• In PADIC_TERSE mode, a p-adic number is printed in the same way as a rational
number, e.g. 12/7.

• In PADIC_SERIES mode, a p-adic number is printed digit by digit, e.g. 5*7^-1 + 1.

• In PADIC_VAL_UNIT mode, a p-adic number is printed showing the valuation and
unit parts separately, e.g. 12*7^-1.

This function also carries out some relevant precomputation for arithmetic in Qp/(p
N )

such as powers of p close to pN .

void padic_ctx_clear(padic_ctx_t ctx)

Clears all memory that has been allocated as part of the context.

int _padic_ctx_pow_ui(fmpz_t rop , ulong e, const

padic_ctx_t ctx)

Sets rop to pe as efficiently as possible.

The return value is non-zero, it is the responsibility of the caller to clear the returned
integer.

N.B. Expects rop to be an uninitialised fmpz_t.

25.4 Memory management

void _padic_init(padic_t rop)

void padic_init(padic_t rop , const padic_ctx_t ctx)

Initialises the p-adic number rop.

void _padic_clear(padic_t rop)

void padic_clear(padic_t rop , const padic_ctx_t ctx)

Clears all memory used by the p-adic number rop.

void _padic_canonicalise(padic_t rop , const padic_ctx_t ctx)
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Brings the p-adic number rop into canonical form.

That is to say, ensures that either u = v = 0 or p - u. There is no reduction modulo a
power of p.

void _padic_reduce(padic_t rop , const padic_ctx_t ctx)

Given a p-adic number rop in canonical form, reduces it modulo pN .

void padic_reduce(padic_t rop , const padic_ctx_t ctx)

Ensures that the p-adic number rop is reduced with respect to the given context.

25.5 Randomisation

void padic_randtest(padic_t rop , flint_rand_t state , const

padic_ctx_t ctx)

Sets rop to a random p-adic number modulo pN with valuation in the range [−dN/10e , N),
[N − d−N/10e , N), or [−10, 0) as N is positive, negative or zero.

void padic_randtest_not_zero(padic_t rop , flint_rand_t

state , const padic_ctx_t ctx)

Sets rop to a random non-zero p-adic number modulo pN , where the range of the valu-
ation is as for the function padic_randtest().

25.6 Assignments and conversions

Between many data types there are two types of conversions, an exact version presented
in a function prefixed with an underscore and a version modulo pN .

void _padic_set(padic_t rop , const padic_t op)

Sets rop to an exact copy of op.

void padic_set(padic_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets rop to the value of op reduced modulo pN .

void _padic_set_si(padic_t rop , long op, const padic_ctx_t

ctx)

Sets the p-adic number rop to the long integer op.

void padic_set_si(padic_t rop , long op, const padic_ctx_t

ctx)

Sets the p-adic number rop to the long integer op reduced modulo pN .

void _padic_set_ui(padic_t rop , ulong op, const padic_ctx_t

ctx)

Sets the p-adic number rop to the unsigned long integer op.

void padic_set_ui(padic_t rop , ulong op, const padic_ctx_t

ctx)

Sets the p-adic number rop to the unsigned long integer op reduced modulo pN .
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void _padic_set_fmpz(padic_t rop , const fmpz_t op, const

padic_ctx_t ctx)

Sets the p-adic number rop to the integer op.

void padic_set_fmpz(padic_t rop , const fmpz_t op, const

padic_ctx_t ctx)

Sets the p-adic number rop to the integer op reduced modulo pN .

void padic_set_fmpq(padic_t rop , const fmpq_t op, const

padic_ctx_t ctx)

Sets rop to the rational op reduced modulo pN .

void _padic_set_mpz(padic_t rop , const mpz_t op, const

padic_ctx_t ctx)

Sets the p-adic number rop to the MPIR integer op.

void padic_set_mpz(padic_t rop , const mpz_t op, const

padic_ctx_t ctx)

Sets the p-adic number rop to the MPIR integer op reduced modulo pN .

void padic_set_mpq(padic_t rop , const mpq_t op, const

padic_ctx_t ctx)

Sets rop to the MPIR rational op reduced modulo pN .

void _padic_get_fmpz(fmpz_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the integer rop to the exact p-adic integer op.

If op is not a p-adic integer, sets rop to zero.

void padic_get_fmpz(fmpz_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the integer rop to the p-adic integer op reduced modulo pN .

If op is not a p-adic integer, sets rop to zero.

void _padic_get_fmpq(fmpq_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the rational rop to the exact p-adic integer op.

void padic_get_fmpq(fmpq_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the rational rop to the p-adic integer op reduced modulo pN .

void _padic_get_mpz(mpz_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the MPIR integer rop to the exact p-adic integer op.

If op is not a p-adic integer, sets rop to zero.

void padic_get_mpz(mpz_t rop , const padic_t op, const

padic_ctx_t ctx)
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Sets the MPIR integer rop to the p-adic integer op, reduced modulo pN .

If op is not a p-adic integer, sets rop to zero.

void _padic_get_mpq(mpq_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the MPIR rational rop to the exact value of op.

void padic_get_mpq(mpq_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets the MPIR rational rop to the value of op, reduced modulo pN .

void padic_swap(padic_t op1 , padic_t op2)

Swaps the two p-adic numbers op1 and op2.

void padic_zero(padic_t rop)

Sets the p-adic number rop to zero.

void _padic_one(padic_t rop)

Sets the p-adic number rop to one.

void padic_one(padic_t rop , const padic_ctx_t ctx)

Sets the p-adic number rop to one, reduced modulo pN .

25.7 Arithmetic operations

void _padic_add(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the exact sum of op1 and op2.

void padic_add(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the sum of op1 and op2 modulo pN .

Assumes that the input arguments are reduced modulo pN and guarantees that the
output will be, too.

void _padic_sub(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the exact difference of op1 and op2.

void padic_sub(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the difference of op1 and op2 modulo pN .

Assumes that the input arguments are reduced modulo pN and guarantees that the
output will be, too.

void _padic_neg(padic_t rop , const padic_t op)

Sets rop to the exact additive inverse of op.



224 padic

void padic_neg(padic_t rop , const padic_t op, const

padic_ctx_t ctx)

Sets rop to the additive inverse of op.

Assumes that the input arguments are reduced modulo pN and guarantees that the
output will be, too.

void _padic_mul(padic_t rop , const padic_t op1 , const

padic_t op2)

Sets rop to the product of op1 and op2.

void padic_mul(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the product of op1 and op2, reduced modulo pN .

void padic_shift(padic_t rop , const padic_t op, long v,

const padic_ctx_t ctx)

Sets rop to the product of op and pv, reduced modulo pN .

void padic_div(padic_t rop , const padic_t op1 , const

padic_t op2 , const padic_ctx_t ctx)

Sets rop to the quotient of op1 and op2, reduced modulo pN .

void _padic_inv_precompute(padic_inv_t S, const fmpz_t p,

long N)

Pre-computes some data and allocates temporary space for p-adic inversion using Hensel
lifting.

Assumes that N ≥ 2.

This implies that n = dlog2Ne+ 1 ≥ 2.

void _padic_inv_clear(padic_inv_t S)

Frees the memory used by S.

void _padic_inv_precomp(fmpz_t rop , const fmpz_t op,

padic_inv_t S)

Sets rop to the inverse of op modulo pN , assuming that op is a unit and N ≥ 1.

In the current implementation, allows aliasing, but this might change in future versions.

Uses some pre-computed data S that can be computed by calling the function
_padic_inv_precompute(). Note that this object is not declared const and in fact it
carries a field providing temporary work space. This allows repeated calls of this function
to avoid repeated memory allocations, as used e.g. by the function padic_log().

void _padic_inv(fmpz_t rop , const fmpz_t op, const fmpz_t

p, long N)

Sets rop to the inverse of op modulo pN , assuming that op is a unit and N ≥ 1.

In the current implementation, allows aliasing, but this might change in future versions.

void padic_inv(padic_t rop , const padic_t op, const

padic_ctx_t ctx)
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Computes the inverse of op modulo pN .

Suppose that op is given as x = upv. Raises an abort signal if v < −N . Otherwise,
computes the inverse of u modulo pN+v.

This function employs Hensel lifting of an inverse modulo p.

int padic_sqrt(padic_rop , const padic_t op, const

padic_ctx_t ctx)

Returns whether op is a p-adic square. If this is the case, sets rop to one of the square
roots; otherwise, the value of rop is undefined.

We have the following theorem:

Let u ∈ Z×. Then u is a square if and only if u mod p is a square in Z/pZ, for p > 2, or
if u mod 8 is a square in Z/8Z, for p = 2.

void padic_pow_si(padic_t rop , const padic_t op, long e,

const padic_ctx_t ctx)

Sets rop to op raised to the power e.

Assumes that some computations involving e and the valuation of op do not overflow in
the long range.

Note that if the input x = pvu is defined modulo pN then xe = pevue is defined modulo
pN+(e−1)v, which is a precision loss in case v < 0.

25.8 Comparison

int _padic_is_zero(const padic_t op, const padic_ctx_t ctx)

Returns whether op is zero.

int padic_is_zero(const padic_t op , const padic_ctx_t ctx)

Returns whether op is zero modulo pN .

int _padic_is_one(const padic_t op)

Returns whether op is one.

int padic_is_one(const padic_t op, const padic_ctx_t ctx)

Returns whether op is one modulo pN .

int _padic_equal(const padic_t op1 , const padic_t op2)

Returns whether op1 and op2 are equal.

int padic_equal(const padic_t op1 , const padic_t op2 , const

padic_ctx_t ctx)

Returns whether op1 and op2 are equal modulo pN .

25.9 Special functions

void _padic_teichmuller(fmpz_t rop , const fmpz_t op, const

fmpz_t p, long N)
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Computes the Teichmuller lift of the p-adic unit op.

Assumes that p is a prime and N ≥ 1.

Supports aliasing between rop and op.

void padic_teichmuller(padic_t rop , const padic_t op , const

padic_ctx_t ctx)

Computes the Teichmuller lift of the p-adic unit op.

If op is a p-adic integer divisible by p, sets rop to zero, which satisfies tp−t = 0, although
it is clearly not a (p− 1)-st root of unity.

If op has negative valuation, raises an abort signal.

void _padic_exp_naive(padic_t y, const padic_t x, const

padic_ctx_t ctx)

Returns the p-exponential function evaluated at op, reduced modulo pN .

Assumes that x 6= 0 and that exp(x) converges.

void _padic_exp_rectangular(padic_t y, const padic_t x,

const padic_ctx_t ctx)

Returns the p-exponential function evaluated at op, reduced modulo pN .

Assumes that x 6= 0 and that exp(x) converges.

void _padic_exp_balanced(padic_t y, const padic_t x, const

padic_ctx_t ctx)

Returns the p-exponential function evaluated at op, reduced modulo pN .

Assumes that x 6= 0 and that exp(x) converges.

int padic_exp(padic_t y, const padic_t x, const padic_ctx_t

ctx)

Returns whether the p-adic exponential function converges at the p-adic number x, and
if so sets y to its value.

The p-adic exponential function is defined by the usual series

expp(x) =

∞∑
i=0

xi

i!

but this only converges only when ordp(x) > 1/(p−1). For elements x ∈ Qp, this means
that ordp(x) ≥ 1 when p ≥ 3 and ord2(x) ≥ 2 when p = 2.

int padic_exp_rectangular(padic_t y, const padic_t x, const

padic_ctx_t ctx)

Returns whether the p-adic exponential function converges at the p-adic number x, and
if so sets y to its value.

Uses a rectangular splitting algorithm to evaluate the series expression of exp(x) mod pN .

int padic_exp_balanced(padic_t y, const padic_t x, const

padic_ctx_t ctx)
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Returns whether the p-adic exponential function converges at the p-adic number x, and
if so sets y to its value.

Uses a balanced approach, balancing the size of chunks of x with the valuation and hence
the rate of convergence, which results in a quasi-linear algorithm in N , for fixed p.

long _padic_log_bound(long v, long N, const fmpz_t p)

Returns b such that for all i ≥ b we have

iv − ordp(i) ≥ N

where v ≥ 1.

Assumes that 1 ≤ v < N or 2 ≤ v < N when p is odd or p = 2, respectively.

Assumes that N < 2f−2 where f is FLINT_BITS.

void _padic_log(fmpz_t z, const fmpz_t y, long v, const

fmpz_t p, long N)

void _padic_log_rectangular(fmpz_t z, const fmpz_t y, long

v, const fmpz_t p, long N)

void _padic_log_satoh(fmpz_t z, const fmpz_t y, long v,

const fmpz_t p, long N)

void _padic_log_balanced(fmpz_t z, const fmpz_t y, long v,

const fmpz_t p, long N)

Computes

z = −
∞∑
i=1

yi

i
(mod pN ),

reduced modulo pN .

Note that this can be used to compute the p-adic logarithm via the equation

log(x) =

∞∑
i=1

(−1)i−1
(x− 1)i

i

= −
∞∑
i=1

(1− x)i

i
.

Assumes that y = 1−x is non-zero and that v = ordp(y) is at least 1 when p is odd and
at least 2 when p = 2 so that the series converges.

Assumes that v < N , and hence in particular N ≥ 2.

Does not support aliasing between y and z.

int padic_log(padic_t rop , const padic_t op, const

padic_ctx_t ctx)

Returns whether the p-adic logarithm function converges at the p-adic number op, and
if so sets rop to its value.

The p-adic logarithm function is defined by the usual series

logp(x) =

∞∑
i=1

(−1)i−1
(x− 1)i

i

but this only converges when ordp(x) is at least 2 or 1 when p = 2 or p > 2, respectively.
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int padic_log_rectangular(padic_t rop , const padic_t op,

const padic_ctx_t ctx)

Returns whether the p-adic logarithm function converges at the p-adic number op, and
if so sets rop to its value.

Uses a rectangular splitting algorithm to evaluate the series expression of log(x) mod pN .

int padic_log_satoh(padic_t rop , const padic_t op , const

padic_ctx_t ctx)

Returns whether the p-adic logarithm function converges at the p-adic number op, and
if so sets rop to its value.

Uses an algorithm based on a result of Satoh, Skjernaa and Taguchi that ordp
(
ap

k−1
)
>

k, which implies that

log(a) ≡ p−k
(

log
(
ap

k)
(mod pN+k)

)
(mod pN ).

int padic_log_balanced(padic_t rop , const padic_t op, const

padic_ctx_t ctx)

Returns whether the p-adic logarithm function converges at the p-adic number op, and
if so sets rop to its value.

ulong padic_val_fac_ui2(ulong N)

Computes the 2-adic valuation of n!.

ulong padic_val_fac_ui(ulong N, const fmpz_t p)

Computes the p-adic valuation of n!.

25.10 Input and output

char * _padic_get_str(char * str , const padic_t op, const

padic_ctx_t ctx)

Returns the string representation of the p-adic number op, according to the printing
mode set in the context.

If str is NULL then a new block of memory is allocated and a pointer to this is returned.
Otherwise, it is assumed that the string str is large enough to hold the representation
and it is also the return value.

Note that a negative unit part of op and the printing mode SERIES are not compatible.

char * padic_get_str(char * str , const padic_t op, const

padic_ctx_t ctx)

Returns the string representation of the p-adic number op reduced modulo pN , according
to the printing mode set in the context.

If str is NULL then a new block of memory is allocated and a pointer to this is returned.
Otherwise, it is assumed that the string str is large enough to hold the representation
and it is also the return value.

int padic_fprint(FILE * file , const padic_t op, const

padic_ctx_t ctx)

Prints the string representation of the p-adic number op to the stream file.

In the current implementation, always returns 1.
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int padic_print(const padic_t op, const padic_ctx_t ctx)

Prints the string representation of the p-adic number op to the stream stdout.

In the current implementation, always returns 1.

void padic_debug(const padic_t op, const padic_ctx_t ctx)

Prints debug information about op to the stream stdout.





§26. arith

Arithmetic functions

26.1 Introduction

This module implements arithmetic functions, number-theoretic and combinatorial spe-
cial number sequences and polynomials.

26.2 Primorials

void arith_primorial(fmpz_t res , long n)

Sets res to “n primorial” or n#, the product of all prime numbers less than or equal to
n.

26.3 Harmonic numbers

void _arith_harmonic_number(fmpz_t num , fmpz_t den , long n)

Sets (num, den) to the reduced numerator and denominator of the n-th harmonic num-
ber Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n. The result is zero if n ≤ 0.

Table lookup is used for Hn whose numerator and denominator fit in single limb. For
larger n, the function flint_mpn_harmonic_odd_balanced() is used.

void arith_harmonic_number(fmpq_t x, long n)

Sets x to the n-th harmonic number. This function is equivalent to _arith_harmonic_number
apart from the output being a single fmpq_t variable.

26.4 Stirling numbers

void arith_stirling_number_1u(fmpz_t s, long n, long k)

void arith_stirling_number_1(fmpz_t s, long n, long k)

void arith_stirling_number_2(fmpz_t s, long n, long k)
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Sets s to S(n, k) where S(n, k) denotes an unsigned Stirling number of the first kind
|S1(n, k)|, a signed Stirling number of the first kind S1(n, k), or a Stirling number of the
second kind S2(n, k). The Stirling numbers are defined using the generating functions

x(n) =

n∑
k=0

S1(n, k)xk

x(n) =

n∑
k=0

|S1(n, k)|xk

xn =

n∑
k=0

S2(n, k)x(k)

where x(n) = x(x− 1)(x− 2) · · · (x−n+ 1) is a falling factorial and x(n) = x(x+ 1)(x+
2) · · · (x+ n− 1) is a rising factorial. S(n, k) is taken to be zero if n < 0 or k < 0.

These three functions are useful for computing isolated Stirling numbers efficiently. To
compute a range of numbers, the vector or matrix versions should generally be used.

void arith_stirling_number_1u(fmpz * row , long n, long klen)

void arith_stirling_number_1(fmpz * row , long n, long klen)

void arith_stirling_number_2(fmpz * row , long n, long klen)

Computes the row of Stirling numbers S(n,0), S(n,1), S(n,2), ..., S(n,klen-1).

To compute a full row, this function can be called with klen = n+1. It is assumed that
klen is at most n+ 1.

void arith_stirling_number_1u_vec_next(fmpz * row , fmpz *

prev , long n, long klen)

void arith_stirling_number_1_vec_next(fmpz * row , fmpz *

prev , long n, long klen)

void arith_stirling_number_2_vec_next(fmpz * row , fmpz *

prev , long n, long klen)

Given the vector prev containing a row of Stirling numbers S(n-1,0), S(n-1,1),

S(n-1,2), ..., S(n-1,klen-2), computes and stores in the row argument S(n,0),

S(n,1), S(n,2), ..., S(n,klen-1). It is assumed that klen is at most n+ 1.

The row and prev arguments are permitted to be the same, meaning that the row will
be updated in-place.

void arith_stirling_matrix_1u(fmpz_mat_t mat)

void arith_stirling_matrix_1(fmpz_mat_t mat)

void arith_stirling_matrix_2(fmpz_mat_t mat)

For an arbitrary m-by-n matrix, writes the truncation of the infinite Stirling number
matrix

row 0 : S(0,0)

row 1 : S(1,0), S(1,1)

row 2 : S(2,0), S(2,1), S(2,2)

row 3 : S(3,0), S(3,1), S(3,2), S(3,3)
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up to row m− 1 and column n− 1 inclusive. The upper triangular part of the matrix is
zeroed.

For any n, the S1 and S2 matrices thus obtained are inverses of each other.

26.5 Bell numbers

void arith_bell_number(fmpz_t b, ulong n)

Sets b to the Bell number Bn, defined as the number of partitions of a set with n
members. Equivalently, Bn =

∑n
k=0 S2(n, k) where S2(n, k) denotes a Stirling number

of the second kind.

This function automatically selects between table lookup, binary splitting, and the mul-
timodular algorithm.

void arith_bell_number_bsplit(fmpz_t res , ulong n)

Computes the Bell number Bn by evaluating a precise truncation of the series Bn =
e−1

∑∞
k=0

kn

k! using binary splitting.

void arith_bell_number_multi_mod(fmpz_t res , ulong n)

Computes the Bell number Bn using a multimodular algorithm.

This function evaluates the Bell number modulo several limb-size primes using
arith_bell_number_nmod and reconstructs the integer value using the fast Chinese
remainder algorithm. A bound for the number of needed primes is computed using
arith_bell_number_size.

void arith_bell_number_vec(fmpz * b, long n)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive. Automatically switches
between the recursive and multi_mod algorithms depending on the size of n.

void arith_bell_number_vec_recursive(fmpz * b, long n)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive. This function uses table
lookup if Bn−1 fits in a single word, and a standard triangular recurrence otherwise.

void arith_bell_number_vec_multi_mod(fmpz * b, long n)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive.

This function evaluates the Bell numbers modulo several limb-size primes using
arith_bell_number_nmod_vec and reconstructs the integer values using the fast Chi-
nese remainder algorithm. A bound for the number of needed primes is computed using
arith_bell_number_size.

mp_limb_t bell_number_nmod(ulong n, nmod_t mod)

Computes the Bell number Bn modulo a prime p given by mod

After handling special cases, we use the formula

Bn =

n∑
k=0

(n− k)n

(n− k)!

k∑
j=0

(−1)j

j!
.

We arrange the operations in such a way that we only have to multiply (and not divide)
in the main loop. As a further optimisation, we use sieving to reduce the number of
powers that need to be evaluated. This results in O(n) memory usage.

The divisions by factorials require n > p, so we fall back to calling
bell_number_nmod_vec_recursive and reading off the last entry when p ≤ n.
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void arith_bell_number_nmod_vec(mp_ptr b, long n, nmod_t

mod)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive modulo a prime p given by
mod. Automatically switches between the recursive and series algorithms depending
on the size of n and whether p is large enough for the series algorithm to work.

void arith_bell_number_nmod_vec_recursive(mp_ptr b, long n,

nmod_t mod)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive modulo a prime p given
by mod. This function uses table lookup if Bn−1 fits in a single word, and a standard
triangular recurrence otherwise.

void arith_bell_number_nmod_vec_series(mp_ptr b, long n,

nmod_t mod)

Sets b to the vector of Bell numbers B0, B1, . . . , Bn−1 inclusive modulo a prime p given
by mod. This function expands the exponential generating function

∞∑
k=0

Bn
n!
xn = exp(ex − 1).

We require that p ≥ n.

double arith_bell_number_size(ulong n)

Returns b such that Bn < 2bbc, using the inequality

Bn <

(
0.792n

log(n+ 1)

)n
which is given in [5].

26.6 Bernoulli numbers and polynomials

void _arith_bernoulli_number(fmpz_t num , fmpz_t den , ulong

n)

Sets (num, den) to the reduced numerator and denominator of the n-th Bernoulli num-
ber. As presently implemented, this function simply calls
_arith_bernoulli_number_zeta.

void arith_bernoulli_number(fmpq_t x, ulong n)

Sets x to the n-th Bernoulli number. This function is equivalent to
_arith_bernoulli_number apart from the output being a single fmpq_t variable.

void _arith_bernoulli_number_vec(fmpz * num , fmpz * den ,

long n)

Sets the elements of num and den to the reduced numerators and denominators of the
Bernoulli numbers B0, B1, B2, . . . , Bn−1 inclusive. This function automatically chooses
between the recursive, zeta and multi_mod algorithms according to the size of n.

void arith_bernoulli_number_vec(fmpq * x, long n)

Sets the x to the vector of Bernoulli numbers B0, B1, B2, . . . , Bn−1 inclusive. This func-
tion is equivalent to _arith_bernoulli_number_vec apart from the output being a
single fmpq vector.
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void arith_bernoulli_number_denom(fmpz_t den , ulong n)

Sets den to the reduced denominator of the n-th Bernoulli number Bn. For even n,
the denominator is computed as the product of all primes p for which p − 1 divides
n; this property is a consequence of the von Staudt-Clausen theorem. For odd n, the
denominator is trivial (den is set to 1 whenever Bn = 0). The initial sequence of values
smaller than 232 are looked up directly from a table.

double arith_bernoulli_number_size(ulong n)

Returns b such that |Bn| < 2bbc, using the inequality

|Bn| <
4n!

(2π)n

and n! ≤ (n + 1)n+1e−n. No special treatment is given to odd n. Accuracy is not
guaranteed if n > 1014.

void arith_bernoulli_polynomial(fmpq_poly_t poly , ulong n)

Sets poly to the Bernoulli polynomial of degree n, Bn(x) =
∑n
k=0

(
n
k

)
Bkx

n−k where Bk
is a Bernoulli number. This function basically calls arith_bernoulli_number_vec and
then rescales the coefficients efficiently.

void _arith_bernoulli_number_zeta(fmpz_t num , fmpz_t den ,

ulong n)

Sets (num, den) to the reduced numerator and denominator of the n-th Bernoulli num-
ber.

This function first computes the exact denominator and a bound for the size of the
numerator. It then computes an approximation of |Bn| = 2n!ζ(n)/(2π)n as a floating-
point number and multiplies by the denominator to to obtain a real number that rounds
to the exact numerator. For tiny n, the numerator is looked up from a table to avoid
unnecessary overhead.

void _arith_bernoulli_number_vec_recursive(fmpz * num , fmpz

* den , long n)

Sets the elements of num and den to the reduced numerators and denominators of
B0, B1, B2, . . . , Bn−1 inclusive.

The first few entries are computed using arith_bernoulli_number, and then Ramanu-
jan’s recursive formula expressing Bm as a sum over Bk for k congruent to m modulo 6
is applied repeatedly.

To avoid costly GCDs, the numerators are transformed internally to a common de-
nominator and all operations are performed using integer arithmetic. This makes the
algorithm fast for small n, say n < 1000. The common denominator is calculated directly
as the primorial of n+ 1.

void _arith_bernoulli_number_vec_zeta(fmpz * num , fmpz *

den , long n)

Sets the elements of num and den to the reduced numerators and denominators of
B0, B1, B2, . . . , Bn−1 inclusive. Uses repeated direct calls to
_arith_bernoulli_number_zeta.

void _arith_bernoulli_number_vec_multi_mod(fmpz * num , fmpz

* den , long n)
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Sets the elements of num and den to the reduced numerators and denominators of
B0, B1, B2, . . . , Bn−1 inclusive. Uses the generating function

x2

cosh(x)− 1
=

∞∑
k=0

(2− 4k)B2k

(2k)!
x2k

which is evaluated modulo several limb-size primes using nmod_poly arithmetic to yield
the numerators of the Bernoulli numbers after multiplication by the denominators and
CRT reconstruction. This formula, given (incorrectly) in [8], saves about half of the
time compared to the usual generating function x/(ex − 1) since the odd terms vanish.

26.7 Euler numbers and polynomials

Euler numbers are the integers En defined by

1

cosh(t)
=

∞∑
n=0

En
n!
tn.

With this convention, the odd-indexed numbers are zero and the even ones alternate
signs, viz. E0, E1, E2, . . . = 1, 0,−1, 0, 5, 0,−61, 0, 1385, 0, . . .. The corresponding Euler
polynomials are defined by

2ext

et + 1
=

∞∑
n=0

En(x)

n!
tn.

void arith_euler_number(fmpz_t res , ulong n)

Sets res to the Euler number En. Currently calls _arith_euler_number_zeta.

void arith_euler_number_vec(fmpz * res , long n)

Computes the Euler numbers E0, E1, . . . , En−1 for n ≥ 0 and stores the result in res,
which must be an initialised fmpz vector of sufficient size.

This function evaluates the even-index Ek modulo several limb-size primes using the
generating function and nmod_poly arithmetic. A tight bound for the number of needed
primes is computed using arith_euler_number_size, and the final integer values are
recovered using balanced CRT reconstruction.

double arith_euler_number_size(ulong n)

Returns b such that |En| < 2bbc, using the inequality

|En| <
2n+2n!

πn+1

and n! ≤ (n + 1)n+1e−n. No special treatment is given to odd n. Accuracy is not
guaranteed if n > 1014.

void euler_polynomial(fmpq_poly_t poly , ulong n)

Sets poly to the Euler polynomial En(x). Uses the formula

En(x) =
2

n+ 1

(
Bn+1(x)− 2n+1Bn+1

(x
2

))
,

with the Bernoulli polynomial Bn+1(x) evaluated once using bernoulli_polynomial

and then rescaled.
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void _arith_euler_number_zeta(fmpz_t res , ulong n)

Sets res to the Euler number En. For even n, this function uses the relation

|En| =
2n+2n!

πn+1
L(n+ 1)

where L(n+ 1) denotes the Dirichlet L-function with character χ = {0, 1, 0,−1}.

26.8 Legendre polynomials

void arith_legendre_polynomial(fmpq_poly_t poly , ulong n)

Sets poly to the n-th Legendre polynomial

Pn(x) =
1

2nn!

dn

dxn

[(
x2 − 1

)n]
.

The coefficients are calculated using a hypergeometric recurrence. To improve perfor-
mance, the common denominator is computed in one step and the coefficients are evalu-
ated using integer arithmetic. The denominator is given by gcd(n!, 2n) = 2bn/2c+bn/4c+....

void arith_chebyshev_t_polynomial(fmpz_poly_t poly , ulong n)

Sets poly to the Chebyshev polynomial of the first kind Tn(x), defined formally by
Tn(x) = cos(n cos−1(x)). The coefficients are calculated using a hypergeometric recur-
rence.

void arith_chebyshev_u_polynomial(fmpz_poly_t poly , ulong n)

Sets poly to the Chebyshev polynomial of the first kind Un(x), which satisfies (n +
1)Un(x) = T ′n+1(x). The coefficients are calculated using a hypergeometric recurrence.

26.9 Multiplicative functions

void arith_euler_phi(fmpz_t res , const fmpz_t n)

Sets res to the Euler totient function φ(n), counting the number of positive integers less
than or equal to n that are coprime to n.

int arith_moebius_mu(const fmpz_t n)

Computes the Moebius function µ(n), which is defined as µ(n) = 0 if n has a prime
factor of multiplicity greater than 1, µ(n) = −1 if n has an odd number of distinct
prime factors, and µ(n) = 1 if n has an even number of distinct prime factors. By
convention, µ(0) = 0.

void arith_divisor_sigma(fmpz_t res , const fmpz_t n, ulong

k)

Sets res to σk(n), the sum of kth powers of all divisors of n.

void arith_divisors(fmpz_poly_t res , const fmpz_t n)

Set the coefficients of the polynomial res to the divisors of n, including 1 and n itself,
in ascending order.

void arith_ramanujan_tau(fmpz_t res , const fmpz_t n)
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Sets res to the Ramanujan tau function τ(n) which is the coefficient of qn in the series

expansion of f(q) = q
∏
k≥1
(
1− qk

)24
.

We factor n and use the identity τ(pq) = τ(p)τ(q) along with the recursion τ(pr+1) =
τ(p)τ(pr)− p11τ(pr−1) for prime powers.

The base values τ(p) are obtained using the function arith_ramanujan_tau_series().
Thus the speed of arith_ramanujan_tau() depends on the largest prime factor of n.

Future improvement: optimise this function for small n, which could be accomplished
using a lookup table or by calling arith_ramanujan_tau_series() directly.

void arith_ramanujan_tau_series(fmpz_poly_t res , long n)

Sets res to the polynomial with coefficients τ(0), τ(1), . . . , τ(n− 1), giving the initial n

terms in the series expansion of f(q) = q
∏
k≥1
(
1− qk

)24
.

We use the theta function identity

f(q) = q

(∑
k≥0

(−1)k(2k + 1)qk(k+1)/2

)8

which is evaluated using three squarings. The first squaring is done directly since the
polynomial is very sparse at this point.

26.10 Cyclotomic polynomials

void _arith_cyclotomic_polynomial(fmpz * a, ulong n, mp_ptr

factors , long num_factors , ulong phi)

Sets a to the lower half of the cyclotomic polynomial Φn(x), given n ≥ 3 which must be
squarefree.

A precomputed array containing the prime factors of n must be provided, as well as the
value of the Euler totient function φ(n) as phi. If n is even, 2 must be the first factor
in the list.

The degree of Φn(x) is exactly φ(n). Only the low (φ(n) + 1)/2 coefficients are written;
the high coefficients can be obtained afterwards by copying the low coefficients in reverse
order, since Φn(x) is a palindrome for n 6= 1.

We use the sparse power series algorithm described as Algorithm 4 [3]. The algorithm
is based on the identity

Φn(x) =
∏
d|n

(xd − 1)µ(n/d).

Treating the polynomial as a power series, the multiplications and divisions can be done
very cheaply using repeated additions and subtractions. The complexity is O(2kφ(n))
where k is the number of prime factors in n.

To improve efficiency for small n, we treat the fmpz coefficients as machine integers when
there is no risk of overflow. The following bounds are given in Table 6 of [3]:

For n < 10163195, the largest coefficient in any Φn(x) has 27 bits, so machine arithmetic
is safe on 32 bits.

For n < 169828113, the largest coefficient in any Φn(x) has 60 bits, so machine arithmetic
is safe on 64 bits.
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Further, the coefficients are always ±1 or 0 if there are exactly two prime factors, so in
this case machine arithmetic can be used as well.

Finally, we handle two special cases: if there is exactly one prime factor n = p, then
Φn(x) = 1 + x + x2 + . . . + xn−1, and if n = 2m, we use Φn(x) = Φm(−x) to fall back
to the case when n is odd.

void arith_cyclotomic_polynomial(fmpz_poly_t poly , ulong n)

Sets poly to the nth cyclotomic polynomial, defined as

Φn(x) =
∏
ω

(x− ω)

where ω runs over all the nth primitive roots of unity.

We factor n into n = qs where q is squarefree, and compute Φq(x). Then Φn(x) =
Φq(x

s).

void _arith_cos_minpoly(fmpz * coeffs , long d, ulong n)

For n ≥ 1, sets (coeffs, d+1) to the minimal polynomial Ψn(x) of cos(2π/n), scaled
to have integer coefficients by multiplying by 2d (2d−1 when n is a power of two).

The polynomial Ψn(x) is described in [31]. As proved in that paper, the roots of Ψn(x)
for n ≥ 3 are cos(2πk/n) where 0 ≤ k < d and where gcd(k, n) = 1.

To calculate Ψn(x), we compute the roots numerically with MPFR and use a balanced
product tree to form a polynomial with fixed-point coefficients, i.e. an approximation of
2p2dΨn(x).

To determine the precision p, we note that the coefficients in
∏d
i=1(x−α) can be bounded

by the central coefficient in the binomial expansion of (x+ 1)d.

When n is an odd prime, we use a direct formula for the coefficients (http://mathworld.
wolfram.com/TrigonometryAngles.html).

void arith_cos_minpoly(fmpz_poly_t poly , ulong n)

Sets poly to the minimal polynomial Ψn(x) of cos(2π/n), scaled to have integer coeffi-
cients. This polynomial has degree 1 if n = 1 or n = 2, and degree φ(n)/2 otherwise.

We allow n = 0 and define Ψ0 = 1.

26.11 Swinnerton-Dyer polynomials

void arith_swinnerton_dyer_polynomial(fmpz_poly_t poly ,

ulong n)

Sets poly to the Swinnerton-Dyer polynomial Sn, defined as the integer polynomial

Sn =
∏

(x±
√

2±
√

3±
√

5± . . .±√pn)

where pn denotes the n-th prime number and all combinations of signs are taken. This
polynomial has degree 2n and is irreducible over the integers.

26.12 Landau’s function

void arith_landau_function_vec(fmpz * res , long len)

http://mathworld.wolfram.com/TrigonometryAngles.html
http://mathworld.wolfram.com/TrigonometryAngles.html
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Computes the first len values of Landau’s function g(n) starting with g(0). Landau’s
function gives the largest order of an element of the symmetric group Sn.

Implements the “basic algorithm” given in [11]. The running time is O(n3/2/
√

log n).

26.13 Dedekind sums

Most of the definitions and relations used in the following section are given by Apostol
[2]. The Dedekind sum s(h, k) is defined for all integers h and k as

s(h, k) =

k−1∑
i=1

((
i

k

))((
hi

k

))

where

((x)) =

{
x− bxc − 1/2 if x ∈ Q \ Z
0 if x ∈ Z.

If 0 < h < k and (h, k) = 1, this reduces to

s(h, k) =

k−1∑
i=1

i

k

(
hi

k
−
⌊
hi

k

⌋
− 1

2

)
.

The main formula for evaluating the series above is the following. Letting r0 = k,
r1 = h, r2, r3, . . . , rn, rn+1 = 1 be the remainder sequence in the Euclidean algorithm
for computing GCD of h and k,

s(h, k) =
1− (−1)n

8
− 1

12

n+1∑
i=1

(−1)i
(

1 + r2i + r2i−1
riri−1

)
.

Writing s(h, k) = p/q, some useful properties employed are |s| < k/12, q|6k and 2|p| <
k2.

void arith_dedekind_sum_naive(fmpq_t s, const fmpz_t h,

const fmpz_t k)

Computes s(h, k) for arbitrary h and k using a straightforward implementation of the
defining sum using fmpz arithmetic. This function is slow except for very small k and is
mainly intended to be used for testing purposes.

double arith_dedekind_sum_coprime_d(double h, double k)

Returns an approximation of s(h, k) computed by evaluating the remainder sequence
sum using double-precision arithmetic. Assumes that 0 < h < k and (h, k) = 1, and
that h, k and their remainders can be represented exactly as doubles, e.g. k < 253.

We give a rough error analysis with IEEE double precision arithmetic, assuming 2k2 <
253. By assumption, the terms in the sum evaluate exactly apart from the division.
Thus each term is bounded in magnitude by 2k and its absolute error is bounded by
k2−52. By worst-case analysis of the Euclidean algorithm, we also know that no more
than 40 terms will be added.

It follows that the absolute error is at most Ck2−53 for some constant C. If we multiply
the output by 6k in order to obtain an integer numerator, the order of magnitude of the
error is around 6Ck22−53, so rounding to the nearest integer gives a correct numerator
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whenever k < 226−d for some small number of guard bits d. A computation has shown
that d = 5 is sufficient, i.e. this function can be used for exact computation when
k < 221 ≈ 2× 106. This bound can likely be improved.

void arith_dedekind_sum_coprime_large(fmpq_t s, const

fmpz_t h, const fmpz_t k)

Computes s(h, k) for h and k satisfying 0 ≤ h ≤ k and (h, k) = 1. This function effec-
tively evaluates the remainder sequence sum using fmpz arithmetic, without optimising
for any special cases. To avoid rational arithmetic, we use the integer algorithm of Knuth
[22].

void arith_dedekind_sum_coprime(fmpq_t s, const fmpz_t h,

const fmpz_t k)

Computes s(h, k) for h and k satisfying 0 ≤ h ≤ k and (h, k) = 1.

This function calls arith_dedekind_sum_coprime_d if k is small enough for a double-
precision estimate of the sum to yield a correct numerator upon multiplication by 6k and
rounding to the nearest integer. Otherwise, it calls arith_dedekind_sum_coprime_large.

void arith_dedekind_sum(fmpq_t s, const fmpz_t h, const

fmpz_t k)

Computes s(h, k) for arbitrary h and k. If the caller can guarantee 0 < h < k and
(h, k) = 1 ahead of time, it is always cheaper to call arith_dedekind_sum_coprime.

This function uses the following identities to reduce the general case to the situation
where 0 < h < k and (h, k) = 1: If k ≤ 2 or h = 0, s(h, k) = 0. If h < 0, s(h, k) =
−s(−h, k). For any q > 0, s(qh, qk) = s(h, k). If 0 < k < h and (h, k) = 1, s(h, k) =
(1 + h(h− 3k) + k2)/(12hk)− t(k, h).

26.14 Number of partitions

void arith_number_of_partitions_vec(fmpz * res , long len)

Computes first len values of the partition function p(n) starting with p(0). Uses inver-
sion of Euler’s pentagonal series.

void arith_number_of_partitions_nmod_vec(mp_ptr res , long

len , nmod_t mod)

Computes first len values of the partition function p(n) starting with p(0), modulo the
modulus defined by mod. Uses inversion of Euler’s pentagonal series.

void arith_hrr_expsum_factored(trig_prod_t prod , mp_limb_t

k, mp_limb_t n)

Symbolically evaluates the exponential sum

Ak(n) =

k−1∑
h=0

exp

(
πi

[
s(h, k)− 2hn

k

])

appearing in the Hardy-Ramanujan-Rademacher formula, where s(h, k) is a Dedekind
sum.

Rather than evaluating the sum naively, we factor Ak(n) into a product of cosines based
on the prime factorisation of k. This process is based on the identities given in [32].
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The special trig_prod_t structure prod represents a product of cosines of rational argu-
ments, multiplied by an algebraic prefactor. It must be pre-initialised with trig_prod_init.

This function assumes that 24k and 24n do not overflow a single limb. If n is larger, it
can be pre-reduced modulo k, since Ak(n) only depends on the value of n mod k.

void arith_number_of_partitions_mpfr(mpfr_t x, ulong n)

Sets the pre-initialised MPFR variable x to the exact value of p(n). The value is com-
puted using the Hardy-Ramanujan-Rademacher formula.

The precision of x will be changed to allow p(n) to be represented exactly. The interface
of this function may be updated in the future to allow computing an approximation of
p(n) to smaller precision.

The Hardy-Ramanujan-Rademacher formula is given with error bounds in [28]. We
evaluate it in the form

p(n) =

N∑
k=1

Bk(n)U(C/k) +R(n,N)

where

U(x) = cosh(x) +
sinh(x)

x
, C =

π

6

√
24n− 1

Bk(n) =

√
3

k

4

24n− 1
Ak(n)

and where Ak(n) is a certain exponential sum. The remainder satisfies

|R(n,N)| < 44π2

225
√

3
N−1/2 +

π
√

2

75

(
N

n− 1

)1/2

sinh

(
π

√
2

3

√
n

N

)
.

We choose N such that |R(n,N)| < 0.25, and a working precision at term k such that the
absolute error of the term is expected to be less than 0.25/N . We also use a summation
variable with increased precision, essentially making additions exact. Thus the sum of
errors adds up to less than 0.5, giving the correct value of p(n) when rounding to the
nearest integer.

The remainder estimate at step k provides an upper bound for the size of the k-th term.
We add log2N bits to get low bits in the terms below 0.25/N in magnitude.

Using arith_hrr_expsum_factored, each Bk(n) evaluation is broken down to a product
of cosines of exact rational multiples of π. We transform all angles to (0, π/4) for optimal
accuracy.

Since the evaluation of each term involves only O(log k) multiplications and evaluations
of trigonometric functions of small angles, the relative rounding error is at most a few
bits. We therefore just add an additional log2(C/k) bits for the U(x) when x is large.
The cancellation of terms in U(x) is of no concern, since Rademacher’s bound allows us
to terminate before x becomes small.

This analysis should be performed in more detail to give a rigorous error bound, but the
precision currently implemented is almost certainly sufficient, not least considering that
Rademacher’s remainder bound significantly overshoots the actual values.

To improve performance, we switch to doubles when the working precision becomes small
enough. We also use a separate accumulator variable which gets added to the main sum
periodically, in order to avoid costly updates of the full-precision result when n is large.
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void arith_number_of_partitions(fmpz_t x, ulong n)

Sets x to p(n), the number of ways that n can be written as a sum of positive integers
without regard to order.

This function uses a lookup table for n < 128 (where p(n) < 232), and otherwise calls
arith_number_of_partitions_mpfr.

26.15 Sums of squares

void arith_sum_of_squares(fmpz_t r, ulong k, const fmpz_t n)

Sets r to the number of ways rk(n) in which n can be represented as a sum of k squares.

If k = 2 or k = 4, we write rk(n) as a divisor sum.

Otherwise, we either recurse on k or compute the theta function expansion up to O(xn+1)
and read off the last coefficient. This is generally optimal.

void arith_sum_of_squares_vec(fmpz * r, ulong k, long n)

For i = 0, 1, . . . , n− 1, sets ri to the number of representations of i a sum of k squares,
rk(i). This effectively computes the q-expansion of ϑ3(q) raised to the kth power, i.e.

ϑk3(q) =

( ∞∑
i=−∞

qi
2

)k
.

26.16 MPFR extras

void mpfr_pi_chudnovsky(mpfr_t x, mpfr_rnd_t rnd)

Sets x to π, rounded in the direction rnd.

Uses the Chudnovsky algorithm, which typically is about four times faster than the
MPFR default function. As currently implemented, the value is not cached for repeated
use.

void mpfr_const_euler_brent_mcmillan(mpfr_t x, mpfr_rnd_t

rnd)

Sets x to Euler’s constant γ, rounded in the direction rnd.

Uses the Brent-McMillan (or Bessel function) algorithm, implemented using the generic
code for binary splitting of rational series provided in the fmpq module. We have

γ +
S0

I0
+
K0

I20
− log n+O(e−8n)

where

S0 =

βn∑
k=0

(
nk

k!

)2

Hk

I0 =

βn∑
k=0

(
nk

k!

)2

K0 =
1

4n

2n∑
k=0

[(2k)!]3

(k!)4(16n)2k
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where β = 4.9706 . . . satisfies β(log β − 1) = 3. (See [13]).

As currently implemented, the value is not cached for repeated use.

void mpfr_zeta_ui_bsplit(mpfr_t x, ulong s, mpfr_rnd_t rnd)

Sets x to ζ(s) for s > 1, rounded heuristically in the direction rnd.

Uses Borwein’s approximation [6], which is also used by the MPFR default function
mpfr_zeta_ui, but implemented using binary splitting. Our binary splitting scheme
can be derived by writing down a matrix recurrence for the partial sums, clearing de-
nominators, and removing redundant operations.

To improve efficiency, we store denominators of the Chebyshev polynomial (Q1), powers
(Q2), and their product (Q3), separately.

The complexity is quasilinear with respect to the precision and roughly linear with
respect to s. Especially for large s, this function may require extremely high precision
(10000s of digits or more) to overtake the default implementation provided by MPFR.
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Unsigned single limb arithmetic

27.1 Introduction

This module implements functions for single limb unsigned integers, including arithmetic
with a precomputed inverse and modular arithmetic.

The module includes functions for square roots, factorisation and primality testing. Al-
most all the functions in this module are highly developed and extremely well optimised.

The basic type is the mp_limb_t as defined by MPIR. Functions which take a precom-
puted inverse either have the suffix preinv and take an mp_limb_t precomputed inverse
as computed by n_preinvert_limb or have the suffix _precomp and accept a double

precomputed inverse as computed by n_precompute_inverse.

Sometimes three functions with similar names are provided for the same task, e.g.
n_mod_precomp, n_mod2_precomp and n_mod2_preinv. If the part of the name that
designates the functionality ends in 2 then the function has few if any limitations on its
inputs. Otherwise the function may have limitations such as being limited to 52 or 53
bits. In practice we found that the preinv functions are generally faster anyway, so most
times it pays to just use the n_blah2_preinv variants.

Some functions with the n_ll_ or n_lll_ prefix accept parameters of two or three limbs
respectively.

27.2 Simple example

The following example computes ab (mod n) using a precomputed inverse, where a =
12345678, b = 87654321 and n = 111111111.

#include <stdio.h>

#include "ulong_extras.h"

...

mp_limb_t r, a, b, n, ninv;

a = 12345678 UL;

b = 87654321 UL;

n = 111111111 UL;

ninv = n_preinvert_limb(n);



246 ulong extras

r = n_mulmod2_preinv(a, b, n, ninv);

printf("%lu*%lu mod %lu is %lu\n", a, b, n, r);

The output is:

12345678*87654321 mod 111111111 is 23456790

27.3 Random functions

void n_randinit(flint_rand_t state)

Initialise a random state for use in random functions.

void n_randclear(flint_rand_t state)

Release any memory used by a random state.

mp_limb_t n_randlimb(flint_rand_t state)

Returns a uniformly pseudo random limb.

The algorithm generates two random half limbs sj , j = 0, 1, by iterating respectively
vi+1 = (via+b) mod pj for some initial seed v0, randomly chosen values a and b and p_0

= 4294967311 = nextprime(2^32) on a 64-bit machine and p_0 = nextprime(2^16)

on a 32-bit machine and p_1 = nextprime(p_0).

mp_limb_t n_randbits(flint_rand_t state , unsigned int bits)

Returns a uniformly pseudo random number with the given number of bits. The most
significant bit is always set, unless zero is passed, in which case zero is returned.

mp_limb_t n_randtest_bits(flint_rand_t state , int bits)

Returns a uniformly pseudo random number with the given number of bits. The most
significant bit is always set, unless zero is passed, in which case zero is returned. The
probability of a value with a sparse binary representation being returned is increased.
This function is intended for use in test code.

mp_limb_t n_randint(flint_rand_t state , mp_limb_t limit)

Returns a uniformly pseudo random number up to but not including the given limit. If
zero is passed as a parameter, an entire random limb is returned.

mp_limb_t n_randtest(flint_rand_t state)

Returns a pseudo random number with a random number of bits, from 0 to FLINT_BITS.
The probability of the special values 0, 1, COEFF_MAX and LONG_MAX is increased as is
the probability of a value with sparse binary representation. This random function is
mainly used for testing purposes. This function is intended for use in test code.

mp_limb_t n_randtest_not_zero(flint_rand_t state)

As for n_randtest(), but does not return 0. This function is intended for use in test
code.

mp_limb_t n_randprime(flint_rand_t state , unsigned long

bits , int proved)

Returns a random prime number (proved = 1) or probable prime (proved = 0) with
bits bits, where bits must be at least 2 and at most FLINT_BITS.
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mp_limb_t n_randtest_prime(flint_rand_t state , int proved)

Returns a random prime number (proved = 1) or probable prime (proved = 0) with size
randomly chosen between 2 and FLINT_BITS bits. This function is intended for use in
test code.

27.4 Basic arithmetic

mp_limb_t n_pow(mp_limb_t n, ulong exp)

Returns n^exp. No checking is done for overflow. The exponent may be zero. We define
00 = 1.

The algorithm simply uses a for loop. Repeated squaring is unlikely to speed up this
algorithm.

mp_limb_t n_flog(mp_limb_t n, mp_limb_t b)

Returns blogb xc.

Assumes that x ≥ 1 and b ≥ 2.

mp_limb_t n_clog(mp_limb_t n, mp_limb_t b)

Returns dlogb xe.

Assumes that x ≥ 1 and b ≥ 2.

27.5 Miscellaneous

ulong n_revbin(ulong in, ulong bits)

Returns the binary reverse of in, assuming it is the given number of bits long, e.g.
n_revbin(10110, 6) will return 110100.

int n_sizeinbase(mp_limb_t n, int base)

Returns the exact number of digits needed to represent n as a string in base base

assumed to be between 2 and 36. Returns 1 when n = 0.

27.6 Basic arithmetic with precomputed inverses

mp_limb_t n_mod_precomp(mp_limb_t a, mp_limb_t n, double

ninv)

Returns a mod n given a precomputed inverse of n computed by
n_precompute_inverse(). We require n < 2^FLINT_D_BITS and a < 2^(FLINT_BITS-1)

and 0 ≤ a < n2.

We assume the processor is in the standard round to nearest mode. Thus ninv is correct
to 53 binary bits, the least significant bit of which we shall call a place, and can be at
most half a place out. When a is multiplied by ninv, the binary representation of a is
exact and the mantissa is less than 2, thus we see that a * ninv can be at most one
out in the mantissa. We now truncate a * ninv to the nearest integer, which is always
a round down. Either we already have an integer, or we need to make a change down of
at least 1 in the last place. In the latter case we either get precisely the exact quotient
or below it as when we rounded the product to the nearest place we changed by at most
half a place. In the case that truncating to an integer takes us below the exact quotient,
we have rounded down by less than 1 plus half a place. But as the product is less than n
and n is less than 253, half a place is less than 1, thus we are out by less than 2 from the
exact quotient, i.e. the quotient we have computed is the quotient we are after or one too
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small. That leaves only the case where we had to round up to the nearest place which
happened to be an integer, so that truncating to an integer didn’t change anything. But
this implies that the exact quotient a/n is less than 2−54 from an integer. We deal with
this rare case by subtracting 1 from the quotient. Then the quotient we have computed
is either exactly what we are after, or one too small.

mp_limb_t n_mod2_precomp(mp_limb_t a, mp_limb_t n, double

ninv)

Returns a mod n given a precomputed inverse of n computed by
n_precompute_inverse(). There are no restrictions on a or on n.

As for n_mod_precomp() for n < 253 and a < n2 the computed quotient is either what
we are after or one too large or small. We deal with these cases. Otherwise we can be
sure that the top 52 bits of the quotient are computed correctly. We take the remainder
and adjust the quotient by multiplying the remainder by ninv to compute another
approximate quotient as per mod_precomp. Now the remainder may be either negative
or positive, so the quotient we compute may be one out in either direction.

mp_limb_t n_mod2_preinv(mp_limb_t a, mp_limb_t n, mp_limb_t

ninv)

Returns a mod n given a precomputed inverse of n computed by n_preinvert_limb().
There are no restrictions on a or on n.

The old version of this function was implemented simply by making use of
udiv_qrnnd_preinv().

The new version uses the new algorithm of Granlund and Möller [15]. First n is nor-
malised and a shifted into two limbs to compensate. Then their algorithm is applied
verbatim and the result shifted back.

mp_limb_t n_divrem2_precomp(mp_limb_t * q, mp_limb_t a,

mp_limb_t n, double npre)

Returns a mod n given a precomputed inverse of n computed by
n_precompute_inverse() and sets q to the quotient. There are no restrictions on a or
on n.

This is as for n_mod2_precomp() with some additional care taken to retain the quotient
information. There are also special cases to deal with the case where a is already reduced
modulo n and where n is 64 bits and a is not reduced modulo n.

mp_limb_t n_ll_mod_preinv(mp_limb_t a_hi , mp_limb_t a_lo ,

mp_limb_t n, mp_limb_t ninv)

Returns a mod n given a precomputed inverse of n computed by n_preinvert_limb().
There are no restrictions on a, which will be two limbs (a_hi, a_lo), or on n.

The old version of this function merely reduced the top limb a_hi modulo n so that
udiv_qrnnd_preinv() could be used.

The new version reduces the top limb modulo n as per n_mod2_preinv() and then the
algorithm of Granlund and Möller [15] is used again to reduce modulo n.

mp_limb_t n_lll_mod_preinv(mp_limb_t a_hi , mp_limb_t a_mi ,

mp_limb_t a_lo , mp_limb_t n, mp_limb_t ninv)

Returns a mod n, where a has three limbs (a_hi, a_mi, a_lo), given a precomputed
inverse of n computed by n_preinvert_limb(). It is assumed that a_hi is reduced
modulo n. There are no restrictions on n.

This function uses the algorithm of Granlund and Möller [15] to first reduce the top two
limbs modulo n, then does the same on the bottom two limbs.
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mp_limb_t n_mulmod_precomp(mp_limb_t a, mp_limb_t b,

mp_limb_t n, double ninv)

Returns ab mod n given a precomputed inverse of n computed by
n_precompute_inverse(). We require n < 2^FLINT_D_BITS and 0 ≤ a, b < n.

We assume the processor is in the standard round to nearest mode. Thus ninv is correct
to 53 binary bits, the least significant bit of which we shall call a place, and can be at
most half a place out. The product of a and b is computed with error at most half a
place. When a * b is multiplied by ninv we find that the exact quotient and computed
quotient differ by less than two places. As the quotient is less than n this means that the
exact quotient is at most 1 away from the computed quotient. We truncate this quotient
to an integer which reduces the value by less than 1. We end up with a value which
can be no more than two above the quotient we are after and no less than two below.
However an argument similar to that for n_mod_precomp() shows that the truncated
computed quotient cannot be two smaller than the truncated exact quotient. In other
words the computed integer quotient is at most two above and one below the quotient
we are after.

n_mulmod2_preinv(mp_limb_t a, mp_limb_t b, mp_limb_t n,

mp_limb_t ninv)

Returns ab mod n given a precomputed inverse of n computed by
n_preinvert_limb(). There are no restrictions on a, b or on n. This is implemented
by multiplying using umul_ppmm() and then reducing using n_ll_mod_preinv().

27.7 Greatest common divisor

mp_limb_t n_gcd(mp_limb_t x, mp_limb_t y)

Returns the greatest common divisor g of x and y. We require x ≥ y.

The algorithm is a slight embelishment of the Euclidean algorithm which uses some
branches to avoid most divisions.

One wishes to compute the quotient and remainder of u3/v3 without division where
possible. This is accomplished when u3 < 4v3, i.e. the quotient is either 1, 2 or 3.

We first compute s = u3 − v3. If s < v3, i.e. u3 < 2v3, we know the quotient is 1, else if
s < 2v3, i.e. u3 < 3v3 we know the quotient is 2. In the remaining cases, the quotient
must be 3. When the quotient is 4 or above, we use division. However this happens
rarely for generic inputs.

mp_limb_t n_gcdinv(mp_limb_t * a, mp_limb_t x, mp_limb_t y)

Returns the greatest common divisor g of x and y and computes a such that 0 ≤ a < y
and ax = gcd(x, y) mod y, when this is defined. We require 0 ≤ x < y.

This is merely an adaption of the extended Euclidean algorithm with appropriate nor-
malisation.

mp_limb_t n_xgcd(mp_limb_t * a, mp_limb_t * b, mp_limb_t x,

mp_limb_t y)

Returns the greatest common divisor g of x and y and unsigned values a and b such that
ax− by = g. We require x ≥ y.

We claim that computing the extended greatest common divisor via the Euclidean algo-
rithm always results in cofactor |a| < x/2, |b| < x/2, with perhaps some small degenerate
exceptions.

We proceed by induction.
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Suppose we are at some step of the algorithm, with xn = qyn+r with r ≥ 1, and suppose
1 = syn − tr with s < yn/2, t < yn/2 by hypothesis.

Write 1 = syn − t(xn − qyn) = (s+ tq)yn − txn.

It suffices to show that (s + tq) < xn/2 as t < yn/2 < xn/2, which will complete the
induction step.

But at the previous step in the backsubstitution we would have had 1 = sr − cd with
s < r/2 and c < r/2.

Then s+ tq < r/2 + yn/2q = (r + qyn)/2 = xn/2.

See the documentation of n_gcd() for a description of the branching in the algorithm,
which is faster than using division.

27.8 Jacobi and Kronecker symbols

int n_jacobi(mp_limb_signed_t x, mp_limb_t y)

Computes the Jacobi symbol of x mod y. Assumes that y is positive and odd, and for
performance reasons that gcd(x, y) = 1.

This is just a straightforward application of the law of quadratic reciprocity. For perfor-
mance, divisions are replaced with some comparisons and subtractions where possible.

int n_jacobi_unsigned(mp_limb_t x, mp_limb_t y)

Computes the Jacobi symbol, allowing x to go up to a full limb.

27.9 Modular Arithmetic

mp_limb_t n_addmod(mp_limb_t a, mp_limb_t b, mp_limb_t n)

Returns (a+ b) mod n.

mp_limb_t n_submod(mp_limb_t a, mp_limb_t b, mp_limb_t n)

Returns (a− b) mod n.

mp_limb_t n_invmod(mp_limb_t x, mp_limb_t y)

Returns a value a such that 0 ≤ a < y and ax = gcd(x, y) mod y, when this is defined.
We require 0 ≤ x < y.

Specifically, when x is coprime to y, a is the inverse of x in Z/yZ.

This is merely an adaption of the extended Euclidean algorithm with appropriate nor-
malisation.

mp_limb_t n_powmod_precomp(mp_limb_t a, mp_limb_signed_t

exp , mp_limb_t n, double npre)

Returns a^exp modulo n given a precomputed inverse of n computed by
n_precompute_inverse(). We require n < 253 and 0 ≤ a < n. There are no restrictions
on exp, i.e. it can be negative.

This is implemented as a standard binary powering algorithm using repeated squaring
and reducing modulo n at each step.

mp_limb_t n_powmod_ui_precomp(mp_limb_t a, mp_limb_t exp ,

mp_limb_t n, double npre)
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Returns a^exp modulo n given a precomputed inverse of n computed by
n_precompute_inverse(). We require n < 253 and 0 ≤ a < n. The exponent exp is
unsigned and so can be larger than allowed by n_powmod_precomp.

This is implemented as a standard binary powering algorithm using repeated squaring
and reducing modulo n at each step.

mp_limb_t n_powmod(mp_limb_t a, mp_limb_signed_t exp ,

mp_limb_t n)

Returns a^exp modulo n. We require n < 2^FLINT_D_BITS and 0 ≤ a < n. There are
no restrictions on exp, i.e. it can be negative.

This is implemented by precomputing an inverse and calling the precomp version of this
function.

mp_limb_t n_powmod2_preinv(mp_limb_t a, mp_limb_signed_t

exp , mp_limb_t n, mp_limb_t ninv)

Returns (a^exp)% n given a precomputed inverse of n computed by n_preinvert_limb().
We require 0 ≤ a < n, but there are no restrictions on n or on exp, i.e. it can be negative.

This is implemented as a standard binary powering algorithm using repeated squaring
and reducing modulo n at each step.

mp_limb_t n_powmod2(mp_limb_t a, mp_limb_signed_t exp ,

mp_limb_t n)

Returns (a^exp)% n. We require 0 ≤ a < n, but there are no restrictions on n or on
exp, i.e. it can be negative.

This is implemented by precomputing an inverse limb and calling the preinv version of
this function.

mp_limb_t n_powmod2_ui_preinv(mp_limb_t a, mp_limb_t exp ,

mp_limb_t n, mp_limb_t ninv)

Returns (a^exp)% n given a precomputed inverse of n computed by n_preinvert_limb().
We require 0 ≤ a < n, but there are no restrictions on n. The exponent exp is unsigned
and so can be larger than allowed by n_powmod2_preinv.

This is implemented as a standard binary powering algorithm using repeated squaring
and reducing modulo n at each step.

mp_limb_t n_sqrtmod(mp_limb_t a, mp_limb_t p)

Computes a square root of a modulo p.

Assumes that p is a prime and that a is reduced modulo p. Returns 0 if a is a quadratic
non-residue modulo p.

long n_sqrtmod_2pow(mp_limb_t ** sqrt , mp_limb_t a, long

exp)

Computes all the square roots of a modulo 2^exp. The roots are stored in an array
which is created and whose address is stored in the location pointed to by sqrt. The
array of roots is allocated by the function but must be cleaned up by the user by calling
flint_free. The number of roots is returned by the function. If a is not a quadratic
residue modulo 2^exp then 0 is returned by the function and the location sqrt points
to is set to NULL.

long n_sqrtmod_primepow(mp_limb_t ** sqrt , mp_limb_t a,

mp_limb_t p, long exp)
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Computes all the square roots of a modulo p^exp. The roots are stored in an array
which is created and whose address is stored in the location pointed to by sqrt. The
array of roots is allocated by the function but must be cleaned up by the user by calling
flint_free. The number of roots is returned by the function. If a is not a quadratic
residue modulo p^exp then 0 is returned by the function and the location sqrt points
to is set to NULL.

long n_sqrtmodn(mp_limb_t ** sqrt , mp_limb_t a, n_factor_t

* fac)

Computes all the square roots of a modulo m given the factorisation of m in fac. The
roots are stored in an array which is created and whose address is stored in the location
pointed to by sqrt. The array of roots is allocated by the function but must be cleaned
up by the user by calling flint_free. The number of roots is returned by the function.
If a is not a quadratic residue modulo m then 0 is returned by the function and the
location sqrt points to is set to NULL.

27.10 Prime number generation and counting

void n_compute_primes(ulong num_primes)

Precomputes num_primes primes and their double precomputed inverses and stores
them in flint_primes and flint_prime_inverse, respectively.

The algorithm is a simple sieve of Eratosthenes with the constant array of primes
flint_small_primes as a starting point.

The sieve works by marking all multiples of small primes in the sieve, but the sieve does
not contain entries for numbers below the current cutoff (in case the function may have
already been called before).

One only needs to start sieving with p2 as all smaller multiples of p have already been
marked off.

At first p2 may be less than the start of the sieve (the old cutoff), so this case is dealt
with separately, but for all primes p beyond that all multiples of p starting at p2 are
marked off in the sieve.

As the small prime cutoff is currently 1030, primes can be computed up to almost
n = 220, in fact bn/ log2(n)× 0.7c = 74898 primes which actually takes us to 949937.

mp_limb_t n_nextprime(mp_limb_t n, int proved)

Returns the next prime after n. Assumes the result will fit in an mp_limb_t. If proved
is 0, i.e. false, the prime is not proven prime, otherwise it is.

ulong n_prime_pi(mp_limb_t n)

Returns the value of the prime counting function π(n), i.e. the number of primes
less than or equal to n. The invariant n_prime_pi(n_nth_prime(n))== n holds, or
n_prime_pi(flint_primes[n-1])== n, where flint_primes is indexed from zero.

Currently, this function simply extends flint_primes up to an upper limit and then
performs a binary search.

void n_prime_pi_bounds(ulong *lo, ulong *hi, mp_limb_t n)

Calculates lower and upper bounds for the value of the prime counting function lo <=

pi(n)<= hi. If lo and hi point to the same location, the high value will be stored.

The upper approximation is 1.25506n/ lnn, and the lower is n/ lnn. These bounds are
due to Rosser and Schoenfeld [29] and valid for n ≥ 17.
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We use the number of bits in n (or one less) to form an approximation to lnn, taking
care to use a value too small or too large to maintain the inequality.

mp_limb_t n_nth_prime(ulong n)

Returns the nth prime number pn, using the mathematical indexing convention p1 =
2, p2 = 3, . . . .

This function simply ensures that flint_primes is large enough and then looks up
flint_primes[n-1].

void n_nth_prime_bounds(mp_limb_t *lo, mp_limb_t *hi , ulong

n)

Calculates lower and upper bounds for the nth prime number pn, lo <= p_n <= hi.
If lo and hi point to the same location, the high value will be stored. Note that this
function will overflow for sufficiently large n.

We use the following estimates, valid for n > 5:

pn > n(lnn+ ln lnn− 1)

pn < n(lnn+ ln lnn)

pn < n(lnn+ ln lnn− 0.9427) (n ≥ 15985)

The first inequality was proved by Dusart [12], and the last is due to Massias and
Robin [25]. For a further overview, see http://primes.utm.edu/howmany.shtml.

We bound lnn using the number of bits in n as in n_prime_pi_bounds(), and estimate
ln lnn to the nearest integer; this function is nearly constant.

27.11 Primality testing

int n_is_oddprime_small(mp_limb_t n)

Returns 1 if n is an odd prime smaller than FLINT_ODDPRIME_SMALL_CUTOFF. Expects
n to be odd and smaller than the cutoff.

This function merely uses a lookup table with one bit allocated for each odd number up
to the cutoff.

int n_is_oddprime_binary(mp_limb_t n)

This function performs a simple binary search through flint_primes for n. If it exists
in the array it returns 1, otherwise 0. For the algorithm to operate correctly n should
be odd and at least 17.

Lower and upper bounds are computed with n_prime_pi_bounds(). Once we have
bounds on where to look in the table, we refine our search with a simple binary algorithm,
taking the top or bottom of the current interval as necessary.

int n_is_prime_pocklington(mp_limb_t n, ulong iterations)

Tests if n is a prime using the Pocklington–Lehmer primality test. If 1 is returned n
has been proved prime. If 0 is returned n is composite. However −1 may be returned if
nothing was proved either way due to the number of iterations being too small.

The most time consuming part of the algorithm is factoring n − 1. For this reason
n_factor_partial() is used, which uses a combination of trial factoring and Hart’s
one line factor algorithm [19] to try to quickly factor n− 1. Additionally if the cofactor
is less than the square root of n− 1 the algorithm can still proceed.

http://primes.utm.edu/howmany.shtml
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One can also specify a number of iterations if less time should be taken. Simply set
this to ~0L if this is irrelevant. In most cases a greater number of iterations will not
significantly affect timings as most of the time is spent factoring.

See http://mathworld.wolfram.com/PocklingtonsTheorem.html for a description of
the algorithm.

int n_is_prime_pseudosquare(mp_limb_t n)

Tests if n is a prime according to [24, Theorem 2.7].

We first factor N using trial division up to some limit B. In fact, the number of primes
used in the trial factoring is at most FLINT_PSEUDOSQUARES_CUTOFF.

Next we compute N/B and find the next pseudosquare Lp above this value, using a
static table as per http://research.att.com/~njas/sequences/b002189.txt.

As noted in the text, if p is prime then Step 3 will pass. This test rejects many com-
posites, and so by this time we suspect that p is prime. If N is 3 or 7 modulo 8, we are
done, and N is prime.

We now run a probable prime test, for which no known counterexamples are known, to
reject any composites. We then proceed to prove N prime by executing Step 4. In the
case that N is 1 modulo 8, if Step 4 fails, we extend the number of primes pi at Step 3
and hope to find one which passes Step 4. We take the test one past the largest p for
which we have pseudosquares Lp tabulated, as this already corresponds to the next Lp
which is bigger than 264 and hence larger than any prime we might be testing.

As explained in the text, Condition 4 cannot fail if N is prime.

The possibility exists that the probable prime test declares a composite prime. However
in that case an error is printed, as that would be of independent interest.

int n_is_prime(mp_limb_t n)

Tests if n is a prime. Up to 1016 this simply calls n_is_probabprime() which is a
primality test up to that limit. Beyond that point it calls n_is_probabprime() and
returns 0 if n is composite, then it calls n_is_prime_pocklington() which proves the
primality of n in most cases. As a fallback, n_is_prime_pseudosquare() is called,
which will unconditionally prove the primality of n.

int n_is_strong_probabprime_precomp(mp_limb_t n, double

npre , mp_limb_t a, mp_limb_t d)

Tests if n is a strong probable prime to the base a. We require that d is set to the
largest odd factor of n − 1 and npre is a precomputed inverse of n computed with
n_precompute_inverse(). We also require that n < 253, a to be reduced modulo n and
not 0 and n to be odd.

If we write n− 1 = 2sd where d is odd then n is a strong probable prime to the base a,
i.e. an a-SPRP, if either ad = 1 (mod n) or (ad)2

r

= −1 (mod n) for some r less than s.

A description of strong probable primes is given here: http://mathworld.wolfram.

com/StrongPseudoprime.html

int n_is_strong_probabprime2_preinv(mp_limb_t n, mp_limb_t

ninv , mp_limb_t a, mp_limb_t d)

Tests if n is a strong probable prime to the base a. We require that d is set to the
largest odd factor of n − 1 and npre is a precomputed inverse of n computed with
n_preinvert_limb(). We require a to be reduced modulo n and not 0 and n to be odd.

If we write n− 1 = 2sd where d is odd then n is a strong probable prime to the base a
(an a-SPRP) if either ad = 1 (mod n) or (ad)2

r

= −1 (mod n) for some r less than s.

http://mathworld.wolfram.com/PocklingtonsTheorem.html
http://research.att.com/~njas/sequences/b002189.txt
http://mathworld.wolfram.com/StrongPseudoprime.html
http://mathworld.wolfram.com/StrongPseudoprime.html
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A description of strong probable primes is given here: http://mathworld.wolfram.

com/StrongPseudoprime.html

int n_is_probabprime_fermat(mp_limb_t n, mp_limb_t i)

Returns 1 if n is a base i Fermat probable prime. Requires 1 < i < n and that i does
not divide n.

By Fermat’s Little Theorem if in−1 is not congruent to 1 then n is not prime.

int n_is_probabprime_fibonacci(mp_limb_t n)

Let Fj be the jth element of the Fibonacci sequence 0, 1, 1, 2, 3, 5, . . . , starting at j = 0.
Then if n is prime we have Fn−(n/5) = 0 (mod n), where (n/5) is the Jacobi symbol.

For further details, see [10, pp. 142].

We require that n is not divisible by 2 or 5.

int n_is_probabprime_BPSW(mp_limb_t n)

Implements the Bailey–Pomerance–Selfridge–Wagstaff probable primality test. There
are no known counterexamples to this being a primality test. For further details, see [10].

int n_is_probabprime_lucas(mp_limb_t n)

For details on Lucas pseudoprimes, see [10, pp. 143].

We implement a variant of the Lucas pseudoprime test as described by Baillie and
Wagstaff [4].

int n_is_probabprime(mp_limb_t n)

Tests if n is a probable prime. Up to FLINT_ODDPRIME_SMALL_CUTOFF this algorithm uses
n_is_oddprime_small() which uses a lookup table. Next it calls n_compute_primes()
with the maximum table size and uses this table to perform a binary search for n
up to the table limit. Then up to 1016 it uses a number of strong probable prime
tests, n_is_strong_probabprime_precomp(), etc., for various bases. The output of
the algorithm is guaranteed to be correct up to this bound due to exhaustive tables,
described at http://uucode.com/obf/dalbec/alg.html.

Beyond that point the BPSW probabilistic primality test is used, by calling the function
n_is_probabprime_BPSW(). There are no known counterexamples, but it may well
declare some composites to be prime.

27.12 Square root and perfect power testing

mp_limb_t n_sqrt(mp_limb_t a)

Computes the integer truncation of the square root of a. The integer itself can be
represented exactly as a double and its square root is computed to the nearest place. If
a is one below a square, the rounding may be up, whereas if it is one above a square, the
rounding will be down. Thus the square root may be one too large in some instances.
We also have to be careful when the square of this too large value causes an overflow.
The same assumptions hold for a single precision float so long as the square root itself
can be represented in a single float, i.e. for a < 281474976710656 = 246.

mp_limb_t n_sqrtrem(mp_limb_t * r, mp_limb_t a)

Computes the integer truncation of the square root of a. The integer itself can be
represented exactly as a double and its square root is computed to the nearest place. If
a is one below a square, the rounding may be up, whereas if it is one above a square, the

http://mathworld.wolfram.com/StrongPseudoprime.html
http://mathworld.wolfram.com/StrongPseudoprime.html
http://uucode.com/obf/dalbec/alg.html
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rounding will be down. Thus the square root may be one too large in some instances.
We also have to be careful when the square of this too large value causes an overflow.
The same assumptions hold for a single precision float so long as the square root itself
can be represented in a single float, i.e. for a < 281474976710656 = 246. The remainder
is computed by subtracting the square of the computed square root from a.

int n_is_square(mp_limb_t x)

Returns 1 if x is a square, otherwise 0.

This code first checks if x is a square modulo 64, 63 = 3× 3× 7 and 65 = 5× 13, using
lookup tables, and if so it then takes a square root and checks that the square of this
equals the original value.

int n_is_perfect_power235(mp_limb_t n)

Returns 1 if n is a perfect square, cube or fifth power.

This function uses a series of modular tests to reject most non 235-powers. Each modular
test returns a value from 0 to 7 whose bits respectively indicate whether the value is a
square, cube or fifth power modulo the given modulus. When these are logically ANDed
together, this gives a powerful test which will reject most non-235 powers.

If a bit remains set indicating it may be a square, a standard square root test is per-
formed. Similarly a cube root or fifth root can be taken, if indicated, to determine
whether the power of that root is exactly equal to n.

27.13 Factorisation

int n_remove(mp_limb_t * n, mp_limb_t p)

Removes the highest possible power of p from n, replacing n with the quotient. The
return value is that highest power of p that divided n. Assumes n is not 0.

For p = 2 trailing zeroes are counted. For other primes p is repeatedly squared and
stored in a table of powers with the current highest power of p removed at each step
until no higher power can be removed. The algorithm then proceeds down the power
tree again removing powers of p until none remain.

int n_remove2_precomp(mp_limb_t * n, mp_limb_t p, double

ppre)

Removes the highest possible power of p from n, replacing n with the quotient. The
return value is that highest power of p that divided n. Assumes n is not 0. We require
ppre to be set to a precomputed inverse of p computed with n_precompute_inverse().

For p = 2 trailing zeroes are counted. For other primes p we make repeated use of
n_divrem2_precomp() until division by p is no longer possible.

void n_factor_insert(n_factor_t * factors , mp_limb_t p,

ulong exp)

Inserts the given prime power factor p^exp into the n_factor_t factors. See the
documentation for n_factor_trial() for a description of the n_factor_t type.

The algorithm performs a simple search to see if p already exists as a prime factor in the
structure. If so the exponent there is increased by the supplied exponent. Otherwise a
new factor p^exp is added to the end of the structure.

There is no test code for this function other than its use by the various factoring func-
tions, which have test code.
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mp_limb_t n_factor_trial_range(n_factor_t * factors ,

mp_limb_t n, ulong start , ulong num_primes)

Trial factor n with the first num_primes primes, but starting at the prime in flint_primes

with index start.

One requires an initialised n_factor_t structure, but factors will be added by de-
fault to an already used n_factor_t. Use the function n_factor_init() defined in
ulong_extras if initialisation has not already been completed on factors.

Once completed, num will contain the number of distinct prime factors found. The field p
is an array of mp_limb_t’s containing the distinct prime factors, exp an array containing
the corresponding exponents.

The return value is the unfactored cofactor after trial factoring is done.

The function calls n_compute_primes() automatically. See the documentation for that
function regarding limits.

The algorithm stops when the current prime has a square exceeding n, as no prime factor
of n can exceed this unless n is prime.

The precomputed inverses of all the primes computed by n_compute_primes() are
utilised with the n_remove2_precomp() function.

mp_limb_t n_factor_trial(n_factor_t * factors , mp_limb_t n,

ulong num_primes)

This function calls n_factor_trial_range(), with the value of 0 for start. By default
this adds factors to an already existing n_factor_t or to a newly initialised one.

mp_limb_t n_factor_power235(ulong *exp , mp_limb_t n)

Returns 0 if n is not a perfect square, cube or fifth power. Otherwise it returns the root
and sets exp to either 2, 3 or 5 appropriately.

This function uses a series of modular tests to reject most non 235-powers. Each modular
test returns a value from 0 to 7 whose bits respectively indicate whether the value is a
square, cube or fifth power modulo the given modulus. When these are logically ANDed
together, this gives a powerful test which will reject most non-235 powers.

If a bit remains set indicating it may be a square, a standard square root test is per-
formed. Similarly a cube root or fifth root can be taken, if indicated, to determine
whether the power of that root is exactly equal to n.

mp_limb_t n_factor_one_line(mp_limb_t n, ulong iters)

This implements Bill Hart’s one line factoring algorithm [19]. It is a variant of Fermat’s
algorithm which cycles through a large number of multipliers instead of incrementing
the square root. It is faster than SQUFOF for n less than about 240.

mp_limb_t n_factor_lehman(mp_limb_t n)

Lehman’s factoring algorithm. Currently works up to 1016, but is not particularly ef-
ficient and so is not used in the general factor function. Always returns a factor of
n.

mp_limb_t n_factor_SQUFOF(mp_limb_t n, ulong iters)

Attempts to split n using the given number of iterations of SQUFOF. Simply set iters
to ~0L for maximum persistence.

The version of SQUFOF imlemented here is as described by Gower and Wagstaff [14].

We start by trying SQUFOF directly on n. If that fails we multiply it by each of the
primes in flint_primes_small in turn. As this multiplication may result in a two limb
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value we allow this in our implementation of SQUFOF. As SQUFOF works with values
about half the size of n it only needs single limb arithmetic internally.

If SQUFOF fails to factor n we return 0, however with iters large enough this should
never happen.

void n_factor(n_factor_t * factors , mp_limb_t n, int proved)

Factors n with no restrictions on n. If the prime factors are required to be certified prime,
one may set proved to 1, otherwise set it to 0, and they will only be probable primes
(with no known counterexamples to the conjecture that they are in fact all prime).

For details on the n_factor_t structure, see n_factor_trial().

This function first tries trial factoring with a number of primes specified by the constant
FLINT_FACTOR_TRIAL_PRIMES. If the cofactor is 1 or prime the function returns with
all the factors.

Otherwise, the cofactor is placed in the array factor_arr. Whilst there are factors
remaining in there which have not been split, the algorithm continues. At each step
each factor is first checked to determine if it is a perfect power. If so it is replaced by
the power that has been found. Next if the factor is small enough and composite, in
particular, less than FLINT_FACTOR_ONE_LINE_MAX then n_factor_one_line() is called
with FLINT_FACTOR_ONE_LINE_ITERS to try and split the factor. If that fails or the
factor is too large for n_factor_one_line() then n_factor_SQUFOF() is called, with
FLINT_FACTOR_SQUFOF_ITERS. If that fails an error results and the program aborts.
However this should not happen in practice.

mp_limb_t n_factor_trial_partial(n_factor_t * factors ,

mp_limb_t n, mp_limb_t * prod , ulong num_primes ,

mp_limb_t limit)

Attempts trial factoring of n with the first num_primes primes, but stops when the
product of prime factors so far exceeds limit.

One requires an initialised n_factor_t structure, but factors will be added by de-
fault to an already used n_factor_t. Use the function n_factor_init() defined in
ulong_extras if initialisation has not already been completed on factors.

Once completed, num will contain the number of distinct prime factors found. The field p
is an array of mp_limb_t’s containing the distinct prime factors, exp an array containing
the corresponding exponents.

The return value is the unfactored cofactor after trial factoring is done. The value prod

will be set to the product of the factors found.

The function calls n_compute_primes() automatically. See the documentation for that
function regarding limits.

The algorithm stops when the current prime has a square exceeding n, as no prime factor
of n can exceed this unless n is prime.

The precomputed inverses of all the primes computed by n_compute_primes() are
utilised with the n_remove2_precomp() function.

mp_limb_t n_factor_partial(n_factor_t * factors , mp_limb_t

n, mp_limb_t limit , int proved)

Factors n, but stops when the product of prime factors so far exceeds limit.

One requires an initialised n_factor_t structure, but factors will be added by de-
fault to an already used n_factor_t. Use the function n_factor_init() defined in
ulong_extras if initialisation has not already been completed on factors.
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On exit, num will contain the number of distinct prime factors found. The field p is an
array of mp_limb_t’s containing the distinct prime factors, exp an array containing the
corresponding exponents.

The return value is the unfactored cofactor after factoring is done.

The factors are proved prime if proved is 1, otherwise they are merely probably prime.

27.14 Arithmetic functions

int n_moebius_mu(mp_limb_t n)

Computes the Moebius function µ(n), which is defined as µ(n) = 0 if n has a prime
factor of multiplicity greater than 1, µ(n) = −1 if n has an odd number of distinct
prime factors, and µ(n) = 1 if n has an even number of distinct prime factors. By
convention, µ(0) = 0.

For even numbers, we use the identities µ(4n) = 0 and µ(2n) = −µ(n). Odd numbers
up to a cutoff are then looked up from a precomputed table storing µ(n) + 1 in groups
of two bits.

For larger n, we first check if n is divisible by a small odd square and otherwise call
n_factor() and count the factors.

void n_moebius_mu_vec(int * mu , ulong len)

Computes µ(n) for n = 0, 1, ..., len - 1. This is done by sieving over each prime
in the range, flipping the sign of µ(n) for every multiple of a prime p and setting µ(n) = 0
for every multiple of p2.

int n_is_squarefree(mp_limb_t n)

Returns 0 if n is divisible by some perfect square, and 1 otherwise. This simply amounts
to testing whether µ(n) 6= 0. As special cases, 1 is considered squarefree and 0 is not
considered squarefree.

mp_limb_t n_euler_phi(mp_limb_t n)

Computes the Euler totient function φ(n), counting the number of positive integers less
than or equal to n that are coprime to n.

27.15 Factorials

mp_limb_t n_factorial_fast_mod2_preinv(ulong n, mp_limb_t

p, mp_limb_t pinv)

Returns n! mod p given a precomputed inverse of p as computed by n_preinvert_limb().
p is not required to be a prime, but no special optimisations are made for composite p.
Uses fast multipoint evaluation, running in about O(n1/2) time.

mp_limb_t n_factorial_mod2_preinv(ulong n, mp_limb_t p,

mp_limb_t pinv)

Returns n! mod p given a precomputed inverse of p as computed by n_preinvert_limb().
p is not required to be a prime, but no special optimisations are made for composite p.

Uses a lookup table for small n, otherwise computes the product if n is not too large,
and calls the fast algorithm for extremely large n.
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Signed single limb arithmetic

28.1 Properties

size_t z_sizeinbase(long n, int b)

Returns the number of digits in the base b representation of the absolute value of the
integer n.

Assumes that b ≥ 2.

28.2 Random functions

mp_limb_signed_t z_randtest(flint_rand_t state)

Returns a pseudo random number with a random number of bits, from 0 to FLINT_BITS.
The probability of the special values 0, ±1, COEFF_MAX, COEFF_MIN, LONG_MAX and
LONG_MIN is increased.

This random function is mainly used for testing purposes.

mp_limb_signed_t z_randtest_not_zero(flint_rand_t state)

As for z_randtest(state), but does not return 0.

mp_limb_t z_randint(flint_rand_t state , mp_limb_t limit)

Returns a pseudo random number of absolute value less than limit. If limit is zero or
exceeds LONG_MAX, it is interpreted as LONG_MAX.





§29. fft

Fast Fourier Transforms

29.1 Split/combine FFT coefficients

mp_size_t fft_split_limbs(mp_limb_t ** poly , mp_limb_t *

limbs , mp_size_t total_limbs , mp_size_t coeff_limbs ,

mp_size_t output_limbs)

Split an integer (limbs, total_limbs) into coefficients of length coeff_limbs limbs
and store as the coefficients of poly which are assumed to have space for output_limbs
+ 1 limbs per coefficient. The coefficients of the polynomial do not need to be zeroed
before calling this function, however the number of coefficients written is returned by
the function and any coefficients beyond this point are not touched.

mp_size_t fft_split_bits(mp_limb_t ** poly , mp_limb_t *

limbs , mp_size_t total_limbs , mp_bitcnt_t bits ,

mp_size_t output_limbs)

Split an integer (limbs, total_limbs) into coefficients of the given number of bits
and store as the coefficients of poly which are assumed to have space for output_limbs
+ 1 limbs per coefficient. The coefficients of the polynomial do not need to be zeroed
before calling this function, however the number of coefficients written is returned by
the function and any coefficients beyond this point are not touched.

void fft_combine_limbs(mp_limb_t * res , mp_limb_t ** poly ,

long length , mp_size_t coeff_limbs , mp_size_t

output_limbs , mp_size_t total_limbs)

Evaluate the polynomial poly of the given length at B^coeff_limbs, where B =

2^FLINT_BITS, and add the result to the integer (res, total_limbs) throwing away
any bits that exceed the given number of limbs. The polynomial coefficients are assumed
to have at least output_limbs limbs each, however any additional limbs are ignored.

If the integer is initially zero the result will just be the evaluation of the polynomial.

void fft_combine_bits(mp_limb_t * res , mp_limb_t ** poly ,

long length , mp_bitcnt_t bits , mp_size_t output_limbs ,

mp_size_t total_limbs)

Evaluate the polynomial poly of the given length at 2^bits and add the result to the
integer (res, total_limbs) throwing away any bits that exceed the given number of
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limbs. The polynomial coefficients are assumed to have at least output_limbs limbs
each, however any additional limbs are ignored. If the integer is initially zero the result
will just be the evaluation of the polynomial.

29.2 Test helper functions

void fermat_to_mpz(mpz_t m, mp_limb_t * i, mp_size_t limbs)

Convert the Fermat number (i, limbs) modulo B^limbs + 1 to an mpz_t m. Assumes
m has been initialised. This function is used only in test code.

29.3 Arithmetic modulo a generalised Fermat number

void mpn_addmod_2expp1_1(mp_limb_t * r, mp_size_t limbs ,

mp_limb_signed_t c)

Adds the signed limb c to the generalised fermat number r modulo B^limbs + 1. The
compiler should be able to inline this for the case that there is no overflow from the first
limb.

void mpn_normmod_2expp1(mp_limb_t * t, mp_size_t limbs)

Given t a signed integer of limbs + 1 limbs in twos complement format, reduce t to
the corresponding value modulo the generalised Fermat number B^limbs + 1, where
B = 2^FLINT_BITS.

void mpn_mul_2expmod_2expp1(mp_limb_t * t, mp_limb_t * i1 ,

mp_size_t limbs , mp_bitcnt_t d)

Given i1 a signed integer of limbs + 1 limbs in twos complement format reduced modulo
B^limbs + 1 up to some overflow, compute t = i1*2^d modulo p. The result will not
necessarily be fully reduced. The number of bits d must be nonnegative and less than
FLINT_BITS. Aliasing is permitted.

void mpn_div_2expmod_2expp1(mp_limb_t * t, mp_limb_t * i1 ,

mp_size_t limbs , mp_bitcnt_t d)

Given i1 a signed integer of limbs + 1 limbs in twos complement format reduced modulo
B^limbs + 1 up to some overflow, compute t = i1/2^d modulo p. The result will not
necessarily be fully reduced. The number of bits d must be nonnegative and less than
FLINT_BITS. Aliasing is permitted.

29.4 Generic butterflies

void fft_adjust(mp_limb_t * r, mp_limb_t * i1, mp_size_t i,

mp_size_t limbs , mp_bitcnt_t w)

Set r to i1 times zi modulo B^limbs + 1 where z corresponds to multiplication by 2w.
This can be thought of as part of a butterfly operation. We require 0 ≤ i < n where
nw = limbs*FLINT_BITS. Aliasing is not supported.

void fft_adjust_sqrt2(mp_limb_t * r, mp_limb_t * i1,

mp_size_t i, mp_size_t limbs , mp_bitcnt_t w, mp_limb_t *

temp)

Set r to i1 times zi modulo B^limbs + 1 where z corresponds to multiplication by
√

2
w

.
This can be thought of as part of a butterfly operation. We require 0 ≤ i < 2 ∗ n and
odd where nw = limbs*FLINT_BITS.
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void butterfly_lshB(mp_limb_t * t, mp_limb_t * u, mp_limb_t

* i1, mp_limb_t * i2, mp_size_t limbs , mp_size_t x,

mp_size_t y)

We are given two integers i1 and i2 modulo B^limbs + 1 which are not necessarily nor-
malised. We compute t = (i1 + i2)*B^x and u = (i1 - i2)*B^y modulo p. Aliasing
between inputs and outputs is not permitted. We require x and y to be less than limbs

and nonnegative.

void butterfly_rshB(mp_limb_t * t, mp_limb_t * u, mp_limb_t

* i1, mp_limb_t * i2, mp_size_t limbs , mp_size_t x,

mp_size_t y)

We are given two integers i1 and i2 modulo B^limbs + 1 which are not necessarily nor-
malised. We compute t = (i1 + i2)/B^x and u = (i1 - i2)/B^y modulo p. Aliasing
between inputs and outputs is not permitted. We require x and y to be less than limbs

and nonnegative.

29.5 Radix 2 transforms

void fft_butterfly(mp_limb_t * s, mp_limb_t * t, mp_limb_t

* i1, mp_limb_t * i2, mp_size_t i, mp_size_t limbs ,

mp_bitcnt_t w)

Set s = i1 + i2, t = z1^i*(i1 - i2) modulo B^limbs + 1 where z1 = exp(Pi*I/n)

corresponds to multiplication by 2w. Requires 0 ≤ i < n where nw = limbs*FLINT_BITS.

void ifft_butterfly(mp_limb_t * s, mp_limb_t * t, mp_limb_t

* i1, mp_limb_t * i2, mp_size_t i, mp_size_t limbs ,

mp_bitcnt_t w)

Set s = i1 + z1^i*i2, t = i1 - z1^i*i2 modulo B^limbs + 1 where
z1 = exp(-Pi*I/n) corresponds to division by 2w. Requires 0 ≤ i < 2n where nw =
limbs*FLINT_BITS.

void fft_radix2(mp_limb_t ** ii, mp_size_t n, mp_bitcnt_t

w, mp_limb_t ** t1, mp_limb_t ** t2)

The radix 2 DIF FFT works as follows:

Input: [i0, i1, ..., i(m-1)], for m = 2n a power of 2.

Output: [r0, r1, ..., r(m-1)]

= FFT[i0, i1, ..., i(m-1)].

Algorithm:

• Recursively compute [r0, r2, r4, ...., r(m-2)]

= FFT[i0+i(m/2), i1+i(m/2+1), ..., i(m/2-1)+i(m-1)]

• Let [t0, t1, ..., t(m/2-1)]

= [i0-i(m/2), i1-i(m/2+1), ..., i(m/2-1)-i(m-1)]

• Let [u0, u1, ..., u(m/2-1)]

= [z1^0*t0, z1^1*t1, ..., z1^(m/2-1)*t(m/2-1)] where z1 = exp(2*Pi*I/m) cor-
responds to multiplication by 2w.

• Recursively compute [r1, r3, ..., r(m-1)]

= FFT[u0, u1, ..., u(m/2-1)]

The parameters are as follows:

• 2*n is the length of the input and output arrays
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• w is such that 2w is an 2n-th root of unity in the ring Z/pZ that we are working in,
i.e. p = 2wn + 1 (here n is divisible by GMP_LIMB_BITS)

• ii is the array of inputs (each input is an array of limbs of length wn/GMP_LIMB_BITS

+ 1 (the extra limbs being a ”carry limb”). Outputs are written in-place.

We require nw to be at least 64 and the two temporary space pointers to point to blocks
of size n*w + FLINT_BITS bits.

void fft_truncate(mp_limb_t ** ii, mp_size_t n, mp_bitcnt_t

w, mp_limb_t ** t1, mp_limb_t ** t2, mp_size_t trunc)

As for fft_radix2 except that only the first trunc coefficients of the output are com-
puted and the input is regarded as having (implied) zero coefficients from coefficient
trunc onwards. The coefficients must exist as the algorithm needs to use this extra
space, but their value is irrelevant. The value of trunc must be divisible by 2.

void fft_truncate1(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_size_t trunc)

As for fft_radix2 except that only the first trunc coefficients of the output are com-
puted. The transform still needs all 2n input coefficients to be specified.

void ifft_radix2(mp_limb_t ** ii, mp_size_t n, mp_bitcnt_t

w, mp_limb_t ** t1, mp_limb_t ** t2)

The radix 2 DIF IFFT works as follows:

Input: [i0, i1, ..., i(m-1)], for m = 2n a power of 2.

Output: [r0, r1, ..., r(m-1)]

= IFFT[i0, i1, ..., i(m-1)].

Algorithm:

• Recursively compute [s0, s1, ...., s(m/2-1)]

= IFFT[i0, i2, ..., i(m-2)]

• Recursively compute [t(m/2), t(m/2+1), ..., t(m-1)]

= IFFT[i1, i3, ..., i(m-1)]

• Let [r0, r1, ..., r(m/2-1)]

= [s0+z1^0*t0, s1+z1^1*t1, ..., s(m/2-1)+z1^(m/2-1)*t(m/2-1)] where z1 =

exp(-2*Pi*I/m) corresponds to division by 2w.

• Let [r(m/2), r(m/2+1), ..., r(m-1)]

= [s0-z1^0*t0, s1-z1^1*t1, ..., s(m/2-1)-z1^(m/2-1)*t(m/2-1)]

The parameters are as follows:

• 2*n is the length of the input and output arrays

• w is such that 2w is an 2n-th root of unity in the ring Z/pZ that we are working in,
i.e. p = 2wn + 1 (here n is divisible by GMP_LIMB_BITS)

• ii is the array of inputs (each input is an array of limbs of length wn/GMP_LIMB_BITS

+ 1 (the extra limbs being a ”carry limb”). Outputs are written in-place.

We require nw to be at least 64 and the two temporary space pointers to point to blocks
of size n*w + FLINT_BITS bits.

void ifft_truncate(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_size_t trunc)
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As for ifft_radix2 except that the output is assumed to have zeros from coefficient
trunc onwards and only the first trunc coefficients of the input are specified. The remain-
ing coefficients need to exist as the extra space is needed, but their value is irrelevant.
The value of trunc must be divisible by 2.

Although the implementation does not require it, we assume for simplicity that trunc is
greater than n. The algorithm begins by computing the inverse transform of the first n
coefficients of the input array. The unspecified coefficients of the second half of the array
are then written: coefficient trunc + i is computed as a twist of coefficient i by a root
of unity. The values of these coefficients are then equal to what they would have been
if the inverse transform of the right hand side of the input array had been computed
with full data from the start. The function ifft_truncate1 is then called on the entire
right half of the input array with this auxilliary data filled in. Finally a single layer of
the IFFT is completed on all the coefficients up to trunc being careful to note that this
involves doubling the coefficients from trunc - n up to n.

void ifft_truncate1(mp_limb_t ** ii , mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_size_t trunc)

Computes the first trunc coefficients of the radix 2 inverse transform assuming the first
trunc coefficients are given and that the remaining coefficients have been set to the
value they would have if an inverse transform had already been applied with full data.

The algorithm is the same as for ifft_truncate except that the coefficients from trunc

onwards after the inverse transform are not inferred to be zero but the supplied values.

void fft_butterfly_sqrt2(mp_limb_t * s, mp_limb_t * t,

mp_limb_t * i1 , mp_limb_t * i2, mp_size_t i, mp_size_t

limbs , mp_bitcnt_t w, mp_limb_t * temp)

Let w = 2k+1, i = 2j+1. Set s = i1 + i2, t = z1^i*(i1 - i2) modulo B^limbs +

1 where z1^2 = exp(Pi*I/n) corresponds to multiplication by 2w. Requires 0 ≤ i < 2n
where nw = limbs*FLINT_BITS.

Here z1 corresponds to multiplication by 2k then multiplication by
(2^(3nw/4)- 2^(nw/4)). We see z1^i corresponds to multiplication by (2^(3nw/4)-

2^(nw/4))*2^(j+ik).

We first multiply by 2^(j + ik + wn/4) then multiply by an additional 2^(nw/2) and
subtract.

void ifft_butterfly_sqrt2(mp_limb_t * s, mp_limb_t * t,

mp_limb_t * i1 , mp_limb_t * i2, mp_size_t i, mp_size_t

limbs , mp_bitcnt_t w, mp_limb_t * temp)

Let w = 2k+1, i = 2j+1. Set s = i1 + z1^i*i2, t = i1 - z1^i*i2 modulo B^limbs

+ 1 where z1^2 = exp(-Pi*I/n) corresponds to division by 2w. Requires 0 ≤ i < 2n
where nw = limbs*FLINT_BITS.

Here z1 corresponds to division by 2k then division by (2^(3nw/4)- 2^(nw/4)). We see
z1^i corresponds to division by (2^(3nw/4)- 2^(nw/4))*2^(j+ik) which is the same
as division by 2^(j+ik + 1) then multiplication by (2^(3nw/4)- 2^(nw/4)).

Of course, division by 2^(j+ik + 1) is the same as multiplication by 2^(2*wn - j -

ik - 1). The exponent is positive as i ≤ 2 ∗ n, j < n, k < w/2.

We first multiply by 2^(2*wn - j - ik - 1 + wn/4) then multiply by an additional
2^(nw/2) and subtract.
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void fft_truncate_sqrt2(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp , mp_size_t trunc)

As per fft_truncate except that the transform is twice the usual length, i.e. length 4n
rather than 2n. This is achieved by making use of twiddles by powers of a square root
of 2, not powers of 2 in the first layer of the transform.

We require nw to be at least 64 and the three temporary space pointers to point to
blocks of size n*w + FLINT_BITS bits.

void ifft_truncate_sqrt2(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp , mp_size_t trunc)

As per ifft_truncate except that the transform is twice the usual length, i.e. length
4n instead of 2n. This is achieved by making use of twiddles by powers of a square root
of 2, not powers of 2 in the final layer of the transform.

We require nw to be at least 64 and the three temporary space pointers to point to
blocks of size n*w + FLINT_BITS bits.

29.6 Matrix Fourier Transforms

void fft_butterfly_twiddle(mp_limb_t * u, mp_limb_t * v,

mp_limb_t * s, mp_limb_t * t, mp_size_t limbs ,

mp_bitcnt_t b1, mp_bitcnt_t b2)

Set u = 2^b1*(s + t), v = 2^b2*(s - t) modulo B^limbs + 1. This is used to com-
pute u = 2^(ws*tw1)*(s + t),
v = 2^(w+ws*tw2)*(s - t) in the matrix fourier algorithm, i.e. effectively computing
an ordinary butterfly with additional twiddles by z1^rc for row r and column c of the
matrix of coefficients. Aliasing is not allowed.

void ifft_butterfly_twiddle(mp_limb_t * u, mp_limb_t * v,

mp_limb_t * s, mp_limb_t * t, mp_size_t limbs ,

mp_bitcnt_t b1, mp_bitcnt_t b2)

Set u = s/2^b1 + t/2^b1), v = s/2^b1 - t/2^b1 modulo B^limbs + 1. This is used
to compute u = 2^(-ws*tw1)*s + 2^(-ws*tw2)*t),
v = 2^(-ws*tw1)*s + 2^(-ws*tw2)*t) in the matrix fourier algorithm, i.e. effectively
computing an ordinary butterfly with additional twiddles by z1^(-rc) for row r and
column c of the matrix of coefficients. Aliasing is not allowed.

void fft_radix2_twiddle(mp_limb_t ** ii, mp_size_t is,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t

rs)

As for fft_radix2 except that the coefficients are spaced by is in the array ii and an
additional twist by z^c*i is applied to each coefficient where i starts at r and increases
by rs as one moves from one coefficient to the next. Here z corresponds to multiplication
by 2^ws.

void ifft_radix2_twiddle(mp_limb_t ** ii, mp_size_t is,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t

rs)
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As for ifft_radix2 except that the coefficients are spaced by is in the array ii and
an additional twist by z^(-c*i) is applied to each coefficient where i starts at r and
increases by rs as one moves from one coefficient to the next. Here z corresponds to
multiplication by 2^ws.

void fft_truncate1_twiddle(mp_limb_t ** ii, mp_size_t is,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t

rs, mp_size_t trunc)

As per fft_radix2_twiddle except that the transform is truncated as per
fft_truncate1.

void ifft_truncate1_twiddle(mp_limb_t ** ii, mp_size_t is ,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_size_t ws, mp_size_t r, mp_size_t c, mp_size_t

rs, mp_size_t trunc)

As per ifft_radix2_twiddle except that the transform is truncated as per
ifft_truncate1.

void fft_mfa_truncate_sqrt2(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp , mp_size_t n1, mp_size_t trunc)

This is as per the fft_truncate_sqrt2 function except that the matrix fourier algorithm
is used for the left and right FFTs. The total transform length is 4n where n = 2^depth

so that the left and right transforms are both length 2n. We require trunc > 2*n and
that trunc is divisible by 2*n1 (explained below).

The matrix fourier algorithm, which is applied to each transform of length 2n, works as
follows. We set n1 to a power of 2 about the square root of n. The data is then thought
of as a set of n2 rows each with n1 columns (so that n1*n2 = 2n).

The length 2n transform is then computed using a whole pile of short transforms. These
comprise n1 column transforms of length n2 followed by some twiddles by roots of unity
(namely z^rc where r is the row and c the column within the data) followed by n2 row
transforms of length n1. Along the way the data needs to be rearranged due to the fact
that the short transforms output the data in binary reversed order compared with what
is needed.

The matrix fourier algorithm provides better cache locality by decomposing the long
length 2n transforms into many transforms of about the square root of the original
length.

For better cache locality the sqrt2 layer of the full length 4n transform is folded in with
the column FFTs performed as part of the first matrix fourier algorithm on the left half
of the data.

The second half of the data requires a truncated version of the matrix fourier algorithm.
This is achieved by truncating to an exact multiple of the row length so that the row
transforms are full length. Moreover, the column transforms will then be truncated
transforms and their truncated length needs to be a multiple of 2. This explains the
condition on trunc given above.

To improve performance, the extra twiddles by roots of unity are combined with the
butterflies performed at the last layer of the column transforms.

We require nw to be at least 64 and the three temporary space pointers to point to
blocks of size n*w + FLINT_BITS bits.
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void ifft_mfa_truncate_sqrt2(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp , mp_size_t n1, mp_size_t trunc)

This is as per the ifft_truncate_sqrt2 function except that the matrix fourier al-
gorithm is used for the left and right IFFTs. The total transform length is 4n where
n = 2^depth so that the left and right transforms are both length 2n. We require
trunc > 2*n and that trunc is divisible by 2*n1.

We set n1 to a power of 2 about the square root of n.

As per the matrix fourier FFT the sqrt2 layer is folded into the the final column IFFTs for
better cache locality and the extra twiddles that occur in the matrix fourier algorithm are
combined with the butterflied performed at the first layer of the final column transforms.

We require nw to be at least 64 and the three temporary space pointers to point to
blocks of size n*w + FLINT_BITS bits.

void fft_mfa_truncate_sqrt2_outer(mp_limb_t ** ii,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_limb_t ** temp , mp_size_t n1, mp_size_t trunc)

Just the outer layers of fft_mfa_truncate_sqrt2.

void fft_mfa_truncate_sqrt2_inner(mp_limb_t ** ii,

mp_limb_t ** jj, mp_size_t n, mp_bitcnt_t w, mp_limb_t

** t1, mp_limb_t ** t2, mp_limb_t ** temp , mp_size_t n1,

mp_size_t trunc , mp_limb_t * tt)

The inner layers of fft_mfa_truncate_sqrt2 and ifft_mfa_truncate_sqrt2 combined
with pointwise mults.

void ifft_mfa_truncate_sqrt2_outer(mp_limb_t ** ii,

mp_size_t n, mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t

** t2, mp_limb_t ** temp , mp_size_t n1, mp_size_t trunc)

The outer layers of ifft_mfa_truncate_sqrt2 combined with normalisation.

29.7 Negacyclic multiplication

void fft_negacyclic(mp_limb_t ** ii , mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp)

As per fft_radix2 except that it performs a sqrt2 negacyclic transform of length 2n.
This is the same as the radix 2 transform except that the i-th coefficient of the input is

first multiplied by
√

2
iw

.

We require nw to be at least 64 and the two temporary space pointers to point to blocks
of size n*w + FLINT_BITS bits.

void ifft_negacyclic(mp_limb_t ** ii, mp_size_t n,

mp_bitcnt_t w, mp_limb_t ** t1, mp_limb_t ** t2,

mp_limb_t ** temp)

As per ifft_radix2 except that it performs a sqrt2 negacyclic inverse transform of
length 2n. This is the same as the radix 2 inverse transform except that the i-th coeffi-

cient of the output is finally divided by
√

2
iw

.

We require nw to be at least 64 and the two temporary space pointers to point to blocks
of size n*w + FLINT_BITS bits.
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void fft_naive_convolution_1(mp_limb_t * r, mp_limb_t * ii,

mp_limb_t * jj , mp_size_t m)

Performs a naive negacyclic convolution of ii with jj, both of length m and sets r to
the result. This is essentially multiplication of polynomials modulo xm + 1.

void _fft_mulmod_2expp1(mp_limb_t * r1, mp_limb_t * i1,

mp_limb_t * i2 , mp_size_t r_limbs , mp_bitcnt_t depth ,

mp_bitcnt_t w)

Multiply i1 by i2 modulo B^r_limbs + 1 where r_limbs = nw/FLINT_BITS with n =

2^depth. Uses the negacyclic FFT convolution CRT’d with a 1 limb naive convolution.
We require that depth and w have been selected as per the wrapper fft_mulmod_2expp1
below.

long fft_adjust_limbs(mp_size_t limbs)

Given a number of limbs, returns a new number of limbs (no more than the next power
of 2) which will work with the Nussbaumer code. It is only necessary to make this
adjustment if limbs > FFT_MULMOD_2EXPP1_CUTOFF.

void fft_mulmod_2expp1(mp_limb_t * r, mp_limb_t * i1 ,

mp_limb_t * i2 , mp_size_t n, mp_size_t w, mp_limb_t * tt)

As per _fft_mulmod_2expp1 but with a tuned cutoff below which more classical methods
are used for the convolution. The temporary space is required to fit n*w + FLINT_BITS

bits. There are no restrictions on n, but if limbs = n*w/FLINT_BITS then if limbs

exceeds FFT_MULMOD_2EXPP1_CUTOFF the function fft_adjust_limbs must be called to
increase the number of limbs to an appropriate value.

29.8 Integer multiplication

void mul_truncate_sqrt2(mp_limb_t * r1, mp_limb_t * i1,

mp_size_t n1, mp_limb_t * i2, mp_size_t n2, mp_bitcnt_t

depth , mp_bitcnt_t w)

Integer multiplication using the radix 2 truncated sqrt2 transforms.

Set (r1, n1 + n2) to the product of (i1, n1) by (i2, n2). This is achieved through
an FFT convolution of length at most 2^(depth + 2) with coefficients of size nw bits
where n = 2^depth. We require depth >= 6. The input data is broken into chunks of
data not exceeding (nw - (depth + 1))/2 bits. If breaking the first integer into chunks
of this size results in j1 coefficients and breaking the second integer results in j2 chunks
then j1 + j2 - 1 <= 2^(depth + 2).

If n = 2^depth then we require nw to be at least 64.

void mul_mfa_truncate_sqrt2(mp_limb_t * r1, mp_limb_t * i1,

mp_size_t n1, mp_limb_t * i2, mp_size_t n2, mp_bitcnt_t

depth , mp_bitcnt_t w)

As for mul_truncate_sqrt2 except that the cache friendly matrix fourier algorithm is
used.

If n = 2^depth then we require nw to be at least 64. Here we also require w to be 2i

for some i ≥ 0.

void flint_mpn_mul_fft_main(mp_limb_t * r1, mp_limb_t * i1,

mp_size_t n1, mp_limb_t * i2, mp_size_t n2)
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The main integer multiplication routine. Sets (r1, n1 + n2) to (i1, n1) times (i2,
n2). We require n1 >= n2 > 0.

29.9 Convolution

void fft_convolution(mp_limb_t ** ii, mp_limb_t ** jj, long

depth , long limbs , long trunc , mp_limb_t ** t1,

mp_limb_t ** t2, mp_limb_t ** s1, mp_limb_t * tt)

Perform an FFT convolution of ii with jj, both of length 4*n where n = 2^depth.
Assume that all but the first trunc coefficients of the output (placed in ii) are zero.
Each coefficient is taken modulo B^limbs + 1. The temporary spaces t1, t2 and s1

must have limbs + 1 limbs of space and tt must have 2*(limbs + 1) of free space.



§30. qsieve

Quadratic sieve

30.1 Quadratic sieve

mp_limb_t qsieve_ll_factor(mp_limb_t hi, mp_limb_t lo)

Given an integer n = (hi, lo) find a factor and return it. If a tiny factor is encountered,
this is returned very quickly. Otherwise the quadratic sieve algorithm is employed. The
algorithm requires that n not be prime and not be a perfect power. There is also a limit
to the size of n. During the algorithm n will be multiplied by a small multiplier k (from
1 to 47). The product kn must fit in two limbs. If not the algorithm will silently fail,
returning 0. Otherwise a factor of n which fits in a single limb will be returned.





§31. longlong.h

64-bit arithmetic

31.1 Auxiliary asm macros

umul_ppmm(high_prod , low_prod , multipler , multiplicand)

Multiplies two single limb integers MULTIPLER and MULTIPLICAND, and generates a two
limb product in HIGH_PROD and LOW_PROD.

smul_ppmm(high_prod , low_prod , multipler , multiplicand)

As for umul_ppmm() but the numbers are signed.

udiv_qrnnd(quotient , remainder , high_numerator ,

low_numerator , denominator)

Divides an unsigned integer, composed by the limb integers HIGH_NUMERATOR and
LOW_NUMERATOR, by DENOMINATOR and places the quotient in QUOTIENT and the remainder
in REMAINDER. HIGH_NUMERATOR must be less than DENOMINATOR for correct operation.

sdiv_qrnnd(quotient , remainder , high_numerator ,

low_numerator , denominator)

As for udiv_qrnnd() but the numbers are signed. The quotient is rounded towards 0.
Note that as the quotient is signed it must lie in the range [−263, 263).

count_leading_zeros(count , x)

Counts the number of zero-bits from the msb to the first non-zero bit in the limb x. This
is the number of steps x needs to be shifted left to set the msb. If x is 0 then count is
undefined.

count_trailing_zeros(count , x)

As for count_leading_zeros(), but counts from the least significant end. If x is zero
then count is undefined.

add_ssaaaa(high_sum , low_sum , high_addend_1 , low_addend_1 ,

high_addend_2 , low_addend_2)

Adds two limb integers, composed by HIGH_ADDEND_1 and LOW_ADDEND_1, and
HIGH_ADDEND_2 and LOW_ADDEND_2, respectively. The result is placed in HIGH_SUM and
LOW_SUM. Overflow, i.e. carry out, is not stored anywhere, and is lost.
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add_sssaaaaaa(high_sum , mid_sum , low_sum , high_addend_1 ,

mid_addend_1 , low_addend_1 , high_addend_2 , mid_addend_2 ,

low_addend_2)

Adds two three limb integers. Carry out is lost.

sub_ddmmss(high_difference , low_difference , high_minuend ,

low_minuend , high_subtrahend , low_subtrahend)

Subtracts two limb integers, composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and
HIGH_SUBTRAHEND_2 and LOW_SUBTRAHEND_2, respectively. The result is placed in
HIGH_DIFFERENCE and LOW_DIFFERENCE. Overflow, i.e. carry out is not stored anywhere,
and is lost.

invert_limb(invxl , xl)

Computes an approximate inverse invxl of the limb xl, with an implicit leading 1. More
formally it computes

invxl = (B^2 - B*x - 1)/x = (B^2 - 1)/x - B

Note that xmust be normalised, i.e. with msb set. This inverse makes use of the following
theorem of Torbjorn Granlund and Peter Montgomery [16, Lemma 8.1]:

Let d be normalised, d < B, i.e. it fits in a word, and suppose that md < B2 ≤ (m+1)d.
Let 0 ≤ n ≤ Bd − 1. Write n = n2B + n1B/2 + n0 with n1 = 0 or 1 and n0 < B/2.
Suppose q1B+ q0 = n2B+ (n2 +n1)(m−B) +n1(d−B/2) +n0 and 0 ≤ q0 < B. Then
0 ≤ q1 < B and 0 ≤ n− q1d < 2d.

In the theorem, m is the inverse of d. If we let m = invxl + B and d = x we have
md = B2 − 1 < B2 and (m+ 1)x = B2 + d− 1 ≥ B2.

The theorem is often applied as follows: note that n0 and n1(d − B/2) are both less
than B/2. Also note that n1(m−B) < B. Thus the sum of all these terms contributes
at most 1 to q1. We are left with n2B + n2(m−B). But note that (m−B) is precisely
our precomputed inverse invxl. If we write q1B+ q0 = n2B+n2(m−B), then from the
theorem, we have 0 ≤ n − q1d < 3d, i.e. the quotient is out by at most 2 and is always
either correct or too small.

udiv_qrnnd_preinv(q, r, nh, nl, d, di)

As for udiv_qrnnd() but takes a precomputed inverse di as computed by invert_limb().
The algorithm, in terms of the theorem above, is:

nadj = n1*(d-B/2) + n0

xh, xl = (n2+n1)*(m-B)

xh, xl += nadj + n2*B ( xh , xl = n2*B + (n2+n1)*(m-B) +

n1*(d-B/2) + n0 )

_q1 = B - xh - 1

xh, xl = _q1*d + nh, nl - B*d = nh, nl - q1*d - d so that

xh = 0 or -1

r = xl + xh*d where xh is 0 if q1 is off by 1, otherwise -1

q = xh - _q1 = xh + 1 + n2
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32.1 Macros

MACRO MPN_NORM(a, an)

Normalise (a, an) so that either an is zero or a[an - 1] is nonzero.

MACRO MPN_SWAP(a, an, b, bn)

Swap (a, an) and (b, bn), i.e. swap pointers and sizes.

32.2 Utility functions

void flint_mpn_debug(mp_srcptr x, mp_size_t xsize)

Prints debug information about (x, xsize) to stdout. In particular, this will print
binary representations of all the limbs.

int flint_mpn_zero_p(mp_srcptr x, mp_size_t xsize)

Returns 1 if all limbs of (x, xsize) are zero, otherwise 0.

32.3 Divisibility

int flint_mpn_divisible_1_p(x, xsize , d)

Expression determining whether (x, xsize) is divisible by the mp_limb_t d which is
assumed to be odd-valued and at least 3.

This function is implemented as a macro.

mp_size_t flint_mpn_divexact_1(mp_ptr x, mp_size_t xsize ,

mp_limb_t d)

Divides x once by a known single-limb divisor, returns the new size.

mp_size_t flint_mpn_remove_2exp(mp_ptr x, mp_size_t xsize ,

mp_bitcnt_t *bits)

Divides (x, xsize) by 2n where n is the number of trailing zero bits in x. The new
size of x is returned, and n is stored in the bits argument. x may not be zero.

mp_size_t flint_mpn_remove_power_ascending(mp_ptr x,

mp_size_t xsize , mp_ptr p, mp_size_t psize , ulong *exp)
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Divides (x, xsize) by the largest power n of (p, psize) that is an exact divisor of x.
The new size of x is returned, and n is stored in the exp argument. x may not be zero,
and p must be greater than 2.

This function works by testing divisibility by ascending squares p, p2, p4, p8, . . . , making
it efficient for removing potentially large powers. Because of its high overhead, it should
not be used as the first stage of trial division.

int flint_mpn_factor_trial(mp_srcptr x, mp_size_t xsize ,

long start , long stop)

Searches for a factor of (x, xsize) among the primes in positions start, ..., stop-1

of flint_primes. Returns i if flint_primes[i] is a factor, otherwise returns 0 if no
factor is found. It is assumed that start >= 1.

32.4 Division

int flint_mpn_divides(mp_ptr q, mp_srcptr array1 , mp_size_t

limbs1 , mp_srcptr arrayg , mp_size_t limbsg , mp_ptr temp)

If (arrayg, limbsg) divides (array1, limbs1) then (q, limbs1 - limbsg + 1) is
set to the quotient and 1 is returned, otherwise 0 is returned. The temporary space temp
must have space for limbsg limbs.

Assumes limbs1 limbs1 >= limbsg > 0.

32.5 GCD

mp_size_t flint_mpn_gcd_full(mp_ptr arrayg , mp_ptr array1 ,

mp_size_t limbs1 , mp_ptr array2 , mp_size_t limbs2)

Sets (arrayg, retvalue) to the gcd of (array1, limbs1) and (array2, limbs2).

The only assumption is that neither limbs1 or limbs2 is zero.

32.6 Special numbers

void flint_mpn_harmonic_odd_balanced(mp_ptr t, mp_size_t *

tsize , mp_ptr v, mp_size_t * vsize , long a, long b, long

n, int d)

Computes (t,tsize) and (v,vsize) such that t/v = Hn = 1 + 1/2 + · · · + 1/n. The
computation is performed using recursive balanced summation over the odd terms. The
resulting fraction will not generally be normalized. At the top level, this function should
be called with n > 0, a = 1, b = n, and d = 1.

Enough space should be allocated for t and v to fit the entire sum 1 + 1/2 + · · · + 1/n
computed without normalization; i.e. t and v should have room to fit n! plus one extra
limb.
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33.1 Timer based on the cycle counter

void timeit_start(timeit_t t)

void timeit_stop(timeit_t t)

Gives wall and user time - useful for parallel programming.

Example usage:

timeit_t t0;

// ...

timeit_start(t0);

// do stuff , take some time

timeit_stop(t0);

printf("cpu = %ld ms wall = %ld ms\n", t0->cpu , t0->wall);

void start_clock(int n)

void stop_clock(int n)

double get_clock(int n)

Gives time based on cycle counter.

First one must ensure the processor speed in cycles per second is set correctly in
profiler.h, in the macro definition #define FLINT_CLOCKSPEED.

One can access the cycle counter directly by get_cycle_counter() which returns the
current cycle counter as a double.

A sample usage of clocks is:

init_all_clocks ();

start_clock(n);

// do something

stop_clock(n);

printf("Time in seconds is %f.3\n", get_clock(n));
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where n is a clock number (from 0-19 by default). The number of clocks can be
changed by altering FLINT_NUM_CLOCKS. One can also initialise an individual clock
with init_clock(n).

33.2 Framework for repeatedly sampling a single target

void prof_repeat(double *min , double *max , profile_target_t

target , ulong count)

Allows one to automatically time a given function. Here is a sample usage:

Suppose one has a function one wishes to profile:

void myfunc(ulong a, ulong b);

One creates a struct for passing arguments to our function:

typedef struct

{

ulong a, b;

} myfunc_t;

a sample function:

void sample_myfunc(void * arg , ulong count)

{

myfunc_t * params = (myfunc_t *) arg;

ulong a = params ->a;

ulong b = params ->b;

for (ulong i = 0; i < count; i++)

{

prof_start ();

myfunc(a, b);

prof_stop ();

}

}

Then we do the profile

double min , max;

myfunc_t params;

params.a = 3;

params.b = 4;

prof_repeat (&min , &max , sample_myfunc , &params);

printf("Min time is %lf.3s, max time is %lf.3s\n", min ,

max);

If either of the first two parameters to prof_repeat are NULL, that value is not stored.

One may set the minimum time in microseconds for a timing run by adjusting
DURATION_THRESHOLD and one may set a target duration in microseconds by adjusting
DURATION_TARGET in profiler.h.
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Interfaces to other packages

34.1 Introduction

In this chapter we provide interfaces to various external packages.

34.2 NTL Interface

The NTL interface allows conversion between NTL objects and FLINT objects and vice
versa. The interface is built using C++ and is not built as a part of the FLINT library
library by default. To build the NTL interface one must specify the location of NTL
with the --with-ntl=path option

to configure. NTL version 5.5.2 or later is required.

void fmpz_set_ZZ(fmpz_t rop , const ZZ& op)

Converts an NTL ZZ to an fmpz_t.

Assumes the fmpz_t has already been allocated to have sufficient space.

void fmpz_get_ZZ(ZZ& rop , const fmpz_t op)

Converts an fmpz_t to an NTL ZZ. Allocation is automatically handled.

void fmpz_poly_get_ZZX(ZZX& rop , const fmpz_poly_t op)

Converts an fmpz_poly_t to an NTL ZZX.

void fmpz_poly_set_ZZX(fmpz_poly_t rop , const ZZX& op)

Converts an NTL ZZX to an fmpz_poly_t.
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