fmpq_poly.h – univariate polynomials over the rational numbers

Description.

Types, macros and constants

fmpq_poly_struct
fmpq_poly_t

Description.

Memory management

void fmpq_poly_init(fmpq_poly_t poly)

Initialises the polynomial for use. The length is set to zero.

void fmpq_poly_init2(fmpq_poly_t poly, slong alloc)

Initialises the polynomial with space for at least alloc coefficients and set the length to zero. The alloc coefficients are all set to zero.

void fmpq_poly_realloc(fmpq_poly_t poly, slong alloc)

Reallocates the given polynomial to have space for alloc coefficients. If alloc is zero then the polynomial is cleared and then reinitialised. If the current length is greater than alloc then poly is first truncated to length alloc. Note that this might leave the rational polynomial in non-canonical form.

void fmpq_poly_fit_length(fmpq_poly_t poly, slong len)

If len is greater than the number of coefficients currently allocated, then the polynomial is reallocated to have space for at least len coefficients. No data is lost when calling this function. The function efficiently deals with the case where fit_length() is called many times in small increments by at least doubling the number of allocated coefficients when len is larger than the number of coefficients currently allocated.

void _fmpq_poly_set_length(fmpq_poly_t poly, slong len)

Sets the length of the numerator polynomial to len, demoting coefficients beyond the new length. Note that this method does not guarantee that the rational polynomial is in canonical form.

void fmpq_poly_clear(fmpq_poly_t poly)

Clears the given polynomial, releasing any memory used. The polynomial must be reinitialised in order to be used again.

void _fmpq_poly_normalise(fmpq_poly_t poly)

Sets the length of poly so that the top coefficient is non-zero. If all coefficients are zero, the length is set to zero. Note that this function does not guarantee the coprimality of the numerator polynomial and the integer denominator.

void _fmpq_poly_canonicalise(fmpz * poly, fmpz_t den, slong len)

Puts (poly, den) of length len into canonical form.

It is assumed that the array poly contains a non-zero entry in position len - 1 whenever len > 0. Assumes that den is non-zero.

void fmpq_poly_canonicalise(fmpq_poly_t poly)

Puts the polynomial poly into canonical form. Firstly, the length is set to the actual length of the numerator polynomial. For non-zero polynomials, it is then ensured that the numerator and denominator are coprime and that the denominator is positive. The canonical form of the zero polynomial is a zero numerator polynomial and a one denominator.

int _fmpq_poly_is_canonical(const fmpz * poly, const fmpz_t den, slong len)

Returns whether the polynomial is in canonical form.

int fmpq_poly_is_canonical(const fmpq_poly_t poly)

Returns whether the polynomial is in canonical form.

Polynomial parameters

slong fmpq_poly_degree(const fmpq_poly_t poly)

Returns the degree of poly, which is one less than its length, as a slong.

slong fmpq_poly_length(const fmpq_poly_t poly)

Returns the length of poly.

Accessing the numerator and denominator

fmpz * fmpq_poly_numref(fmpq_poly_t poly)

Returns a reference to the numerator polynomial as an array.

Note that, because of a delayed initialisation approach, this might be NULL for zero polynomials. This situation can be salvaged by calling either fmpq_poly_fit_length() or fmpq_poly_realloc().

This function is implemented as a macro returning (poly)->coeffs.

fmpz_t fmpq_poly_denref(fmpq_poly_t poly)

Returns a reference to the denominator as a fmpz_t. The integer is guaranteed to be properly initialised.

This function is implemented as a macro returning (poly)->den.

Random testing

The functions fmpq_poly_randtest_foo() provide random polynomials suitable for testing. On an integer level, this means that long strings of zeros and ones in the binary representation are favoured as well as the special absolute values \(0\), \(1\), COEFF_MAX, and WORD_MAX. On a polynomial level, the integer numerator has a reasonable chance to have a non-trivial content.

void fmpq_poly_randtest(fmpq_poly_t f, flint_rand_t state, slong len, mp_bitcnt_t bits)

Sets \(f\) to a random polynomial with coefficients up to the given length and where each coefficient has up to the given number of bits. The coefficients are signed randomly. One must call flint_randinit() before calling this function.

void fmpq_poly_randtest_unsigned(fmpq_poly_t f, flint_rand_t state, slong len, mp_bitcnt_t bits)

Sets \(f\) to a random polynomial with coefficients up to the given length and where each coefficient has up to the given number of bits. One must call flint_randinit() before calling this function.

void fmpq_poly_randtest_not_zero(fmpq_poly_t f, flint_rand_t state, slong len, mp_bitcnt_t bits)

As for fmpq_poly_randtest() except that len and bits may not be zero and the polynomial generated is guaranteed not to be the zero polynomial. One must call flint_randinit() before calling this function.

Assignment, swap, negation

void fmpq_poly_set(fmpq_poly_t poly1, const fmpq_poly_t poly2)

Sets poly1 to equal poly2.

void fmpq_poly_set_si(fmpq_poly_t poly, slong x)

Sets poly to the integer \(x\).

void fmpq_poly_set_ui(fmpq_poly_t poly, ulong x)

Sets poly to the integer \(x\).

void fmpq_poly_set_fmpz(fmpq_poly_t poly, const fmpz_t x)

Sets poly to the integer \(x\).

void fmpq_poly_set_fmpq(fmpq_poly_t poly, const fmpq_t x)

Sets poly to the rational \(x\), which is assumed to be given in lowest terms.

void fmpq_poly_set_mpz(fmpq_poly_t poly, const mpz_t x)

Sets poly to the integer \(x\).

void fmpq_poly_set_mpq(fmpq_poly_t poly, const mpq_t x)

Sets poly to the rational \(x\), which is assumed to be given in lowest terms.

void fmpq_poly_set_fmpz_poly(fmpq_poly_t rop, const fmpz_poly_t op)

Sets the rational polynomial rop to the same value as the integer polynomial op.

void _fmpq_poly_set_array_mpq(fmpz * poly, fmpz_t den, const mpq_t * a, slong n)

Sets (poly, den) to the polynomial given by the first \(n \geq 1\) coefficients in the array \(a\), from lowest degree to highest degree.

The result is only guaranteed to be in lowest terms if all input coefficients are given in lowest terms.

void fmpq_poly_set_array_mpq(fmpq_poly_t poly, const mpq_t * a, slong n)

Sets poly to the polynomial with coefficients as given in the array \(a\) of length \(n \geq 0\), from lowest degree to highest degree.

The result is only guaranteed to be in canonical form if all input coefficients are given in lowest terms.

int _fmpq_poly_set_str(fmpz * poly, fmpz_t den, const char * str, slong len)

Sets (poly, den) to the polynomial specified by the null-terminated string str of len coefficients. The input format is a sequence of coefficients separated by one space.

The result is only guaranteed to be in lowest terms if all coefficients in the input string are in lowest terms.

Returns \(0\) if no error occurred. Otherwise, returns -1 in which case the resulting value of (poly, den) is undefined. If str is not null-terminated, calling this method might result in a segmentation fault.

int fmpq_poly_set_str(fmpq_poly_t poly, const char * str)

Sets poly to the polynomial specified by the null-terminated string str. The input format is the same as the output format of fmpq_poly_get_str: the length given as a decimal integer, then two spaces, then the list of coefficients separated by one space.

The result is only guaranteed to be in canonical form if all coefficients in the input string are in lowest terms.

Returns \(0\) if no error occurred. Otherwise, returns -1 in which case the resulting value of poly is set to zero. If str is not null-terminated, calling this method might result in a segmentation fault.

char * fmpq_poly_get_str(const fmpq_poly_t poly)

Returns the string representation of poly.

char * fmpq_poly_get_str_pretty(const fmpq_poly_t poly, const char * var)

Returns the pretty representation of poly, using the null-terminated string var not equal to "\0" as the variable name.

void fmpq_poly_zero(fmpq_poly_t poly)

Sets poly to zero.

void fmpq_poly_one(fmpq_poly_t poly)

Sets poly to the constant polynomial \(1\).

void fmpq_poly_neg(fmpq_poly_t poly1, const fmpq_poly_t poly2)

Sets poly1 to the additive inverse of poly2.

void fmpq_poly_inv(fmpq_poly_t poly1, const fmpq_poly_t poly2)

Sets poly1 to the multiplicative inverse of poly2 if possible. Otherwise, if poly2 is not a unit, leaves poly1 unmodified and calls abort().

void fmpq_poly_swap(fmpq_poly_t poly1, fmpq_poly_t poly2)

Efficiently swaps the polynomials poly1 and poly2.

void fmpq_poly_truncate(fmpq_poly_t poly, slong n)

If the current length of poly is greater than \(n\), it is truncated to the given length. Discarded coefficients are demoted, but they are not necessarily set to zero.

void fmpq_poly_set_trunc(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Sets res to a copy of poly, truncated to length n.

void fmpq_poly_get_slice(fmpq_poly_t rop, const fmpq_poly_t op, slong i, slong j)

Returns the slice with coefficients from \(x^i\) (including) to \(x^j\) (excluding).

void fmpq_poly_reverse(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

This function considers the polynomial poly to be of length \(n\), notionally truncating and zero padding if required, and reverses the result. Since the function normalises its result res may be of length less than \(n\).

Getting and setting coefficients

void fmpq_poly_get_coeff_fmpq(fmpq_t x, const fmpq_poly_t poly, slong n)

Retrieves the \(n`th coefficient of ``poly`\), in lowest terms.

void fmpq_poly_get_coeff_mpq(mpq_t x, const fmpq_poly_t poly, slong n)

Retrieves the \(n`th coefficient of ``poly`\), in lowest terms.

void fmpq_poly_set_coeff_si(fmpq_poly_t poly, slong n, slong x)

Sets the \(n`th coefficient in ``poly`\) to the integer \(x\).

void fmpq_poly_set_coeff_ui(fmpq_poly_t poly, slong n, ulong x)

Sets the \(n`th coefficient in ``poly`\) to the integer \(x\).

void fmpq_poly_set_coeff_fmpz(fmpq_poly_t poly, slong n, const fmpz_t x)

Sets the \(n`th coefficient in ``poly`\) to the integer \(x\).

void fmpq_poly_set_coeff_fmpq(fmpq_poly_t poly, slong n, const fmpq_t x)

Sets the \(n`th coefficient in ``poly`\) to the rational \(x\).

void fmpq_poly_set_coeff_mpz(fmpq_poly_t rop, slong n, const mpz_t x)

Sets the \(n`th coefficient in ``poly`\) to the integer \(x\).

void fmpq_poly_set_coeff_mpq(fmpq_poly_t rop, slong n, const mpq_t x)

Sets the \(n`th coefficient in ``poly`\) to the rational~`x`, which is expected to be provided in lowest terms.

Comparison

int fmpq_poly_equal(const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Returns \(1\) if poly1 is equal to poly2, otherwise returns~`0`.

int _fmpq_poly_equal_trunc(const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n);

Return \(1\) if poly1 and poly2 notionally truncated to length \(n\) are equal, otherwise returns~`0`.

int fmpq_poly_equal_trunc(const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n);

Return \(1\) if poly1 and poly2 notionally truncated to length \(n\) are equal, otherwise returns~`0`.

int _fmpq_poly_cmp(const fmpz * lpoly, const fmpz_t lden, const fmpz * rpoly, const fmpz_t rden, slong len)

Compares two non-zero polynomials, assuming they have the same length len > 0.

The polynomials are expected to be provided in canonical form.

int fmpq_poly_cmp(const fmpq_poly_t left, const fmpq_poly_t right)

Compares the two polynomials left and right.

Compares the two polynomials left and right, returning \(-1\), \(0\), or \(1\) as left is less than, equal to, or greater than right. The comparison is first done by the degree, and then, in case of a tie, by the individual coefficients from highest to lowest.

int fmpq_poly_is_one(const fmpq_poly_t poly)

Returns \(1\) if poly is the constant polynomial~`1`, otherwise returns \(0\).

int fmpq_poly_is_zero(const fmpq_poly_t poly)

Returns \(1\) if poly is the zero polynomial, otherwise returns \(0\).

Addition and subtraction

void _fmpq_poly_add(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2)

Forms the sum (rpoly, rden) of (poly1, den1, len1) and (poly2, den2, len2), placing the result into canonical form.

Assumes that rpoly is an array of length the maximum of len1 and len2. The input operands are assumed to be in canonical form and are also allowed to be of length~`0`.

(rpoly, rden) and (poly1, den1) may be aliased, but (rpoly, rden) and (poly2, den2) may emph{not} be aliased.

void _fmpq_poly_add_can(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, int can)

As per _fmpq_poly_add except that one can specify whether to canonicalise the output or not. This function is intended to be used with weak canonicalisation to prevent explosion in memory usage. It exists for performance reasons.

void fmpq_poly_add(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2)

Sets res to the sum of poly1 and poly2, using Henrici’s algorithm.

void fmpq_poly_add_can(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, int can)

As per fmpq_poly_add except that one can specify whether to canonicalise the output or not. This function is intended to be used with weak canonicalisation to prevent explosion in memory usage. It exists for performance reasons.

void _fmpq_poly_series_add(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

As per _fmpq_poly_add but the inputs are first notionally truncated to length \(n\). If \(n\) is less than len1 or len2 then the output only needs space for \(n\) coefficients. We require \(n \geq 0\).

void _fmpq_poly_add_series_can(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n, int can)

As per _fmpq_poly_add_can but the inputs are first notionally truncated to length \(n\). If \(n\) is less than len1 or len2 then the output only needs space for \(n\) coefficients. We require \(n \geq 0\).

void fmpq_poly_add_series(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, slong n)

As per fmpq_poly_add but the inputs are first notionally truncated to length \(n\).

void fmpq_poly_add_series_can(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, slong n, int can)

As per fmpq_poly_add_can but the inputs are first notionally truncated to length \(n\).

void _fmpq_poly_sub(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2)

Forms the difference (rpoly, rden) of (poly1, den1, len1) and (poly2, den2, len2), placing the result into canonical form.

Assumes that rpoly is an array of length the maximum of len1 and len2. The input operands are assumed to be in canonical form and are also allowed to be of length~`0`.

(rpoly, rden) and (poly1, den1, len1) may be aliased, but (rpoly, rden) and (poly2, den2, len2) may emph{not} be aliased.

void _fmpq_poly_sub_can(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, int can)

As per _fmpq_poly_sub except that one can specify whether to canonicalise the output or not. This function is intended to be used with weak canonicalisation to prevent explosion in memory usage. It exists for performance reasons.

void fmpq_poly_sub(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2)

Sets res to the difference of poly1 and poly2, using Henrici’s algorithm.

void fmpq_poly_sub_can(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, int can)

As per _fmpq_poly_sub except that one can specify whether to canonicalise the output or not. This function is intended to be used with weak canonicalisation to prevent explosion in memory usage. It exists for performance reasons.

void _fmpq_poly_series_sub(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

As per _fmpq_poly_sub but the inputs are first notionally truncated to length \(n\). If \(n\) is less than len1 or len2 then the output only needs space for \(n\) coefficients. We require \(n \geq 0\).

void _fmpq_poly_sub_series_can(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n, int can)

As per _fmpq_poly_sub_can but the inputs are first notionally truncated to length \(n\). If \(n\) is less than len1 or len2 then the output only needs space for \(n\) coefficients. We require \(n \geq 0\).

void fmpq_poly_sub_series(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, slong n)

As per fmpq_poly_sub but the inputs are first notionally truncated to length \(n\).

void fmpq_poly_sub_series_can(fmpq_poly_t res, fmpq_poly poly1, fmpq_poly poly2, slong n, int can)

As per fmpq_poly_sub_can but the inputs are first notionally truncated to length \(n\).

Scalar multiplication and division

void _fmpq_poly_scalar_mul_si(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, slong c)

Sets (rpoly, rden, len) to the product of \(c\) of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is in lowest terms, then so is the output. However, even if neither of these conditions are met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).

void _fmpq_poly_scalar_mul_ui(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, ulong c)

Sets (rpoly, rden, len) to the product of \(c\) of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is in lowest terms, then so is the output. However, even if neither of these conditions are met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).

void _fmpq_poly_scalar_mul_fmpz(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t c)

Sets (rpoly, rden, len) to the product of \(c\) of (poly, den, len).

If the input is normalised, then so is the output, provided it is non-zero. If the input is in lowest terms, then so is the output. However, even if neither of these conditions are met, the result will be (mathematically) correct.

Supports exact aliasing between (rpoly, den) and (poly, den).

void _fmpq_poly_scalar_mul_fmpq(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t r, const fmpz_t s)

Sets (rpoly, rden) to the product of \(r/s\) and (poly, den, len), in lowest terms.

Assumes that (poly, den, len) and \(r/s\) are provided in lowest terms. Assumes that rpoly is an array of length len. Supports aliasing of (rpoly, den) and (poly, den). The fmpz_t’s \(r\) and \(s\) may not be part of (rpoly, rden).

void fmpq_poly_scalar_mul_si(fmpq_poly_t rop, const fmpq_poly_t op, slong c)

Sets rop to \(c\) times op.

void fmpq_poly_scalar_mul_ui(fmpq_poly_t rop, const fmpq_poly_t op, ulong c)

Sets rop to \(c\) times op.

void fmpq_poly_scalar_mul_fmpz(fmpq_poly_t rop, const fmpq_poly_t op, const fmpz_t c)

Sets rop to \(c\) times op. Assumes that the fmpz_t c is not part of rop.

void fmpq_poly_scalar_mul_fmpq(fmpq_poly_t rop, const fmpq_poly_t op, const mpq_t c)

Sets rop to \(c\) times op.

void fmpq_poly_scalar_mul_mpz(fmpq_poly_t rop, const fmpq_poly_t op, const mpz_t c)

Sets rop to \(c\) times op.

void fmpq_poly_scalar_mul_mpq(fmpq_poly_t rop, const fmpq_poly_t op, const fmpq_t c)

Sets rop to \(c\) times op.

void _fmpq_poly_scalar_div_fmpz(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t c)

Sets (rpoly, rden, len) to (poly, den, len) divided by \(c\), in lowest terms.

Assumes that len is positive. Assumes that \(c\) is non-zero. Supports aliasing between (rpoly, rden) and (poly, den). Assumes that \(c\) is not part of (rpoly, rden).

void _fmpq_poly_scalar_div_si(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, slong c)

Sets (rpoly, rden, len) to (poly, den, len) divided by \(c\), in lowest terms.

Assumes that len is positive. Assumes that \(c\) is non-zero. Supports aliasing between (rpoly, rden) and (poly, den).

void _fmpq_poly_scalar_div_ui(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, ulong c)

Sets (rpoly, rden, len) to (poly, den, len) divided by \(c\), in lowest terms.

Assumes that len is positive. Assumes that \(c\) is non-zero. Supports aliasing between (rpoly, rden) and (poly, den).

void _fmpq_poly_scalar_div_fmpq(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t r, const fmpz_t s)

Sets (rpoly, rden, len) to (poly, den, len) divided by \(r/s\), in lowest terms.

Assumes that len is positive. Assumes that \(r/s\) is non-zero and in lowest terms. Supports aliasing between (rpoly, rden) and (poly, den). The fmpz_t’s \(r\) and \(s\) may not be part of (rpoly, poly).

void fmpq_poly_scalar_div_si(fmpq_poly_t rop, const fmpq_poly_t op, slong c)
void fmpq_poly_scalar_div_ui(fmpq_poly_t rop, const fmpq_poly_t op, ulong c);
void fmpq_poly_scalar_div_fmpz(fmpq_poly_t rop, const fmpq_poly_t op, const fmpz_t c);
void fmpq_poly_scalar_div_fmpq(fmpq_poly_t rop, const fmpq_poly_t op, const fmpq_t c);
void fmpq_poly_scalar_div_mpz(fmpq_poly_t rop, const fmpq_poly_t op, const mpz_t c);
void fmpq_poly_scalar_div_mpq(fmpq_poly_t rop, const fmpq_poly_t op, const mpq_t c);

Multiplication

void _fmpq_poly_mul(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2)

Sets (rpoly, rden, len1 + len2 - 1) to the product of (poly1, den1, len1) and (poly2, den2, len2). If the input is provided in canonical form, then so is the output.

Assumes len1 >= len2 > 0. Allows zero-padding in the input. Does not allow aliasing between the inputs and outputs.

void fmpq_poly_mul(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpq_poly_mullow(fmpz * rpoly, fmpz_t rden, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

Sets (rpoly, rden, n) to the low \(n\) coefficients of (poly1, den1) and (poly2, den2). The output is not guaranteed to be in canonical form.

Assumes len1 >= len2 > 0 and 0 < n <= len1 + len2 - 1. Allows for zero-padding in the inputs. Does not allow aliasing between the inputs and outputs.

void fmpq_poly_mullow(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n)

Sets res to the product of poly1 and poly2, truncated to length~`n`.

void fmpq_poly_addmul(fmpq_poly_t rop, const fmpq_poly_t op1, const fmpq_poly_t op2)

Adds the product of op1 and op2 to rop.

void fmpq_poly_submul(fmpq_poly_t rop, const fmpq_poly_t op1, const fmpq_poly_t op2)

Subtracts the product of op1 and op2 from rop.

Powering

void _fmpq_poly_pow(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, ulong e)

Sets (rpoly, rden) to (poly, den)^e, assuming e, len > 0. Assumes that rpoly is an array of length at least e * (len - 1) + 1. Supports aliasing of (rpoly, den) and (poly, den).

void fmpq_poly_pow(fmpq_poly_t res, const fmpq_poly_t poly, ulong e)

Sets res to pow^e, where the only special case \(0^0\) is defined as \(1\).

Shifting

void fmpq_poly_shift_left(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Set res to poly shifted left by \(n\) coefficients. Zero coefficients are inserted.

void fmpq_poly_shift_right(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Set res to poly shifted right by \(n\) coefficients. If \(n\) is equal to or greater than the current length of poly, res is set to the zero polynomial.

Euclidean division

void _fmpq_poly_divrem(fmpz * Q, fmpz_t q, fmpz * R, fmpz_t r, const fmpz * A, const fmpz_t a, slong lenA, const fmpz * B, const fmpz_t b, slong lenB, const fmpz_preinvn_t inv)

Finds the quotient (Q, q) and remainder (R, r) of the Euclidean division of (A, a) by (B, b).

Assumes that lenA >= lenB > 0. Assumes that \(R\) has space for lenA coefficients, although only the bottom lenB - 1 will carry meaningful data on exit. Supports no aliasing between the two outputs, or between the inputs and the outputs.

An optional precomputed inverse of the leading coefficient of \(B\) from fmpz_preinvn_init can be supplied. Otherwise inv should be NULL.

void fmpq_poly_divrem(fmpq_poly_t Q, fmpq_poly_t R, const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Finds the quotient \(Q\) and remainder \(R\) of the Euclidean division of poly1 by poly2.

void _fmpq_poly_div(fmpz * Q, fmpz_t q, const fmpz * A, const fmpz_t a, slong lenA, const fmpz * B, const fmpz_t b, slong lenB, const fmpz_preinvn_t inv)

Finds the quotient (Q, q) of the Euclidean division of (A, a) by (B, b).

Assumes that lenA >= lenB > 0. Supports no aliasing between the inputs and the outputs.

An optional precomputed inverse of the leading coefficient of \(B\) from fmpz_preinvn_init can be supplied. Otherwise inv should be NULL.

void fmpq_poly_div(fmpq_poly_t Q, const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Finds the quotient \(Q\) and remainder \(R\) of the Euclidean division of poly1 by poly2.

void _fmpq_poly_rem(fmpz * R, fmpz_t r, const fmpz * A, const fmpz_t a, slong lenA, const fmpz * B, const fmpz_t b, slong lenB, const fmpz_preinvn_t inv)

Finds the remainder (R, r) of the Euclidean division of (A, a) by (B, b).

Assumes that lenA >= lenB > 0. Supports no aliasing between the inputs and the outputs.

An optional precomputed inverse of the leading coefficient of \(B\) from fmpz_preinvn_init can be supplied. Otherwise inv should be NULL.

void fmpq_poly_rem(fmpq_poly_t R, const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Finds the remainder \(R\) of the Euclidean division of poly1 by poly2.

Euclidean division

fmpq_poly_struct * _fmpq_poly_powers_precompute(const fmpz * B, const fmpz_t denB, slong len)

Computes 2*len - 1 powers of \(x\) modulo the polynomial \(B\) of the given length. This is used as a kind of precomputed inverse in the remainder routine below.

void fmpq_poly_powers_precompute(fmpq_poly_powers_precomp_t pinv, fmpq_poly_t poly) Computes code{2*len - 1} powers of $x$ modulo the polynomial $B$ of the given length. This is used as a kind of precomputed inverse in the remainder routine below.
void _fmpq_poly_powers_clear(fmpq_poly_struct * powers, slong len)

Clean up resources used by precomputed powers which have been computed by\ _fmpq_poly_powers_precompute.

void fmpq_poly_powers_clear(fmpq_poly_powers_precomp_t pinv)

Clean up resources used by precomputed powers which have been computed by\ fmpq_poly_powers_precompute.

void _fmpq_poly_rem_powers_precomp(fmpz * A, fmpz_t denA, slong m, const fmpz * B, const fmpz_t denB, slong n, const fmpq_poly_struct * const powers)

Set \(A\) to the remainder of \(A\) divide \(B\) given precomputed powers mod \(B\) provided by _fmpq_poly_powers_precompute. No aliasing is allowed.

This function is only faster if \(m \leq 2*n - 1\).

The output of this function is emph{not} canonicalised.

void fmpq_poly_rem_powers_precomp(fmpq_poly_t R, const fmpq_poly_t A, const fmpq_poly_t B, const fmpq_poly_powers_precomp_t B_inv)

Set \(R\) to the remainder of \(A\) divide \(B\) given precomputed powers mod \(B\) provided by fmpq_poly_powers_precompute.

This function is only faster if A->length <= 2*B->length - 1.

The output of this function is emph{not} canonicalised.

Power series division

void _fmpq_poly_inv_series_newton(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, slong n)

Computes the first \(n\) terms of the inverse power series of (poly, den, len) using Newton iteration.

The result is produced in canonical form.

Assumes that \(n \geq 1\) and that poly has non-zero constant term. Does not support aliasing.

void fmpq_poly_inv_series_newton(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Computes the first \(n\) terms of the inverse power series of poly using Newton iteration, assuming that poly has non-zero constant term and \(n \geq 1\).

void _fmpq_poly_inv_series(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong n)

Computes the first \(n\) terms of the inverse power series of (poly, den, len).

The result is produced in canonical form.

Assumes that \(n \geq 1\) and that poly has non-zero constant term. Does not support aliasing.

void fmpq_poly_inv_series(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Computes the first \(n\) terms of the inverse power series of poly, assuming that poly has non-zero constant term and \(n \geq 1\).

void _fmpq_poly_div_series(fmpz * Q, fmpz_t denQ, const fmpz * A, const fmpz_t denA, slong lenA, const fmpz * B, const fmpz_t denB, slong lenB, slong n)

Divides (A, denA, lenA) by (B, denB, lenB) as power series over \(\Q\), assuming \(B\) has non-zero constant term and that all lengths are positive.

Aliasing is not supported.

This function ensures that the numerator and denominator are coprime on exit.

void fmpq_poly_div_series(fmpq_poly_t Q, const fmpq_poly_t A, const fmpq_poly_t B, slong n)

Performs power series division in \(\Q[[x]] / (x^n)\). The function considers the polynomials \(A\) and \(B\) as power series of length~`n` starting with the constant terms. The function assumes that \(B\) has non-zero constant term and \(n \geq 1\).

Greatest common divisor

void _fmpq_poly_gcd(fmpz *G, fmpz_t denG, const fmpz *A, slong lenA, const fmpz *B, slong lenB)

Computes the monic greatest common divisor \(G\) of \(A\) and \(B\).

Assumes that \(G\) has space for \(\len(B)\) coefficients, where \(\len(A) \geq \len(B) > 0\).

Aliasing between the output and input arguments is not supported.

Does not support zero-padding.

void fmpq_poly_gcd(fmpq_poly_t G, const fmpq_poly_t A, const fmpq_poly_t B)

Computes the monic greatest common divisor \(G\) of \(A\) and \(B\).

In the the special case when \(A = B = 0\), sets \(G = 0\).

void _fmpq_poly_xgcd(fmpz *G, fmpz_t denG, fmpz *S, fmpz_t denS, fmpz *T, fmpz_t denT, const fmpz *A, const fmpz_t denA, slong lenA, const fmpz *B, const fmpz_t denB, slong lenB)

Computes polynomials \(G\), \(S\), and \(T\) such that \(G = \gcd(A, B) = S A + T B\), where \(G\) is the monic greatest common divisor of \(A\) and \(B\).

Assumes that \(G\), \(S\), and \(T\) have space for \(\len(B)\), \(\len(B)\), and \(\len(A)\) coefficients, respectively, where it is also assumed that \(\len(A) \geq \len(B) > 0\).

Does not support zero padding of the input arguments.

void fmpq_poly_xgcd(fmpq_poly_t G, fmpz_poly_t S, fmpz_poly_t T, const fmpq_poly_t A, const fmpq_poly_t B)

Computes polynomials \(G\), \(S\), and \(T\) such that \(G = \gcd(A, B) = S A + T B\), where \(G\) is the monic greatest common divisor of \(A\) and \(B\).

Corner cases are handled as follows. If \(A = B = 0\), returns \(G = S = T = 0\). If \(A \neq 0\), \(B = 0\), returns the suitable scalar multiple of \(G = A\), \(S = 1\), and \(T = 0\). The case when \(A = 0\), \(B \neq 0\) is handled similarly.

void _fmpq_poly_lcm(fmpz *L, fmpz_t denL, const fmpz *A, slong lenA, const fmpz *B, slong lenB)

Computes the monic least common multiple \(L\) of \(A\) and \(B\).

Assumes that \(L\) has space for \(\len(A) + \len(B) - 1\) coefficients, where \(\len(A) \geq \len(B) > 0\).

Aliasing between the output and input arguments is not supported.

Does not support zero-padding.

void fmpq_poly_lcm(fmpq_poly_t L, const fmpq_poly_t A, const fmpq_poly_t B)

Computes the monic least common multiple \(L\) of \(A\) and \(B\).

In the special case when \(A = B = 0\), sets \(L = 0\).

void _fmpq_poly_resultant(fmpz_t rnum, fmpz_t rden, const fmpz *poly1, const fmpz_t den1, slong len1, const fmpz *poly2, const fmpz_t den2, slong len2)

Sets (rnum, rden) to the resultant of the two input polynomials.

Assumes that len1 >= len2 > 0. Does not support zero-padding of the input polynomials. Does not support aliasing of the input and output arguments.

void fmpq_poly_resultant(fmpq_t r, const fmpq_poly_t f, const fmpq_poly_t g)

Returns the resultant of \(f\) and \(g\).

Enumerating the roots of \(f\) and \(g\) over \(\bar{\mathbf{Q}}\) as \(r_1, \dotsc, r_m\) and \(s_1, \dotsc, s_n\), respectively, and letting \(x\) and \(y\) denote the leading coefficients, the resultant is defined as

\[x^{\deg(f)} y^{\deg(g)} \prod_{1 \leq i, j \leq n} (r_i - s_j).\]

We handle special cases as follows: if one of the polynomials is zero, the resultant is zero. Note that otherwise if one of the polynomials is constant, the last term in the above expression is the empty product.

void fmpq_poly_resultant_(fmpq_t r, const fmpq_poly_t f, const fmpq_poly_t g, fmpz_t div, slong nbits)

Returns the resultant of \(f\) and \(g\) divided by div under the assumption that the result has at most nbits bits. The result must be an integer.

Derivative and integral

void _fmpq_poly_derivative(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len)

Sets (rpoly, rden, len - 1) to the derivative of (poly, den, len). Does nothing if len <= 1. Supports aliasing between the two polynomials.

void fmpq_poly_derivative(fmpq_poly_t res, const fmpq_poly_t poly)

Sets res to the derivative of poly.

void _fmpq_poly_integral(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len)

Sets (rpoly, rden, len) to the integral of (poly, den, len - 1). Assumes len >= 0. Supports aliasing between the two polynomials.

void fmpq_poly_integral(fmpq_poly_t res, const fmpq_poly_t poly)

Sets res to the integral of poly. The constant term is set to zero. In particular, the integral of the zero polynomial is the zero polynomial.

Square roots

void _fmpq_poly_sqrt_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the square root of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 1. Does not support aliasing between the input and output polynomials.

void fmpq_poly_sqrt_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the square root of f to order n > 1. Requires f to have constant term 1.

void _fmpq_poly_invsqrt_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the inverse square root of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 1. Does not support aliasing between the input and output polynomials.

void fmpq_poly_invsqrt_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the inverse square root of f to order n > 0. Requires f to have constant term 1.

Power sums

void _fmpq_poly_power_sums(fmpz * res, fmpz_t rden, const fmpz * poly, slong len, slong n)

Compute the (truncated) power sums series of the polynomial (poly,len) up to length \(n\) using Newton identities.

void fmpq_poly_power_sums(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Compute the (truncated) power sum series of the monic polynomial poly up to length \(n\) using Newton identities. That is the power series whose coefficient of degree \(i\) is the sum of the \(i\)-th power of all (complex) roots of the polynomial poly.

void _fmpq_poly_power_sums_to_poly(fmpz * res, const fmpz * poly, const fmpz_t den, slong len)

Compute an integer polynomial given by its power sums series (poly,den,len).

void fmpq_poly_power_sums_to_fmpz_poly(fmpz_poly_t res, const fmpq_poly_t Q)

Compute the integer polynomial with content one and positive leading coefficient given by its power sums series Q.

void fmpq_poly_power_sums_to_poly(fmpq_poly_t res, const fmpq_poly_t Q)

Compute the monic polynomial from its power sums series Q.

Transcendental functions

void _fmpq_poly_log_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the logarithm of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 1. Supports aliasing between the input and output polynomials.

void fmpq_poly_log_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the logarithm of f to order n > 0. Requires f to have constant term 1.

void _fmpq_poly_exp_series(fmpz * g, fmpz_t gden, const fmpz * h, const fmpz_t hden, slong hlen, slong n)

Sets (g, gden, n) to the series expansion of the exponential function of (h, hden, hlen). Assumes n > 0, hlen > 0 and that (h, hden, hlen) has constant term 0. Does not support aliasing between the input and output polynomials.

void fmpq_poly_exp_series(fmpq_poly_t res, const fmpq_poly_t h, slong n)

Sets res to the series expansion of the exponential function of h to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_atan_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the inverse tangent of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_atan_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the inverse tangent of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_atanh_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the inverse hyperbolic tangent of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_atanh_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the inverse hyperbolic tangent of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_asin_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the inverse sine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_asin_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the inverse sine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_asinh_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the inverse hyperbolic sine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_asinh_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the inverse hyperbolic sine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_tan_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the tangent function of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Does not support aliasing between the input and output polynomials.

void fmpq_poly_tan_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the tangent function of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_sin_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the sine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_sin_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the sine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_cos_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the cosine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_cos_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the cosine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_sin_cos_series(fmpz * s, fmpz_t sden, fmpz * c, fmpz_t cden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (s, sden, n) to the series expansion of the sine of (f, fden, flen), and (c, cden, n) to the series expansion of the cosine. Assumes n > 0 and that (f, fden, flen) has constant term 0. Supports aliasing between the input and output polynomials.

void fmpq_poly_sin_cos_series(fmpq_poly_t res1, fmpq_poly_t res2, const fmpq_poly_t f, slong n)

Sets res1 to the series expansion of the sine of f to order n > 0, and res2 to the series expansion of the cosine. Requires f to have constant term 0.

void _fmpq_poly_sinh_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the hyperbolic sine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Does not support aliasing between the input and output polynomials.

void fmpq_poly_sinh_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the hyperbolic sine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_cosh_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the hyperbolic cosine of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Does not support aliasing between the input and output polynomials.

void fmpq_poly_cosh_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the hyperbolic cosine of f to order n > 0. Requires f to have constant term 0.

void _fmpq_poly_tanh_series(fmpz * g, fmpz_t gden, const fmpz * f, const fmpz_t fden, slong flen, slong n)

Sets (g, gden, n) to the series expansion of the hyperbolic tangent of (f, fden, flen). Assumes n > 0 and that (f, fden, flen) has constant term 0. Does not support aliasing between the input and output polynomials.

void fmpq_poly_tanh_series(fmpq_poly_t res, const fmpq_poly_t f, slong n)

Sets res to the series expansion of the hyperbolic tangent of f to order n > 0. Requires f to have constant term 0.

Orthogonal polynomials

void _fmpq_poly_legendre_p(fmpq * coeffs, fmpz_t den, ulong n)

Sets coeffs to the coefficient array of the Legendre polynomial \(P_n(x)\), defined by \((n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)\), for \(n\ge0\). Sets den to the overall denominator. The coefficients are calculated using a hypergeometric recurrence. The length of the array will be n+1. To improve performance, the common denominator is computed in one step and the coefficients are evaluated using integer arithmetic. The denominator is given by \(\gcd(n!,2^n) = 2^{\lfloor n/2 \rfloor + \lfloor n/4 \rfloor + \ldots}.\) See fmpz_poly for the shifted Legendre polynomials.

void fmpq_poly_legendre_p(fmpq_poly_t poly, ulong n)

Sets poly to the Legendre polynomial \(P_n(x)\), defined by \((n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)\), for \(n\ge0\). The coefficients are calculated using a hypergeometric recurrence. To improve performance, the common denominator is computed in one step and the coefficients are evaluated using integer arithmetic. The denominator is given by \(\gcd(n!,2^n) = 2^{\lfloor n/2 \rfloor + \lfloor n/4 \rfloor + \ldots}.\) See fmpz_poly for the shifted Legendre polynomials.

void _fmpq_poly_laguerre_l(fmpq * coeffs, fmpz_t den, ulong n)

Sets coeffs to the coefficient array of the Laguerre polynomial \(L_n(x)\), defined by \((n+1) L_{n+1}(x) = (2n+1-x) L_n(x) - n L_{n-1}(x)\), for \(n\ge0\). Sets den to the overall denominator. The coefficients are calculated using a hypergeometric recurrence. The length of the array will be n+1.

void fmpq_poly_laguerre_l(fmpq_poly_t poly, ulong n)

Sets poly to the Laguerre polynomial \(L_n(x)\), defined by \((n+1) L_{n+1}(x) = (2n+1-x) L_n(x) - n L_{n-1}(x)\), for \(n\ge0\). The coefficients are calculated using a hypergeometric recurrence.

void _fmpq_poly_gegenbauer_c(fmpq * coeffs, fmpz_t den, ulong n, const fmpq_t a)

Sets coeffs to the coefficient array of the Gegenbauer (ultraspherical) polynomial \(C^{(\alpha)}_n(x) = \frac{(2\alpha)_n}{n!}{}_2F_1\left(-n,2\alpha+n; \alpha+\frac12;\frac{1-x}{2}\right)\), for integer \(n\ge0\) and rational \(\alpha>0\). Sets den to the overall denominator. The coefficients are calculated using a hypergeometric recurrence.

void fmpq_poly_gegenbauer_c(fmpq_poly_t poly, ulong n, const fmpq_t a)

Sets poly to the Gegenbauer (ultraspherical) polynomial \(C^{(\alpha)}_n(x) = \frac{(2\alpha)_n}{n!}{}_2F_1\left(-n,2\alpha+n; \alpha+\frac12;\frac{1-x}{2}\right)\), for integer \(n\ge0\) and rational \(\alpha>0\). The coefficients are calculated using a hypergeometric recurrence.

Evaluation

void _fmpq_poly_evaluate_fmpz(fmpz_t rnum, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t a)

Evaluates the polynomial (poly, den, len) at the integer \(a\) and sets (rnum, rden) to the result in lowest terms.

void fmpq_poly_evaluate_fmpz(fmpq_t res, const fmpq_poly_t poly, const fmpz_t a)

Evaluates the polynomial poly at the integer \(a\) and sets res to the result.

void _fmpq_poly_evaluate_fmpq(fmpz_t rnum, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t anum, const fmpz_t aden)

Evaluates the polynomial (poly, den, len) at the rational (anum, aden) and sets (rnum, rden) to the result in lowest terms. Aliasing between (rnum, rden) and (anum, aden) is not supported.

void fmpq_poly_evaluate_fmpq(fmpq_t res, const fmpq_poly_t poly, const fmpq_t a)

Evaluates the polynomial poly at the rational \(a\) and sets res to the result.

void fmpq_poly_evaluate_mpz(mpq_t res, const fmpq_poly_t poly, const mpz_t a)

Evaluates the polynomial poly at the integer \(a\) of type mpz and sets res to the result.

void fmpq_poly_evaluate_mpq(mpq_t res, const fmpq_poly_t poly, const mpq_t a)

Evaluates the polynomial poly at the rational \(a\) of type mpq and sets res to the result.

Interpolation

void _fmpq_poly_interpolate_fmpz_vec(fmpz * poly, fmpz_t den, const fmpz * xs, const fmpz * ys, slong n)

Sets poly / den to the unique interpolating polynomial of degree at most \(n - 1\) satisfying \(f(x_i) = y_i\) for every pair \(x_i, y_i\) in xs and ys.

The vector poly must have room for n+1 coefficients, even if the interpolating polynomial is shorter. Aliasing of poly or den with any other argument is not allowed.

It is assumed that the \(x\) values are distinct.

This function uses a simple \(O(n^2)\) implementation of Lagrange interpolation, clearing denominators to avoid working with fractions. It is currently not designed to be efficient for large \(n\).

fmpq_poly_interpolate_fmpz_vec(fmpq_poly_t poly, const fmpz * xs, const fmpz * ys, slong n)

Sets poly to the unique interpolating polynomial of degree at most \(n - 1\) satisfying \(f(x_i) = y_i\) for every pair \(x_i, y_i\) in xs and ys. It is assumed that the \(x\) values are distinct.

Composition

void _fmpq_poly_compose(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2)

Sets (res, den) to the composition of (poly1, den1, len1) and (poly2, den2, len2), assuming len1, len2 > 0.

Assumes that res has space for (len1 - 1) * (len2 - 1) + 1 coefficients. Does not support aliasing.

void fmpq_poly_compose(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2)

Sets res to the composition of poly1 and poly2.

void _fmpq_poly_rescale(fmpz * res, fmpz_t denr, const fmpz * poly, const fmpz_t den, slong len, const fmpz_t anum, const fmpz_t aden)

Sets (res, denr, len) to (poly, den, len) with the indeterminate rescaled by (anum, aden).

Assumes that len > 0 and that (anum, aden) is non-zero and in lowest terms. Supports aliasing between (res, denr, len) and (poly, den, len).

void fmpz_poly_rescale(fmpq_poly_t res, const fmpq_poly_t poly, const fmpq_t a)

Sets res to poly with the indeterminate rescaled by \(a\).

Power series composition

void _fmpq_poly_compose_series_horner(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2, len2) modulo \(x^n\), where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1) * (len2-1) + 1 <= n, and that res has space for n coefficients. Does not support aliasing between any of the inputs and the output.

This implementation uses the Horner scheme. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

void fmpq_poly_compose_series_horner(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n)

Sets res to the composition of poly1 and poly2 modulo \(x^n\), where the constant term of poly2 is required to be zero.

This implementation uses the Horner scheme. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

void _fmpq_poly_compose_series_brent_kung(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2, len2) modulo \(x^n\), where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1) * (len2-1) + 1 <= n, and that res has space for n coefficients. Does not support aliasing between any of the inputs and the output.

This implementation uses Brent-Kung algorithm 2.1 cite{BrentKung1978}. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

void fmpq_poly_compose_series_brent_kung(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n)

Sets res to the composition of poly1 and poly2 modulo \(x^n\), where the constant term of poly2 is required to be zero.

This implementation uses Brent-Kung algorithm 2.1 cite{BrentKung1978}. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

void _fmpq_poly_compose_series(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n)

Sets (res, den, n) to the composition of (poly1, den1, len1) and (poly2, den2, len2) modulo \(x^n\), where the constant term of poly2 is required to be zero.

Assumes that len1, len2, n > 0, that len1, len2 <= n, that (len1-1) * (len2-1) + 1 <= n, and that res has space for n coefficients. Does not support aliasing between any of the inputs and the output.

This implementation automatically switches between the Horner scheme and Brent-Kung algorithm 2.1 depending on the size of the inputs. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

void fmpq_poly_compose_series(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n)

Sets res to the composition of poly1 and poly2 modulo \(x^n\), where the constant term of poly2 is required to be zero.

This implementation automatically switches between the Horner scheme and Brent-Kung algorithm 2.1 depending on the size of the inputs. The default fmpz_poly composition algorithm is automatically used when the composition can be performed over the integers.

Power series reversion

void _fmpq_poly_revert_series_lagrange(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, slong n)

Sets (res, den) to the power series reversion of (poly1, den1, len1) modulo \(x^n\).

The constant term of poly2 is required to be zero and the linear term is required to be nonzero. Assumes that \(n > 0\). Does not support aliasing between any of the inputs and the output.

This implementation uses the Lagrange inversion formula. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void fmpq_poly_revert_series_lagrange(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Sets res to the power series reversion of poly1 modulo \(x^n\). The constant term of poly2 is required to be zero and the linear term is required to be nonzero.

This implementation uses the Lagrange inversion formula. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void _fmpq_poly_revert_series_lagrange_fast(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, slong n)

Sets (res, den) to the power series reversion of (poly1, den1, len1) modulo \(x^n\).

The constant term of poly2 is required to be zero and the linear term is required to be nonzero. Assumes that \(n > 0\). Does not support aliasing between any of the inputs and the output.

This implementation uses a reduced-complexity implementation of the Lagrange inversion formula. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void fmpq_poly_revert_series_lagrange_fast(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Sets res to the power series reversion of poly1 modulo \(x^n\). The constant term of poly2 is required to be zero and the linear term is required to be nonzero.

This implementation uses a reduced-complexity implementation of the Lagrange inversion formula. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void _fmpq_poly_revert_series_newton(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, slong n)

Sets (res, den) to the power series reversion of (poly1, den1, len1) modulo \(x^n\).

The constant term of poly2 is required to be zero and the linear term is required to be nonzero. Assumes that \(n > 0\). Does not support aliasing between any of the inputs and the output.

This implementation uses Newton iteration. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void fmpq_poly_revert_series_newton(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Sets res to the power series reversion of poly1 modulo \(x^n\). The constant term of poly2 is required to be zero and the linear term is required to be nonzero.

This implementation uses Newton iteration. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void _fmpq_poly_revert_series(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, slong n)

Sets (res, den) to the power series reversion of (poly1, den1, len1) modulo \(x^n\).

The constant term of poly2 is required to be zero and the linear term is required to be nonzero. Assumes that \(n > 0\). Does not support aliasing between any of the inputs and the output.

This implementation defaults to using Newton iteration. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

void fmpq_poly_revert_series(fmpq_poly_t res, const fmpq_poly_t poly, slong n)

Sets res to the power series reversion of poly1 modulo \(x^n\). The constant term of poly2 is required to be zero and the linear term is required to be nonzero.

This implementation defaults to using Newton iteration. The default fmpz_poly reversion algorithm is automatically used when the reversion can be performed over the integers.

Gaussian content

void _fmpq_poly_content(fmpq_t res, const fmpz * poly, const fmpz_t den, slong len)

Sets res to the content of (poly, den, len). If len == 0, sets res to zero.

void fmpq_poly_content(fmpq_t res, const fmpq_poly_t poly)

Sets res to the content of poly. The content of the zero polynomial is defined to be zero.

void _fmpq_poly_primitive_part(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len)

Sets (rpoly, rden, len) to the primitive part, with non-negative leading coefficient, of (poly, den, len). Assumes that len > 0. Supports aliasing between the two polynomials.

void fmpq_poly_primitive_part(fmpq_poly_t res, const fmpq_poly_t poly)

Sets res to the primitive part, with non-negative leading coefficient, of poly.

int _fmpq_poly_is_monic(const fmpz * poly, const fmpz_t den, slong len)

Returns whether the polynomial (poly, den, len) is monic. The zero polynomial is not monic by definition.

int fmpq_poly_is_monic(const fmpq_poly_t poly)

Returns whether the polynomial poly is monic. The zero polynomial is not monic by definition.

void _fmpq_poly_make_monic(fmpz * rpoly, fmpz_t rden, const fmpz * poly, const fmpz_t den, slong len)

Sets (rpoly, rden, len) to the monic scalar multiple of (poly, den, len). Assumes that len > 0. Supports aliasing between the two polynomials.

void fmpq_poly_make_monic(fmpq_poly_t res, const fmpq_poly_t poly)

Sets res to the monic scalar multiple of poly whenever poly is non-zero. If poly is the zero polynomial, sets res to zero.

Square-free

int fmpq_poly_is_squarefree(const fmpq_poly_t poly)

Returns whether the polynomial poly is square-free. A non-zero polynomial is defined to be square-free if it has no non-unit square factors. We also define the zero polynomial to be square-free.

Input and output

int _fmpq_poly_print(const fmpz * poly, const fmpz_t den, slong len)

Prints the polynomial (poly, den, len) to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpq_poly_print(const fmpq_poly_t poly)

Prints the polynomial to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int _fmpq_poly_print_pretty(const fmpz *poly, const fmpz_t den, slong len, const char * x)
int fmpq_poly_print_pretty(const fmpq_poly_t poly, const char * var)

Prints the pretty representation of poly to stdout, using the null-terminated string var not equal to "\0" as the variable name.

In the current implementation always returns~`1`.

int _fmpq_poly_fprint(FILE * file, const fmpz * poly, const fmpz_t den, slong len)

Prints the polynomial (poly, den, len) to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpq_poly_fprint(FILE * file, const fmpq_poly_t poly)

Prints the polynomial to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int _fmpq_poly_fprint_pretty(FILE * file, const fmpz *poly, const fmpz_t den, slong len, const char * x)
int fmpq_poly_print_pretty(const fmpq_poly_t poly, const char * var)

Prints the pretty representation of poly to stdout, using the null-terminated string var not equal to "\0" as the variable name.

In the current implementation, always returns~`1`.

int fmpq_poly_read(fmpq_poly_t poly)

Reads a polynomial from stdin, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive value.

int fmpq_poly_fread(FILE * file, fmpq_poly_t poly)

Reads a polynomial from the stream file, storing the result in poly.

In case of success, returns a positive number. In case of failure, returns a non-positive value.