fmpz_mod_poly.h – polynomials over integers mod n

Description.

Types, macros and constants

fmpz_mod_poly_struct
fmpz_mod_poly_t

Description.

Memory management

void fmpz_mod_poly_init(fmpz_mod_poly_t poly, const fmpz_t p)

Initialises poly for use over \(\mathbf{Z} / p \mathbf{Z}\), setting its length to zero.

A corresponding call to fmpz_mod_poly_clear() must be made after finishing with the fmpz_mod_poly_t to free the memory used by the polynomial. The user is also responsible to clearing the integer~`p`.

void fmpz_mod_poly_init2(fmpz_mod_poly_t poly, const fmpz_t p, slong alloc)

Initialises poly with space for at least alloc coefficients and sets the length to zero. The allocated coefficients are all set to zero.

void fmpz_mod_poly_clear(fmpz_mod_poly_t poly)

Clears the given polynomial, releasing any memory used. It must be reinitialised in order to be used again.

void fmpz_mod_poly_realloc(fmpz_mod_poly_t poly, slong alloc)

Reallocates the given polynomial to have space for alloc coefficients. If alloc is zero the polynomial is cleared and then reinitialised. If the current length is greater than alloc the polynomial is first truncated to length alloc.

void fmpz_mod_poly_fit_length(fmpz_mod_poly_t poly, slong len)

If len is greater than the number of coefficients currently allocated, then the polynomial is reallocated to have space for at least len coefficients. No data is lost when calling this function.

The function efficiently deals with the case where it is called many times in small increments by at least doubling the number of allocated coefficients when length is larger than the number of coefficients currently allocated.

void _fmpz_mod_poly_normalise(fmpz_mod_poly_t poly)

Sets the length of poly so that the top coefficient is non-zero. If all coefficients are zero, the length is set to zero. This function is mainly used internally, as all functions guarantee normalisation.

void _fmpz_mod_poly_set_length(fmpz_mod_poly_t poly, slong len)

Demotes the coefficients of poly beyond len and sets the length of poly to len.

void fmpz_mod_poly_truncate(fmpz_mod_poly_t poly, slong len)

If the current length of poly is greater than len, it is truncated to have the given length. Discarded coefficients are not necessarily set to zero.

void fmpz_mod_poly_set_trunc(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, slong n)

Notionally truncate poly to length \(n\) and set res to the result. The result is normalised.

Randomisation

void fmpz_mod_poly_randtest(fmpz_mod_poly_t f, flint_rand_t state, slong len)

Sets the polynomial~`f` to a random polynomial of length up~``len``.

void fmpz_mod_poly_randtest_irreducible(fmpz_mod_poly_t f, flint_rand_t state, slong len)

Sets the polynomial~`f` to a random irreducible polynomial of length up~``len``, assuming len is positive.

void fmpz_mod_poly_randtest_not_zero(fmpz_mod_poly_t f, flint_rand_t state, slong len)

Sets the polynomial~`f` to a random polynomial of length up~``len``, assuming len is positive.

void fmpz_mod_poly_randtest_monic(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Generates a random monic polynomial with length len.

void fmpz_mod_poly_randtest_monic_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Generates a random monic irreducible polynomial with length len.

void fmpz_mod_poly_randtest_monic_primitive(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Generates a random monic irreducible primitive polynomial with length len.

void fmpz_mod_poly_randtest_trinomial(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Generates a random monic trinomial of length len.

int fmpz_mod_poly_randtest_trinomial_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)

Attempts to set poly to a monic irreducible trinomial of length len. It will generate up to max_attempts trinomials in attempt to find an irreducible one. If max_attempts is 0, then it will keep generating trinomials until an irreducible one is found. Returns \(1\) if one is found and \(0\) otherwise.

void fmpz_mod_poly_randtest_pentomial(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Generates a random monic pentomial of length len.

int fmpz_mod_poly_randtest_pentomial_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len, slong max_attempts)

Attempts to set poly to a monic irreducible pentomial of length len. It will generate up to max_attempts pentomials in attempt to find an irreducible one. If max_attempts is 0, then it will keep generating pentomials until an irreducible one is found. Returns \(1\) if one is found and \(0\) otherwise.

void fmpz_mod_poly_randtest_sparse_irreducible(fmpz_mod_poly_t poly, flint_rand_t state, slong len)

Attempts to set poly to a sparse, monic irreducible polynomial with length len. It attempts to find an irreducible trinomial. If that does not succeed, it attempts to find a irreducible pentomial. If that fails, then poly is just set to a random monic irreducible polynomial.

Attributes

fmpz * fmpz_mod_poly_modulus(const fmpz_mod_poly_t poly)

Returns the modulus of this polynomial. This function is implemented as a macro.

slong fmpz_mod_poly_degree(const fmpz_mod_poly_t poly)

Returns the degree of the polynomial. The degree of the zero polynomial is defined to be \(-1\).

slong fmpz_mod_poly_length(const fmpz_mod_poly_t poly)

Returns the length of the polynomial, which is one more than its degree.

fmpz * fmpz_mod_poly_lead(const fmpz_mod_poly_t poly)

Returns a pointer to the first leading coefficient of poly if this is non-zero, otherwise returns NULL.

Assignment and basic manipulation

void fmpz_mod_poly_set(fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets the polynomial poly1 to the value of poly2.

void fmpz_mod_poly_swap(fmpz_mod_poly_t poly1, fmpz_mod_poly_t poly2)

Swaps the two polynomials. This is done efficiently by swapping pointers rather than individual coefficients.

void fmpz_mod_poly_zero(fmpz_mod_poly_t poly)

Sets poly to the zero polynomial.

void fmpz_mod_poly_zero_coeffs(fmpz_mod_poly_t poly, slong i, slong j)

Sets the coefficients of \(X^k\) for \(k \in [i, j)\) in the polynomial to zero.

void fmpz_mod_poly_reverse(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, slong n)

This function considers the polynomial poly to be of length \(n\), notionally truncating and zero padding if required, and reverses the result. Since the function normalises its result res may be of length less than \(n\).

Conversion

void fmpz_mod_poly_set_ui(fmpz_mod_poly_t f, ulong c)

Sets the polynomial \(f\) to the constant \(c\) reduced modulo \(p\).

void fmpz_mod_poly_set_fmpz(fmpz_mod_poly_t f, const fmpz_t c)

Sets the polynomial \(f\) to the constant \(c\) reduced modulo \(p\).

void fmpz_mod_poly_set_fmpz_poly(fmpz_mod_poly_t f, const fmpz_poly_t g)

Sets \(f\) to \(g\) reduced modulo \(p\), where \(p\) is the modulus that is part of the data structure of \(f\).

void fmpz_mod_poly_get_fmpz_poly(fmpz_poly_t f, const fmpz_mod_poly_t g)

Sets \(f\) to \(g\). This is done simply by lifting the coefficients of \(g\) taking representatives \([0, p) \subset \mathbf{Z}\).

Comparison

int fmpz_mod_poly_equal(const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Returns non-zero if the two polynomials are equal, otherwise returns zero.

int fmpz_mod_poly_equal_trunc(const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n)

Notionally truncates the two polynomials to length \(n\) and returns non-zero if the two polynomials are equal, otherwise returns zero.

int fmpz_mod_poly_is_zero(const fmpz_mod_poly_t poly)

Returns non-zero if the polynomial is zero.

int fmpz_mod_poly_is_one(const fmpz_mod_poly_t poly)

Returns non-zero if the polynomial is the constant \(1\).

int fmpz_mod_poly_is_x(const fmpz_mod_poly_t poly)

Returns non-zero if the polynomial is the degree \(1\) polynomial \(x\).

Getting and setting coefficients

void fmpz_mod_poly_set_coeff_fmpz(fmpz_mod_poly_t poly, slong n, const fmpz_t x)

Sets the coefficient of \(X^n\) in the polynomial to \(x\), assuming \(n \geq 0\).

void fmpz_mod_poly_set_coeff_ui(fmpz_mod_poly_t poly, slong n, ulong x)

Sets the coefficient of \(X^n\) in the polynomial to \(x\), assuming \(n \geq 0\).

void fmpz_mod_poly_get_coeff_fmpz(fmpz_t x, const fmpz_mod_poly_t poly, slong n)

Sets \(x\) to the coefficient of \(X^n\) in the polynomial, assumng \(n \geq 0\).

void fmpz_mod_poly_set_coeff_mpz(fmpz_mod_poly_t poly, slong n, const mpz_t x)

Sets the coefficient of \(X^n\) in the polynomial to \(x\), assuming \(n \geq 0\).

void fmpz_mod_poly_get_coeff_mpz(mpz_t x, const fmpz_mod_poly_t poly, slong n)

Sets \(x\) to the coefficient of \(X^n\) in the polynomial, assumng \(n \geq 0\).

Shifting

void _fmpz_mod_poly_shift_left(fmpz * res, const fmpz * poly, slong len, slong n)

Sets (res, len + n) to (poly, len) shifted left by \(n\) coefficients.

Inserts zero coefficients at the lower end. Assumes that len and \(n\) are positive, and that res fits len + n elements. Supports aliasing between res and poly.

void fmpz_mod_poly_shift_left(fmpz_mod_poly_t f, const fmpz_mod_poly_t g, slong n)

Sets res to poly shifted left by \(n\) coeffs. Zero coefficients are inserted.

void _fmpz_mod_poly_shift_right(fmpz * res, const fmpz * poly, slong len, slong n)

Sets (res, len - n) to (poly, len) shifted right by \(n\) coefficients.

Assumes that len and \(n\) are positive, that len > n, and that res fits len - n elements. Supports aliasing between res and poly, although in this case the top coefficients of poly are not set to zero.

void fmpz_mod_poly_shift_right(fmpz_mod_poly_t f, const fmpz_mod_poly_t g, slong n)

Sets res to poly shifted right by \(n\) coefficients. If \(n\) is equal to or greater than the current length of poly, res is set to the zero polynomial.

Addition and subtraction

void _fmpz_mod_poly_add(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets res to the sum of (poly1, len1) and (poly2, len2). It is assumed that res has sufficient space for the longer of the two polynomials.

void fmpz_mod_poly_add(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to the sum of poly1 and poly2.

void fmpz_mod_poly_add_series(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n)

Notionally truncate poly1 and poly2 to length \(n\) and set res to the sum.

void _fmpz_mod_poly_sub(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets res to (poly1, len1) minus (poly2, len2). It is assumed that res has sufficient space for the longer of the two polynomials.

void fmpz_mod_poly_sub(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to poly1 minus poly2.

void fmpz_mod_poly_sub_series(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n)

Notionally truncate poly1 and poly2 to length \(n\) and set res to the difference.

void _fmpz_mod_poly_neg(fmpz *res, const fmpz *poly, slong len, const fmpz_t p)

Sets (res, len) to the negative of (poly, len) modulo \(p\).

void fmpz_mod_poly_neg(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly)

Sets res to the negative of poly modulo \(p\).

Scalar multiplication

void _fmpz_mod_poly_scalar_mul_fmpz(fmpz *res, const fmpz *poly, slong len, const fmpz_t x, const fmpz_t p)

Sets (res, len) to (poly, len) multiplied by \(x\), reduced modulo \(p\).

void fmpz_mod_poly_scalar_mul_fmpz(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t x)

Sets res to poly multiplied by \(x\).

Scalar division

void _fmpz_mod_poly_scalar_div_fmpz(fmpz *res, const fmpz *poly, slong len, const fmpz_t x, const fmpz_t p)

Sets (res, len) to (poly, len) divided by \(x\) (i.e. multiplied by the inverse of \(x \pmod{p}\)). The result is reduced modulo \(p\).

void fmpz_mod_poly_scalar_div_fmpz(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t x)

Sets res to poly divided by \(x\), (i.e. multiplied by the inverse of \(x \pmod{p}\)). The result is reduced modulo \(p\).

Multiplication

void _fmpz_mod_poly_mul(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets (res, len1 + len2 - 1) to the product of (poly1, len1) and (poly2, len2). Assumes len1 >= len2 > 0. Allows zero-padding of the two input polynomials.

void fmpz_mod_poly_mul(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to the product of poly1 and poly2.

void _fmpz_mod_poly_mullow(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p, slong n)

Sets (res, n) to the lowest \(n\) coefficients of the product of (poly1, len1) and (poly2, len2).

Assumes len1 >= len2 > 0 and 0 < n <= len1 + len2 - 1. Allows for zero-padding in the inputs. Does not support aliasing between the inputs and the output.

void fmpz_mod_poly_mullow(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, slong n)

Sets res to the lowest \(n\) coefficients of the product of poly1 and poly2.

void _fmpz_mod_poly_sqr(fmpz *res, const fmpz *poly, slong len, const fmpz_t p)

Sets res to the square of poly.

void fmpz_mod_poly_sqr(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly)

Computes res as the square of poly.

void _fmpz_mod_poly_mulmod(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz * f, slong lenf, const fmpz_t p)

Sets res, len1 + len2 - 1 to the remainder of the product of poly1 and poly2 upon polynomial division by f.

It is required that len1 + len2 - lenf > 0, which is equivalent to requiring that the result will actually be reduced. Otherwise, simply use _fmpz_mod_poly_mul instead.

Aliasing of f and res is not permitted.

void fmpz_mod_poly_mulmod(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t f)

Sets res to the remainder of the product of poly1 and poly2 upon polynomial division by f.

void _fmpz_mod_poly_mulmod_preinv(fmpz * res, const fmpz * poly1, slong len1, const fmpz * poly2, slong len2, const fmpz * f, slong lenf, const fmpz* finv, slong lenfinv, const fmpz_t p)

Sets res, len1 + len2 - 1 to the remainder of the product of poly1 and poly2 upon polynomial division by f.

It is required that finv is the inverse of the reverse of f mod x^lenf. It is required that len1 + len2 - lenf > 0, which is equivalent to requiring that the result will actually be reduced. It is required that len1 < lenf and len2 < lenf. Otherwise, simply use _fmpz_mod_poly_mul instead.

Aliasing of f or finv and res is not permitted.

void fmpz_mod_poly_mulmod_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv)

Sets res to the remainder of the product of poly1 and poly2 upon polynomial division by f. finv is the inverse of the reverse of f. It is required that poly1 and poly2 are reduced modulo f.

Products

void _fmpz_mod_poly_product_roots_fmpz_vec(fmpz * poly, const fmpz * xs, slong n fmpz_t f)

Sets (poly, n + 1) to the monic polynomial which is the product of \((x - x_0)(x - x_1) \cdots (x - x_{n-1})\), the roots \(x_i\) being given by xs. The coefficients reduced modulo f.

Aliasing of the input and output is not allowed. It is required that poly is reduced modulo f.

void fmpz_mod_poly_product_roots_fmpz_vec(fmpz_poly_t poly, const fmpz * xs, slong n, fmpz_t f)

Sets poly to the monic polynomial which is the product of \((x - x_0)(x - x_1) \cdots (x - x_{n-1})\), the roots \(x_i\) being given by xs. The coefficients reduced modulo f.

It is required that poly is reduced modulo f.

Powering

void _fmpz_mod_poly_pow(fmpz *rop, const fmpz *op, slong len, ulong e, const fmpz_t p)

Sets rop = poly^e, assuming that \(e > 1\) and elen > 0, and that res has space for e*(len - 1) + 1 coefficients. Does not support aliasing.

void fmpz_mod_poly_pow(fmpz_mod_poly_t rop, const fmpz_mod_poly_t op, ulong e)

Computes rop = poly^e. If \(e\) is zero, returns one, so that in particular 0^0 = 1.

void _fmpz_mod_poly_pow_trunc(fmpz * res, const fmpz * poly, ulong e, slong trunc, const fmpz_t p)

Sets res to the low trunc coefficients of poly (assumed to be zero padded if necessary to length trunc) to the power e. This is equivalent to doing a powering followed by a truncation. We require that res has enough space for trunc coefficients, that trunc > 0 and that e > 1. Aliasing is not permitted.

void fmpz_mod_poly_pow_trunc(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, slong trunc)

Sets res to the low trunc coefficients of poly to the power e. This is equivalent to doing a powering followed by a truncation.

void _fmpz_mod_poly_pow_trunc_binexp(fmpz * res, const fmpz * poly, ulong e, slong trunc, const fmpz_t p)

Sets res to the low trunc coefficients of poly (assumed to be zero padded if necessary to length trunc) to the power e. This is equivalent to doing a powering followed by a truncation. We require that res has enough space for trunc coefficients, that trunc > 0 and that e > 1. Aliasing is not permitted. Uses the binary exponentiation method.

void fmpz_mod_poly_pow_trunc_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, slong trunc)

Sets res to the low trunc coefficients of poly to the power e. This is equivalent to doing a powering followed by a truncation. Uses the binary exponentiation method.

void _fmpz_mod_poly_powmod_ui_binexp(fmpz * res, const fmpz * poly, ulong e, const fmpz * f, slong lenf, const fmpz_t p)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e > 0.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-padded as necessary to have length exactly lenf - 1. The output res must have room for lenf - 1 coefficients.

void fmpz_mod_poly_powmod_ui_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, const fmpz_mod_poly_t f)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e >= 0.

void _fmpz_mod_poly_powmod_ui_binexp_preinv(fmpz * res, const fmpz * poly, ulong e, const fmpz * f, slong lenf, const fmpz * finv, slong lenfinv, const fmpz_t p)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e > 0. We require finv to be the inverse of the reverse of f.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-padded as necessary to have length exactly lenf - 1. The output res must have room for lenf - 1 coefficients.

void fmpz_mod_poly_powmod_ui_binexp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, ulong e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e >= 0. We require finv to be the inverse of the reverse of f.

void _fmpz_mod_poly_powmod_fmpz_binexp(fmpz * res, const fmpz * poly, const fmpz_t e, const fmpz * f, slong lenf, const fmpz_t p)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e > 0.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-padded as necessary to have length exactly lenf - 1. The output res must have room for lenf - 1 coefficients.

void fmpz_mod_poly_powmod_fmpz_binexp(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t e, const fmpz_mod_poly_t f)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e >= 0.

void _fmpz_mod_poly_powmod_fmpz_binexp_preinv(fmpz * res, const fmpz * poly, const fmpz_t e, const fmpz * f, slong lenf, const fmpz* finv, slong lenfinv, const fmpz_t p)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e > 0. We require finv to be the inverse of the reverse of f.

We require lenf > 1. It is assumed that poly is already reduced modulo f and zero-padded as necessary to have length exactly lenf - 1. The output res must have room for lenf - 1 coefficients.

void fmpz_mod_poly_powmod_fmpz_binexp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly, const fmpz_t e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv)

Sets res to poly raised to the power e modulo f, using binary exponentiation. We require e >= 0. We require finv to be the inverse of the reverse of f.

void _fmpz_mod_poly_powmod_x_fmpz_preinv(fmpz * res, const fmpz_t e, const fmpz * f, slong lenf, const fmpz* finv, slong lenfinv, const fmpz_t p)

Sets res to x raised to the power e modulo f, using sliding window exponentiation. We require e > 0. We require finv to be the inverse of the reverse of f.

We require lenf > 2. The output res must have room for lenf - 1 coefficients.

void fmpz_mod_poly_powmod_x_fmpz_preinv(fmpz_mod_poly_t res, const fmpz_t e, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv)

Sets res to x raised to the power e modulo f, using sliding window exponentiation. We require e >= 0. We require finv to be the inverse of the reverse of f.

void fmpz_mod_poly_frobenius_powers_2exp_precomp(fmpz_mod_poly_frobenius_powers_2exp_t pow, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, ulong m)

If p = f->p, compute \(x^(p^1)\), \(x^(p^2)\), \(x^(p^4)\), …, \(x^(p^(2^l)) \pmod{f}\) where \(2^l\) is the greatest power of \(2\) less than or equal to \(m\).

Allows construction of \(x^(p^k)\) for \(k = 0\), \(1\), …, \(x^(p^m) \pmod{f}\) using fmpz_mod_poly_frobenius_power().

Requires precomputed inverse of \(f\), i.e. newton inverse.

void fmpz_mod_poly_frobenius_powers_2exp_clear(fmpz_mod_poly_frobenius_powers_2exp_t pow)

Clear resources used by the fmpz_mod_poly_frobenius_powers_2exp_t struct.

void fmpz_mod_poly_frobenius_power(fmpz_mod_poly_t res, fmpz_mod_poly_frobenius_powers_2exp_t pow, const fmpz_mod_poly_t f, ulong m)

If p = f->p, compute \(x^(p^m) \pmod{f}\).

Requires precomputed frobenius powers supplied by fmpz_mod_poly_frobenius_powers_2exp_precomp.

If \(m == 0\) and \(f\) has degree \(0\) or \(1\), this performs a division. However an impossible inverse by the leading coefficient of \(f\) will have been caught by fmpz_mod_poly_frobenius_powers_2exp_precomp.

void fmpz_mod_poly_frobenius_powers_precomp(fmpz_mod_poly_frobenius_powers_t pow, const fmpz_mod_poly_t f, const fmpz_mod_poly_t finv, ulong m)

If p = f->p, compute \(x^(p^0)\), \(x^(p^1)\), \(x^(p^2)\), \(x^(p^3)\), …, \(x^(p^m) \pmod{f}\).

Requires precomputed inverse of \(f\), i.e. newton inverse.

void fmpz_mod_poly_frobenius_powers_clear(fmpz_mod_poly_frobenius_powers_t pow);

Clear resources used by the fmpz_mod_poly_frobenius_powers_t struct.

Division

void _fmpz_mod_poly_divrem_basecase(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenA) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\).

Assumes that the leading coefficient of \(B\) is invertible modulo \(p\), and that invB is the inverse.

Assumes that \(\len(A), \len(B) > 0\). Allows zero-padding in (A, lenA). \(R\) and \(A\) may be aliased, but apart from this no aliasing of input and output operands is allowed.

void fmpz_mod_poly_divrem_basecase(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\).

Assumes that the leading coefficient of \(B\) is invertible modulo \(p\).

void _fmpz_mod_poly_divrem_newton_n_preinv(fmpz* Q, fmpz* R, const fmpz* A, slong lenA, const fmpz* B, slong lenB, const fmpz* Binv, slong lenBinv, const fmpz_t mod)

Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\len(R)\) less than lenB, where \(A\) is of length lenA and \(B\) is of length lenB. We require that \(Q\) have space for lenA - lenB + 1 coefficients. Furthermore, we assume that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\len(B)}\). The algorithm used is to call div_newton_n_preinv() and then multiply out and compute the remainder.

void fmpz_mod_poly_divrem_newton_n_preinv(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t Binv)

Computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\len(R) < \len(B)\). We assume \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\len(B)}\).

It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.

The algorithm used is to call div_newton_n() and then multiply out and compute the remainder.

void _fmpz_mod_poly_div_basecase(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\) but only sets (Q, lenA - lenB + 1).

Requires temporary space (R, lenA). Allows aliasing only between \(A\) and \(R\). Allows zero-padding in \(A\) but not in \(B\). Assumes that the leading coefficient of \(B\) is a unit modulo \(p\).

void fmpz_mod_poly_div_basecase(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\) assuming that the leading term of \(B\) is a unit.

void _fmpz_mod_poly_div_newton_n_preinv(fmpz* Q, const fmpz* A, slong lenA, const fmpz* B, slong lenB, const fmpz* Binv, slong lenBinv, const fmpz_t mod)

Notionally computes polynomials \(Q\) and \(R\) such that \(A = BQ + R\) with \(\len(R)\) less than lenB, where A is of length lenA and B is of length lenB, but return only \(Q\).

We require that \(Q\) have space for lenA - lenB + 1 coefficients and assume that the leading coefficient of \(B\) is a unit. Furthermore, we assume that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\len(B)}\).

The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.

void fmpz_mod_poly_div_newton_n_preinv(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t Binv)

Notionally computes \(Q\) and \(R\) such that \(A = BQ + R\) with \(\len(R) < \len(B)\), but returns only \(Q\).

We assume that the leading coefficient of \(B\) is a unit and that \(Binv\) is the inverse of the reverse of \(B\) mod \(x^{\len(B)}\).

It is required that the length of \(A\) is less than or equal to 2*the length of \(B\) - 2.

The algorithm used is to reverse the polynomials and divide the resulting power series, then reverse the result.

ulong fmpz_mod_poly_remove(fmpz_mod_poly_t f, const fmpz_mod_poly_t g)

Removes the highest possible power of g from f and returns the exponent.

void _fmpz_mod_poly_rem_basecase(fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\) but only sets (R, lenB - 1).

Allows aliasing only between \(A\) and \(R\). Allows zero-padding in \(A\) but not in \(B\). Assumes that the leading coefficient of \(B\) is a unit modulo \(p\).

void fmpz_mod_poly_rem_basecase(fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) with \(0 \leq \len(R) < \len(B)\) assuming that the leading term of \(B\) is a unit.

void _fmpz_mod_poly_divrem_divconquer_recursive(fmpz * Q, fmpz * BQ, fmpz * W, const fmpz * A, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes (Q, lenB), (BQ, 2 lenB - 1) such that \(BQ = B \times Q\) and \(A = B Q + R\) where \(0 \leq \len(R) < \len(B)\).

Assumes that the leading coefficient of \(B\) is invertible modulo \(p\), and that invB is the inverse.

Assumes \(\len(B) > 0\). Allows zero-padding in (A, lenA). Requires a temporary array (W, 2 lenB - 1). No aliasing of input and output operands is allowed.

This function does not read the bottom \(\len(B) - 1\) coefficients from \(A\), which means that they might not even need to exist in allocated memory.

void _fmpz_mod_poly_divrem_divconquer(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenB - 1) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\).

Assumes that the leading coefficient of \(B\) is invertible modulo \(p\), and that invB is the inverse.

Assumes \(\len(A) \geq \len(B) > 0\). Allows zero-padding in (A, lenA). No aliasing of input and output operands is allowed.

void fmpz_mod_poly_divrem_divconquer(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes \(Q\), \(R\) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\).

Assumes that \(B\) is non-zero and that the leading coefficient of \(B\) is invertible modulo \(p\).

void _fmpz_mod_poly_divrem(fmpz * Q, fmpz * R, const fmpz * A, slong lenA, const fmpz * B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes (Q, lenA - lenB + 1), (R, lenB - 1) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\).

Assumes that \(B\) is non-zero, that the leading coefficient of \(B\) is invertible modulo \(p\) and that invB is the inverse.

Assumes \(\len(A) \geq \len(B) > 0\). Allows zero-padding in (A, lenA). No aliasing of input and output operands is allowed.

void fmpz_mod_poly_divrem(fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes \(Q\), \(R\) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\).

Assumes that \(B\) is non-zero and that the leading coefficient of \(B\) is invertible modulo \(p\).

void fmpz_mod_poly_divrem_f(fmpz_t f, fmpz_mod_poly_t Q, fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Either finds a non-trivial factor~`f` of the modulus~`p`, or computes \(Q\), \(R\) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\).

If the leading coefficient of \(B\) is invertible in \(\mathbf{Z}/(p)\), the division with remainder operation is carried out, \(Q\) and \(R\) are computed correctly, and \(f\) is set to \(1\). Otherwise, \(f\) is set to a non-trivial factor of \(p\) and \(Q\) and \(R\) are not touched.

Assumes that \(B\) is non-zero.

void _fmpz_mod_poly_rem(fmpz *R, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

Notationally, computes (Q, lenA - lenB + 1), (R, lenB - 1) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\), returning only the remainder part.

Assumes that \(B\) is non-zero, that the leading coefficient of \(B\) is invertible modulo \(p\) and that invB is the inverse.

Assumes \(\len(A) \geq \len(B) > 0\). Allows zero-padding in (A, lenA). No aliasing of input and output operands is allowed.

void _fmpz_mod_poly_rem_f(fmpz_t f, fmpz *R, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

If \(f\) returns with the value \(1\) then the function operates as _fmpz_mod_poly_rem, otherwise \(f\) will be set to a nontrivial factor of \(p\).

void fmpz_mod_poly_rem(fmpz_mod_poly_t R, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Notationally, computes \(Q\), \(R\) such that \(A = B Q + R\) and \(0 \leq \len(R) < \len(B)\), returning only the remainder part.

Assumes that \(B\) is non-zero and that the leading coefficient of \(B\) is invertible modulo \(p\).

Power series inversion

void _fmpz_mod_poly_inv_series_newton(fmpz * Qinv, const fmpz * Q, slong n, const fmpz_t cinv, const fmpz_t p)

Sets (Qinv, n) to the inverse of (Q, n) modulo \(x^n\), where \(n \geq 1\), assuming that the bottom coefficient of \(Q\) is invertible modulo \(p\) and that its inverse is cinv.

void fmpz_mod_poly_inv_series_newton(fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n)

Sets Qinv to the inverse of Q modulo \(x^n\), where \(n \geq 1\), assuming that the bottom coefficient of \(Q\) is a unit.

void fmpz_mod_poly_inv_series_newton_f(fmpz_t f, fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n)

Either sets \(f\) to a nontrivial factor of \(p\) with the value of Qinv undefined, or sets Qinv to the inverse of Q modulo \(x^n\), where \(n \geq 1\).

void _fmpz_mod_poly_inv_series(fmpz * Qinv, const fmpz * Q, slong n, const fmpz_t cinv, const fmpz_t p)

Sets (Qinv, n) to the inverse of (Q, n) modulo \(x^n\), where \(n \geq 1\), assuming that the bottom coefficient of \(Q\) is invertible modulo \(p\) and that its inverse is cinv.

void fmpz_mod_poly_inv_series(fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n)

Sets Qinv to the inverse of Q modulo \(x^n\), where \(n \geq 1\), assuming that the bottom coefficient of \(Q\) is a unit.

void fmpz_mod_poly_inv_series_f(fmpz_t f, fmpz_mod_poly_t Qinv, const fmpz_mod_poly_t Q, slong n)

Either sets \(f\) to a nontrivial factor of \(p\) with the value of Qinv undefined, or sets Qinv to the inverse of Q modulo \(x^n\), where \(n \geq 1\).

Power series division

void _fmpz_mod_poly_div_series(fmpz * Q, const fmpz * A, slong Alen, const fmpz * B, slong Blen, const fmpz_t p, slong n)

Set (Q, n) to the quotient of the series (A, Alen) and (B, Blen) assuming Alen, Blen <= n. We assume the bottom coefficient of B is invertible modulo \(p\).

void fmpz_mod_poly_div_series(fmpz_mod_poly_t Q, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B, slong n)

Set \(Q\) to the quotient of the series \(A\) by \(B\), thinking of the series as though they were of length \(n\). We assume that the bottom coefficient of \(B\) is a unit.

Greatest common divisor

void fmpz_mod_poly_make_monic(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly)

If poly is non-zero, sets res to poly divided by its leading coefficient. This assumes that the leading coefficient of poly is invertible modulo \(p\).

Otherwise, if poly is zero, sets res to zero.

void fmpz_mod_poly_make_monic_f(fmpz_t f, fmpz_mod_poly_t res, const fmpz_mod_poly_t poly)

Either set \(f\) to \(1\) and res to poly divided by its leading coefficient or set \(f\) to a nontrivial factor of \(p\) and leave res undefined.

slong _fmpz_mod_poly_gcd_euclidean(fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

Sets \(G\) to the greatest common divisor of \((A, \len(A))\) and \((B, \len(B))\) and returns its length.

Assumes that \(\len(A) \geq \len(B) > 0\) and that the vector \(G\) has space for sufficiently many coefficients.

Assumes that invB is the inverse of the leading coefficients of \(B\) modulo the prime number \(p\).

void fmpz_mod_poly_gcd_euclidean(fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Sets \(G\) to the greatest common divisor of \(A\) and \(B\).

The algorithm used to compute \(G\) is the classical Euclidean algorithm.

In general, the greatest common divisor is defined in the polynomial ring \((\mathbf{Z}/(p \mathbf{Z}))[X]\) if and only if \(p\) is a prime number. Thus, this function assumes that \(p\) is prime.

slong _fmpz_mod_poly_gcd(fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

Sets \(G\) to the greatest common divisor of \((A, \len(A))\) and \((B, \len(B))\) and returns its length.

Assumes that \(\len(A) \geq \len(B) > 0\) and that the vector \(G\) has space for sufficiently many coefficients.

Assumes that invB is the inverse of the leading coefficients of \(B\) modulo the prime number \(p\).

void fmpz_mod_poly_gcd(fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Sets \(G\) to the greatest common divisor of \(A\) and \(B\).

In general, the greatest common divisor is defined in the polynomial ring \((\mathbf{Z}/(p \mathbf{Z}))[X]\) if and only if \(p\) is a prime number. Thus, this function assumes that \(p\) is prime.

slong _fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

Either sets \(f = 1\) and \(G\) to the greatest common divisor of \((A, \len(A))\) and \((B, \len(B))\) and returns its length, or sets \(f \in (1,p)\) to a non-trivial factor of \(p\) and leaves the contents of the vector \((G, lenB)\) undefined.

Assumes that \(\len(A) \geq \len(B) > 0\) and that the vector \(G\) has space for sufficiently many coefficients.

Does not support aliasing of any of the input arguments with any of the output argument.

void fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Either sets \(f = 1\) and \(G\) to the greatest common divisor of \(A\) and \(B\), or ` in (1,p)` to a non-trivial factor of \(p\).

In general, the greatest common divisor is defined in the polynomial ring \((\mathbf{Z}/(p \mathbf{Z}))[X]\) if and only if \(p\) is a prime number.

slong _fmpz_mod_poly_gcd_f(fmpz_t f, fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

Either sets \(f = 1\) and \(G\) to the greatest common divisor of \((A, \len(A))\) and \((B, \len(B))\) and returns its length, or sets \(f \in (1,p)\) to a non-trivial factor of \(p\) and leaves the contents of the vector \((G, lenB)\) undefined.

Assumes that \(\len(A) \geq \len(B) > 0\) and that the vector \(G\) has space for sufficiently many coefficients.

Does not support aliasing of any of the input arguments with any of the output arguments.

void fmpz_mod_poly_gcd_f(fmpz_t f, fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Either sets \(f = 1\) and \(G\) to the greatest common divisor of \(A\) and \(B\), or \(f \in (1,p)\) to a non-trivial factor of \(p\).

In general, the greatest common divisor is defined in the polynomial ring \((\mathbf{Z}/(p \mathbf{Z}))[X]\) if and only if \(p\) is a prime number.

slong _fmpz_mod_poly_hgcd(fmpz **M, slong *lenM, fmpz *A, slong *lenA, fmpz *B, slong *lenB, const fmpz *a, slong lena, const fmpz *b, slong lenb, const fmpz_t mod)

Computes the HGCD of \(a\) and \(b\), that is, a matrix~`M`, a sign~`sigma` and two polynomials \(A\) and \(B\) such that

\[(A,B)^t = \sigma M^{-1} (a,b)^t.\]

Assumes that \(\len(a) > \len(b) > 0\).

Assumes that \(A\) and \(B\) have space of size at least \(\len(a)\) and \(\len(b)\), respectively. On exit, *lenA and *lenB will contain the correct lengths of \(A\) and \(B\).

Assumes that M[0], M[1], M[2], and M[3] each point to a vector of size at least \(\len(a)\).

slong _fmpz_mod_poly_gcd_hgcd(fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t mod)

Computes the monic GCD of \(A\) and \(B\), assuming that \(\len(A) \geq \len(B) > 0\).

Assumes that \(G\) has space for \(\len(B)\) coefficients and returns the length of \(G\) on output.

void fmpz_mod_poly_gcd_hgcd(fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes the monic GCD of \(A\) and \(B\) using the HGCD algorithm.

As a special case, the GCD of two zero polynomials is defined to be the zero polynomial.

The time complexity of the algorithm is \(\mathcal{O}(n \log^2 n)\) ring operations. For further details, see~citep{ThullYap1990}.

slong _fmpz_mod_poly_xgcd_euclidean(fmpz *G, fmpz *S, fmpz *T, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes the GCD of \(A\) and \(B\) together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).

Assumes that \(\len(A) \geq \len(B) \geq 1\) and \((\len(A),\len(B)) \neq (1,1)\).

No attempt is made to make the GCD monic.

Requires that \(G\) have space for \(\len(B)\) coefficients. Writes \(\len(B)-1\) and \(\len(A)-1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\len(S) \leq \max(\len(B) - \len(G), 1)\) and \(\len(T) \leq \max(\len(A) - \len(G), 1)\).

No aliasing of input and output operands is permitted.

slong _fmpz_mod_poly_xgcd_euclidean_f(fmpz_t f, fmpz *G, fmpz *S, fmpz *T, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

If \(f\) returns with the value \(1\) then the function operates as per _fmpz_mod_poly_xgcd_euclidean, otherwise \(f\) is set to a nontrivial factor of \(p\).

void fmpz_mod_poly_xgcd_euclidean(fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be at most lenB and the length of T will be at most lenA.

void fmpz_mod_poly_xgcd_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

If \(f\) returns with the value \(1\) then the function operates as per fmpz_mod_poly_xgcd_euclidean, otherwise \(f\) is set to a nontrivial factor of \(p\).

slong _fmpz_mod_poly_xgcd_hgcd(fmpz *G, fmpz *S, fmpz *T, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t mod)

Computes the GCD of \(A\) and \(B\), where \(\len(A) \geq \len(B) > 0\), together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).

No attempt is made to make the GCD monic.

Requires that \(G\) have space for \(\len(B)\) coefficients. Writes \(\len(B) - 1\) and \(\len(A) - 1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\len(S) \leq \len(B) - \len(G)\) and \(\len(T) \leq \len(A) - \len(G)\).

Both \(S\) and \(T\) must have space for at least \(2\) coefficients.

No aliasing of input and output operands is permitted.

void fmpz_mod_poly_xgcd_hgcd(fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be at most lenB and the length of T will be at most lenA.

slong _fmpz_mod_poly_xgcd(fmpz *G, fmpz *S, fmpz *T, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t invB, const fmpz_t p)

Computes the GCD of \(A\) and \(B\) together with cofactors \(S\) and \(T\) such that \(S A + T B = G\). Returns the length of \(G\).

Assumes that \(\len(A) \geq \len(B) \geq 1\) and \((\len(A),\len(B)) \neq (1,1)\).

No attempt is made to make the GCD monic.

Requires that \(G\) have space for \(\len(B)\) coefficients. Writes \(\len(B)-1\) and \(\len(A)-1\) coefficients to \(S\) and \(T\), respectively. Note that, in fact, \(\len(S) \leq \max(\len(B) - \len(G), 1)\) and \(\len(T) \leq \max(\len(A) - \len(G), 1)\).

No aliasing of input and output operands is permitted.

void fmpz_mod_poly_xgcd(fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes the GCD of \(A\) and \(B\). The GCD of zero polynomials is defined to be zero, whereas the GCD of the zero polynomial and some other polynomial \(P\) is defined to be \(P\). Except in the case where the GCD is zero, the GCD \(G\) is made monic.

Polynomials S and T are computed such that S*A + T*B = G. The length of S will be at most lenB and the length of T will be at most lenA.

void fmpz_mod_poly_xgcd_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, fmpz_mod_poly_t T, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

If \(f\) returns with the value \(1\) then the function operates as per fmpz_mod_poly_xgcd, otherwise \(f\) is set to a nontrivial factor of \(p\).

slong _fmpz_mod_poly_gcdinv_euclidean(fmpz *G, fmpz *S, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

Computes (G, lenA), (S, lenB-1) such that \(G \cong S A \pmod{B}\), returning the actual length of \(G\).

Assumes that \(0 < \len(A) < \len(B)\).

void fmpz_mod_poly_gcdinv_euclidean(fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes polynomials \(G\) and \(S\), both reduced modulo~`B`, such that \(G \cong S A \pmod{B}\), where \(B\) is assumed to have \(\len(B) \geq 2\).

In the case that \(A = 0 \pmod{B}\), returns \(G = S = 0\).

slong _fmpz_mod_poly_gcdinv_euclidean_f(fmpz_t f, fmpz *G, fmpz *S, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

If \(f\) returns with value \(1\) then the function operates as per _fmpz_mod_poly_gcdinv_euclidean, otherwise \(f\) is set to a nontrivial factor of \(p\).

void fmpz_mod_poly_gcdinv_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

If \(f\) returns with value \(1\) then the function operates as per fmpz_mod_poly_gcdinv_euclidean, otherwise \(f\) is set to a nontrivial factor of the modulus of \(A\).

slong _fmpz_mod_poly_gcdinv(fmpz *G, fmpz *S, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

Computes (G, lenA), (S, lenB-1) such that \(G \cong S A \pmod{B}\), returning the actual length of \(G\).

Assumes that \(0 < \len(A) < \len(B)\).

slong _fmpz_mod_poly_gcdinv_f(fmpz_t f, fmpz *G, fmpz *S, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p)

If \(f\) returns with value \(1\) then the function operates as per _fmpz_mod_poly_gcdinv, otherwise \(f\) will be set to a nontrivial factor of \(p\).

void fmpz_mod_poly_gcdinv(fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

Computes polynomials \(G\) and \(S\), both reduced modulo~`B`, such that \(G \cong S A \pmod{B}\), where \(B\) is assumed to have \(\len(B) \geq 2\).

In the case that \(A = 0 \pmod{B}\), returns \(G = S = 0\).

void fmpz_mod_poly_gcdinv_f(fmpz_t fmpz_mod_poly_t G, fmpz_mod_poly_t S, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B)

If \(f\) returns with value \(1\) then the function operates as per fmpz_mod_poly_gcdinv, otherwise \(f\) will be set to a nontrivial factor of \(p\).

int _fmpz_mod_poly_invmod(fmpz *A, const fmpz *B, slong lenB, const fmpz *P, slong lenP, const fmpz_t p)

Attempts to set (A, lenP-1) to the inverse of (B, lenB) modulo the polynomial (P, lenP). Returns \(1\) if (B, lenB) is invertible and \(0\) otherwise.

Assumes that \(0 < \len(B) < \len(P)\), and hence also \(\len(P) \geq 2\), but supports zero-padding in (B, lenB).

Does not support aliasing.

Assumes that \(p\) is a prime number.

int _fmpz_mod_poly_invmod_f(fmpz_t f, fmpz *A, const fmpz *B, slong lenB, const fmpz *P, slong lenP, const fmpz_t p)

If \(f\) returns with the value \(1\), then the function operates as per _fmpz_mod_poly_invmod. Otherwise \(f\) is set to a nontrivial factor of \(p\).

int fmpz_mod_poly_invmod(fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t P)

Attempts to set \(A\) to the inverse of \(B\) modulo \(P\) in the polynomial ring \((\mathbf{Z}/p\mathbf{Z})[X]\), where we assume that \(p\) is a prime number.

If \(\deg(P) < 2\), raises an exception.

If the greatest common divisor of \(B\) and \(P\) is~`1`, returns~`1` and sets \(A\) to the inverse of \(B\). Otherwise, returns~`0` and the value of \(A\) on exit is undefined.

int fmpz_mod_poly_invmod_f(fmpz_t f, fmpz_mod_poly_t A, const fmpz_mod_poly_t B, const fmpz_mod_poly_t P)

If \(f\) returns with the value \(1\), then the function operates as per fmpz_mod_poly_invmod. Otherwise \(f\) is set to a nontrivial factor of \(p\).

Minpoly

slong _fmpz_mod_poly_minpoly_bm(fmpz* poly, const fmpz* seq, slong len, const fmpz_t p)

Sets poly to the coefficients of a minimal generating polynomial for sequence (seq, len) modulo \(p\).

The return value equals the length of poly.

It is assumed that \(p\) is prime and poly has space for at least \(len+1\) coefficients. No aliasing between inputs and outputs is allowed.

void fmpz_mod_poly_minpoly_bm(fmpz_mod_poly_t poly, const fmpz* seq, slong len)

Sets poly to a minimal generating polynomial for sequence seq of length len.

Assumes that the modulus is prime.

This version uses the Berlekamp-Massey algorithm, whose running time is proportional to len times the size of the minimal generator.

slong _fmpz_mod_poly_minpoly_hgcd(fmpz* poly, const fmpz* seq, slong len, const fmpz_t p)

Sets poly to the coefficients of a minimal generating polynomial for sequence (seq, len) modulo \(p\).

The return value equals the length of poly.

It is assumed that \(p\) is prime and poly has space for at least \(len+1\) coefficients. No aliasing between inputs and outputs is allowed.

void fmpz_mod_poly_minpoly_hgcd(fmpz_mod_poly_t poly, const fmpz* seq, slong len)

Sets poly to a minimal generating polynomial for sequence seq of length len.

Assumes that the modulus is prime.

This version uses the HGCD algorithm, whose running time is \(O(n \log^2 n)\) field operations, regardless of the actual size of the minimal generator.

slong _fmpz_mod_poly_minpoly(fmpz* poly, const fmpz* seq, slong len, const fmpz_t p)

Sets poly to the coefficients of a minimal generating polynomial for sequence (seq, len) modulo \(p\).

The return value equals the length of poly.

It is assumed that \(p\) is prime and poly has space for at least \(len+1\) coefficients. No aliasing between inputs and outputs is allowed.

void fmpz_mod_poly_minpoly(fmpz_mod_poly_t poly, const fmpz* seq, slong len)

Sets poly to a minimal generating polynomial for sequence seq of length len.

A minimal generating polynomial is a monic polynomial \(f = x^d + c_{d-1}x^{d-1} + \cdots + c_1 x + c_0\), of minimal degree \(d\), that annihilates any consecutive \(d+1\) terms in seq. That is, for any \(i < len - d\),

\(seq_i = -\sum_{j=0}^{d-1} seq_{i+j}*f_j.\)

Assumes that the modulus is prime.

This version automatically chooses the fastest underlying implementation based on len and the size of the modulus.

Resultant

void _fmpz_mod_poly_resultant_euclidean(fmpz_t res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t mod)

Sets \(r\) to the resultant of (poly1, len1) and (poly2, len2) using the Euclidean algorithm.

Assumes that len1 >= len2 > 0.

Asumes that the modulus is prime.

void fmpz_mod_poly_resultant_euclidean(fmpz_t r, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g)

Computes the resultant of \(f\) and \(g\) using the Euclidean algorithm.

For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be

\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]

For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.

void _fmpz_mod_poly_resultant_hgcd(fmpz_t res, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t mod)

Sets res to the resultant of (A, lenA) and (B, lenB) using the half-gcd algorithm.

This algorithm computes the half-gcd as per _fmpz_mod_poly_gcd_hgcd() but additionally updates the resultant every time a division occurs. The half-gcd algorithm computes the GCD recursively. Given inputs \(a\) and \(b\) it lets m = len(a)/2 and (recursively) performs all quotients in the Euclidean algorithm which do not require the low \(m\) coefficients of \(a\) and \(b\).

This performs quotients in exactly the same order as the ordinary Euclidean algorithm except that the low \(m\) coefficients of the polynomials in the remainder sequence are not computed. A correction step after hgcd has been called computes these low \(m\) coefficients (by matrix multiplication by a transformation matrix also computed by hgcd).

This means that from the point of view of the resultant, all but the last quotient performed by a recursive call to hgcd is an ordinary quotient as per the usual Euclidean algorithm. However, the final quotient may give a remainder of less than \(m + 1\) coefficients, which won’t be corrected until the hgcd correction step is performed afterwards.

To compute the adjustments to the resultant coming from this corrected quotient, we save the relevant information in an nmod_poly_res_t struct at the time the quotient is performed so that when the correction step is performed later, the adjustments to the resultant can be computed at that time also.

The only time an adjustment to the resultant is not required after a call to hgcd is if hgcd does nothing (the remainder may already have had less than \(m + 1\) coefficients when hgcd was called).

Assumes that lenA >= lenB > 0.

Asumes that the modulus is prime.

void fmpz_mod_poly_resultant_hgcd(fmpz_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g)

Computes the resultant of \(f\) and \(g\) using the half-gcd algorithm.

For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be

\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]

For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.

void _fmpz_mod_poly_resultant(fmpz_t res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t mod)

Returns the resultant of (poly1, len1) and (poly2, len2).

Assumes that len1 >= len2 > 0.

Asumes that the modulus is prime.

void fmpz_mod_poly_resultant(fmpz_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g) Computes the resultant of $f$ and $g$.

For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be

\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]

For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.

Discriminant

void _fmpz_mod_poly_discriminant(fmpz_t d, const fmpz *poly, slong len, const fmpz_t mod)

Set \(d\) to the discriminant of (poly, len). Assumes len > 1.

void fmpz_mod_poly_discriminant(fmpz_t d, const fmpz_mod_poly_t f)

Set \(d\) to the discriminant of \(f\). We normalise the discriminant so that \(\operatorname{disc}(f) = (-1)^(n(n-1)/2) \operatorname{res}(f, f') / \operatorname{lc}(f)^(n - m - 2)\), where n = len(f) and m = len(f'). Thus \(\operatorname{disc}(f) = \operatorname{lc}(f)^(2n - 2) \prod_{i < j} (r_i - r_j)^2\), where \(\operatorname{lc}(f)\) is the leading coefficient of \(f\) and \(r_i\) are the roots of \(f\).

Derivative

void _fmpz_mod_poly_derivative(fmpz *res, const fmpz *poly, slong len, const fmpz_t p)

Sets (res, len - 1) to the derivative of (poly, len). Also handles the cases where len is \(0\) or \(1\) correctly. Supports aliasing of res and poly.

void fmpz_mod_poly_derivative(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly)

Sets res to the derivative of poly.

Evaluation

void _fmpz_mod_poly_evaluate_fmpz(fmpz_t res, const fmpz *poly, slong len, const fmpz_t a, const fmpz_t p)

Evaluates the polynomial (poly, len) at the integer \(a\) and sets res to the result. Aliasing between res and \(a\) or any of the coefficients of poly is not supported.

void fmpz_mod_poly_evaluate_fmpz(fmpz_t res, const fmpz_mod_poly_t poly, const fmpz_t a)

Evaluates the polynomial poly at the integer \(a\) and sets res to the result.

As expected, aliasing between res and \(a\) is supported. However, res may not be aliased with a coefficient of poly.

Multipoint evaluation

void _fmpz_mod_poly_evaluate_fmpz_vec_iter(fmpz * ys, const fmpz * coeffs, slong len, const fmpz * xs, slong n, const fmpz_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

Uses Horner’s method iteratively.

void fmpz_mod_poly_evaluate_fmpz_vec_iter(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n)

Evaluates poly at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

Uses Horner’s method iteratively.

void _fmpz_mod_poly_evaluate_fmpz_vec_fast_precomp(fmpz * vs, const fmpz * poly, slong plen, fmpz_poly_struct * const * tree, slong len, const fmpz_t mod) Evaluates (code{poly}, code{plen}) at the code{len} values given by the precomputed subproduct tree code{tree}.
void _fmpz_mod_poly_evaluate_fmpz_vec_fast(fmpz * ys, const fmpz * poly, slong plen, const fmpz * xs, slong n, const fmpz_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

Uses fast multipoint evaluation, building a temporary subproduct tree.

void fmpz_mod_poly_evaluate_fmpz_vec_fast(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n)

Evaluates poly at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

Uses fast multipoint evaluation, building a temporary subproduct tree.

void _fmpz_mod_poly_evaluate_fmpz_vec(fmpz * ys, const fmpz * coeffs, slong len, const fmpz * xs, slong n, const fmpz_t mod)

Evaluates (coeffs, len) at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

void fmpz_mod_poly_evaluate_fmpz_vec(fmpz * ys, const fmpz_mod_poly_t poly, const fmpz * xs, slong n)

Evaluates poly at the n values given in the vector xs, writing the output values to ys. The values in xs should be reduced modulo the modulus.

Composition

void _fmpz_mod_poly_compose_horner(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2) using Horner’s algorithm.

Assumes that res has space for (len1-1)*(len2-1) + 1 coefficients, although in \(\mathbf{Z}_p[X]\) this might not actually be the length of the resulting polynomial when \(p\) is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing between any of the inputs and the output.

void fmpz_mod_poly_compose_horner(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to the composition of poly1 and poly2 using Horner’s algorithm.

To be precise about the order of composition, denoting res, poly1, and poly2 by \(f\), \(g\), and \(h\), respectively, sets \(f(t) = g(h(t))\).

void _fmpz_mod_poly_compose_divconquer(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2) using a divide and conquer algorithm which takes out factors of poly2 raised to \(2^i\) where possible.

Assumes that res has space for (len1-1)*(len2-1) + 1 coefficients, although in \(\mathbf{Z}_p[X]\) this might not actually be the length of the resulting polynomial when \(p\) is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing between any of the inputs and the output.

void fmpz_mod_poly_compose_divconquer(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to the composition of poly1 and poly2 using a divide and conquer algorithm which takes out factors of poly2 raised to \(2^i\) where possible.

To be precise about the order of composition, denoting res, poly1, and poly2 by \(f\), \(g\), and \(h\), respectively, sets \(f(t) = g(h(t))\).

void _fmpz_mod_poly_compose(fmpz *res, const fmpz *poly1, slong len1, const fmpz *poly2, slong len2, const fmpz_t p)

Sets res to the composition of (poly1, len1) and (poly2, len2).

Assumes that res has space for (len1-1)*(len2-1) + 1 coefficients, although in \(\mathbf{Z}_p[X]\) this might not actually be the length of the resulting polynomial when \(p\) is not a prime.

Assumes that poly1 and poly2 are non-zero polynomials. Does not support aliasing between any of the inputs and the output.

void fmpz_mod_poly_compose(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2)

Sets res to the composition of poly1 and poly2.

To be precise about the order of composition, denoting res, poly1, and poly2 by \(f\), \(g\), and \(h\), respectively, sets \(f(t) = g(h(t))\).

Modular composition

void _fmpz_mod_poly_compose_mod(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz_t p)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). The output is not allowed to be aliased with any of the inputs.

void fmpz_mod_poly_compose_mod(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero.

void _fmpz_mod_poly_compose_mod_horner(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz_t p)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). The output is not allowed to be aliased with any of the inputs.

The algorithm used is Horner’s rule.

void fmpz_mod_poly_compose_mod_horner(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero. The algorithm used is Horner’s rule.

void _fmpz_mod_poly_compose_mod_brent_kung(fmpz * res, const fmpz * f, slong len1, const fmpz * g, const fmpz * h, slong len3, const fmpz_t p)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). We also require that the length of \(f\) is less than the length of \(h\). The output is not allowed to be aliased with any of the inputs.

The algorithm used is the Brent-Kung matrix algorithm.

void fmpz_mod_poly_compose_mod_brent_kung(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). The algorithm used is the Brent-Kung matrix algorithm.

void _fmpz_mod_poly_reduce_matrix_mod_poly(fmpz_mat_t A, const fmpz_mat_t B, const fmpz_mod_poly_t f)

Sets the ith row of A to the reduction of the ith row of \(B\) modulo \(f\) for \(i=1,\ldots,\sqrt{\deg(f)}\). We require \(B\) to be at least a \(\sqrt{\deg(f)}\times \deg(f)\) matrix and \(f\) to be nonzero.

void * _fmpz_mod_poly_precompute_matrix_worker(void * arg_ptr)

Worker function version of _fmpz_mod_poly_precompute_matrix. Input/output is stored in fmpz_mod_poly_matrix_precompute_arg_t.

void _fmpz_mod_poly_precompute_matrix(fmpz_mat_t A, const fmpz * f, const fmpz * g, slong leng, const fmpz * ginv, slong lenginv, const fmpz_t p)

Sets the ith row of A to \(f^i\) modulo \(g\) for \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require ginv to be the inverse of the reverse of g and \(g\) to be nonzero. f has to be reduced modulo g and of length one less than leng (possibly with zero padding).

void fmpz_mod_poly_precompute_matrix(fmpz_mat_t A, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t ginv)

Sets the ith row of A to \(f^i\) modulo \(g\) for \(i=1,\ldots,\sqrt{\deg(g)}\). We require \(A\) to be a \(\sqrt{\deg(g)}\times \deg(g)\) matrix. We require ginv to be the inverse of the reverse of g.

void * _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv_worker(void * arg_ptr)

Worker function version of _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv. Input/output is stored in fmpz_mod_poly_compose_mod_precomp_preinv_arg_t.

void _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz * res, const fmpz * f, slong lenf, const fmpz_mat_t A, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_t p)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero. We require that the ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a \(\sqrt{\deg(h)}\times \deg(h)\) matrix. We also require that the length of \(f\) is less than the length of \(h\). Furthermore, we require hinv to be the inverse of the reverse of h. The output is not allowed to be aliased with any of the inputs.

The algorithm used is the Brent-Kung matrix algorithm.

void fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mat_t A, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv)

Sets res to the composition \(f(g)\) modulo \(h\). We require that the ith row of \(A\) contains \(g^i\) for \(i=1,\ldots,\sqrt{\deg(h)}\), i.e. \(A\) is a \(\sqrt{\deg(h)}\times \deg(h)\) matrix. We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). Furthermore, we require hinv to be the inverse of the reverse of h. This version of Brent-Kung modular composition is particularly useful if one has to perform several modular composition of the form \(f(g)\) modulo \(h\) for fixed \(g\) and \(h\).

void _fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz * res, const fmpz * f, slong lenf, const fmpz * g, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_t p)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that the length of \(g\) is one less than the length of \(h\) (possibly with zero padding). We also require that the length of \(f\) is less than the length of \(h\). Furthermore, we require hinv to be the inverse of the reverse of h. The output is not allowed to be aliased with any of the inputs.

The algorithm used is the Brent-Kung matrix algorithm.

void fmpz_mod_poly_compose_mod_brent_kung_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t f, const fmpz_mod_poly_t g, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv)

Sets res to the composition \(f(g)\) modulo \(h\). We require that \(h\) is nonzero and that \(f\) has smaller degree than \(h\). Furthermore, we require hinv to be the inverse of the reverse of h. The algorithm used is the Brent-Kung matrix algorithm.

void _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong l, const fmpz * h, slong lenh, const fmpz * hinv, slong lenhinv, const fmpz_t p)

Sets res to the composition \(f_i(g)\) modulo \(h\) for \(1\leq i \leq l\), where \(f_i\) are the first l elements of polys and \(g\) is the last element of polys. We require that \(h\) is nonzero and that the length of \(g\) is less than the length of \(h\). We also require that the length of \(f_i\) is less than the length of \(h\). We require res to have enough memory allocated to hold l fmpz_mod_poly_struct. The entries of res need to be initialised and l needs to be less than len1 Furthermore, we require hinv to be the inverse of the reverse of h. The output is not allowed to be aliased with any of the inputs.

The algorithm used is the Brent-Kung matrix algorithm.

void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t h, const fmpz_mod_poly_t hinv)

Sets res to the composition \(f_i(g)\) modulo \(h\) for \(1\leq i \leq n\) where \(f_i\) are the first n elements of polys and \(g\) is the last element of polys. We require res to have enough memory allocated to hold n fmpz_mod_poly_struct. The entries of res need to be uninitialised and n needs to be less than len1. We require that \(h\) is nonzero and that \(f_i\) and \(g\) have smaller degree than \(h\). Furthermore, we require hinv to be the inverse of the reverse of h. No aliasing of res and polys is allowed. The algorithm used is the Brent-Kung matrix algorithm.

void _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv_threaded(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong lenpolys, slong l, const fmpz * poly, slong len, const fmpz * polyinv, slong leninv, const fmpz_t p)

Multithreaded version of _fmpz_mod_poly_compose_mod_brent_kung_vec_preinv. Distributing the Horner evaluations across flint_get_num_threads() threads.

void fmpz_mod_poly_compose_mod_brent_kung_vec_preinv_threaded(fmpz_mod_poly_struct * res, const fmpz_mod_poly_struct * polys, slong len1, slong n, const fmpz_mod_poly_t poly, const fmpz_mod_poly_t polyinv)

Multithreaded version of fmpz_mod_poly_compose_mod_brent_kung_vec_preinv. Distributing the Horner evaluations across flint_get_num_threads() threads.

Subproduct trees

fmpz_poly_struct ** _fmpz_mod_poly_tree_alloc(slong len)

Allocates space for a subproduct tree of the given length, having linear factors at the lowest level.

void _fmpz_mod_poly_tree_free(fmpz_poly_struct ** tree, slong len)

Free the allocated space for the subproduct.

void _fmpz_mod_poly_tree_build(fmpz_poly_struct ** tree, const fmpz * roots, slong len, const fmpz_t mod)

Builds a subproduct tree in the preallocated space from the len monic linear factors \((x-r_i)\) where \(r_i\) are given by roots. The top level product is not computed.

Radix conversion

The following functions provide the functionality to solve the radix conversion problems for polynomials, which is to express a polynomial \(f(X)\) with respect to a given radix \(r(X)\) as

\[\]

f(X) = sum_{i = 0}^{N} b_i(X) r(X)^i

where \(N = \floor{\deg(f) / \deg(r)}\). The algorithm implemented here is a recursive one, which performs Euclidean divisions by powers of \(r\) of the form \(r^{2^i}\), and it has time complexity \(\Theta(\deg(f) \log \deg(f))\). It facilitates the repeated use of precomputed data, namely the powers of \(r\) and their power series inverses. This data is stored in objects of type fmpz_mod_poly_radix_t and it is computed using the function fmpz_mod_poly_radix_init(), which only depends on~`r` and an upper bound on the degree of~`f`.

void _fmpz_mod_poly_radix_init(fmpz **Rpow, fmpz **Rinv, const fmpz *R, slong lenR, slong k, const fmpz_t invL, const fmpz_t p)

Computes powers of \(R\) of the form \(R^{2^i}\) and their Newton inverses modulo \(x^{2^{i} \deg(R)}\) for \(i = 0, \dotsc, k-1\).

Assumes that the vectors Rpow[i] and Rinv[i] have space for \(2^i \deg(R) + 1\) and \(2^i \deg(R)\) coefficients, respectively.

Assumes that the polynomial \(R\) is non-constant, i.e.\(\deg(R) \geq 1\).

Assumes that the leading coefficient of \(R\) is a unit and that the argument invL is the inverse of the coefficient modulo~`p`.

The argument~`p` is the modulus, which in \(p\)-adic applications is typically a prime power, although this is not necessary. Here, we only assume that \(p \geq 2\).

Note that this precomputed data can be used for any \(F\) such that \(\len(F) \leq 2^k \deg(R)\).

void fmpz_mod_poly_radix_init(fmpz_mod_poly_radix_t D, const fmpz_mod_poly_t R, slong degF)

Carries out the precomputation necessary to perform radix conversion to radix~`R` for polynomials~`F` of degree at most degF.

Assumes that \(R\) is non-constant, i.e.\(\deg(R) \geq 1\), and that the leading coefficient is a unit.

void _fmpz_mod_poly_radix(fmpz **B, const fmpz *F, fmpz **Rpow, fmpz **Rinv, slong degR, slong k, slong i, fmpz *W, const fmpz_t p)

This is the main recursive function used by the function fmpz_mod_poly_radix().

Assumes that, for all \(i = 0, \dotsc, N\), the vector B[i] has space for \(\deg(R)\) coefficients.

The variable \(k\) denotes the factors of \(r\) that have previously been counted for the polynomial \(F\), which is assumed to have length \(2^{i+1} \deg(R)\), possibly including zero-padding.

Assumes that \(W\) is a vector providing temporary space of length \(\len(F) = 2^{i+1} \deg(R)\).

The entire computation takes place over \(\mathbf{Z} / p \mathbf{Z}\), where \(p \geq 2\) is a natural number.

Thus, the top level call will have \(F\) as in the original problem, and \(k = 0\).

void fmpz_mod_poly_radix(fmpz_mod_poly_struct **B, const fmpz_mod_poly_t F, const fmpz_mod_poly_radix_t D)

Given a polynomial \(F\) and the precomputed data \(D\) for the radix \(R\), computes polynomials \(B_0, \dotsc, B_N\) of degree less than \(\deg(R)\) such that

\[F = B_0 + B_1 R + \dotsb + B_N R^N,\]

where necessarily \(N = \floor{\deg(F) / \deg(R)}\).

Assumes that \(R\) is non-constant, i.e.\(\deg(R) \geq 1\), and that the leading coefficient is a unit.

Input and output

The printing options supported by this module are very similar to what can be found in the two related modules fmpz_poly and nmod_poly. Consider, for example, the polynomial \(f(x) = 5x^3 + 2x + 1\) in \((\mathbf{Z}/6\mathbf{Z})[x]\). Its simple string representation is "4 6  1 2 0 5", where the first two numbers denote the length of the polynomial and the modulus. The pretty string representation is "5*x^3+2*x+1".

int _fmpz_mod_poly_fprint(FILE * file, const fmpz *poly, slong len, const fmpz_t p)

Prints the polynomial (poly, len) to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpz_mod_poly_fprint(FILE * file, const fmpz_mod_poly_t poly)

Prints the polynomial to the stream file.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpz_mod_poly_fprint_pretty(FILE * file, const fmpz_mod_poly_t poly, const char * x)

Prints the pretty representation of (poly, len) to the stream file, using the string x to represent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpz_mod_poly_print(const fmpz_mod_poly_t poly)

Prints the polynomial to stdout.

In case of success, returns a positive value. In case of failure, returns a non-positive value.

int fmpz_mod_poly_print_pretty(const fmpz_mod_poly_t poly, const char * x)

Prints the pretty representation of poly to stdout, using the string x to represent the indeterminate.

In case of success, returns a positive value. In case of failure, returns a non-positive value.