fmpz_mod_mpoly.h – polynomials over the integers mod n

The exponents follow the mpoly interface. A coefficient may be referenced as a fmpz *, but this may disappear in a future version.

Types, macros and constants

fmpz_mod_mpoly_struct

A structure holding a multivariate polynomial over the integers mod n.

fmpz_mod_mpoly_t

An array of length \(1\) of fmpz_mod_mpoly_ctx_struct.

fmpz_mod_mpoly_ctx_struct

Context structure representing the parent ring of an fmpz_mod_mpoly.

fmpz_mod_mpoly_ctx_t

An array of length \(1\) of fmpz_mod_mpoly_struct.

Context object

void fmpz_mod_mpoly_ctx_init(fmpz_mod_mpoly_ctx_t ctx, slong nvars, const ordering_t ord, const fmpz_t p)

Initialise a context object for a polynomial ring modulo n with nvars variables and ordering ord. The possibilities for the ordering are ORD_LEX, ORD_DEGLEX and ORD_DEGREVLEX.

slong fmpz_mod_mpoly_ctx_nvars(fmpz_mod_mpoly_ctx_t ctx)

Return the number of variables used to initialize the context.

ordering_t fmpz_mod_mpoly_ctx_ord(const fmpz_mod_mpoly_ctx_t ctx)

Return the ordering used to initialize the context.

void fmpz_mod_mpoly_ctx_get_modulus(fmpz_t n, const fmpz_mod_mpoly_ctx_t ctx)

Set n to the modulus used to initialize the context.

void fmpz_mod_mpoly_ctx_clear(fmpz_mod_mpoly_ctx_t ctx)

Release up any space allocated by an ctx.

Memory management

void fmpz_mod_mpoly_init(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero.

void fmpz_mod_mpoly_init2(fmpz_mod_mpoly_t A, slong alloc, const fmpz_mod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero. It is allocated with space for alloc terms and at least MPOLY_MIN_BITS bits for the exponents.

void fmpz_mod_mpoly_init3(fmpz_mod_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fmpz_mod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero. It is allocated with space for alloc terms and bits bits for the exponents.

void fmpz_mod_mpoly_clear(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Release any space allocated for A.

Input/Output

The variable strings in x start with the variable of most significance at index \(0\). If x is NULL, the variables are named x1, x2, ect.
char * fmpz_mod_mpoly_get_str_pretty(const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)

Return a string, which the user is responsible for cleaning up, representing A, given an array of variable strings x.

int fmpz_mod_mpoly_fprint_pretty(FILE * file, const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)

Print a string representing A to file.

int fmpz_mod_mpoly_print_pretty(const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)

Print a string representing A to stdout.

int fmpz_mod_mpoly_set_str_pretty(fmpz_mod_mpoly_t A, const char * str, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the polynomial in the null-terminates string str given an array x of variable strings. If parsing str fails, A is set to zero, and \(-1\) is returned. Otherwise, \(0\) is returned. The operations +, -, *, and / are permitted along with integers and the variables in x. The character ^ must be immediately followed by the (integer) exponent. If any division is not exact, parsing fails.

Basic manipulation

void fmpz_mod_mpoly_gen(fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the variable of index var, where \(var = 0\) corresponds to the variable with the most significance with respect to the ordering.

int fmpz_mod_mpoly_is_gen(const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)

If \(var \ge 0\), return \(1\) if A is equal to the \(var\)-th generator, otherwise return \(0\). If \(var < 0\), return \(1\) if the polynomial is equal to any generator, otherwise return \(0\).

void fmpz_mod_mpoly_set(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set A to B.

int fmpz_mod_mpoly_equal(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is equal to B, else return \(0\).

void fmpz_mod_mpoly_swap(fmpz_mod_mpoly_t poly1, fmpz_mod_mpoly_t poly2, const fmpz_mod_mpoly_ctx_t ctx)

Efficiently swap A and B.

Constants

int fmpz_mod_mpoly_is_fmpz(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is a constant, else return \(0\).

void fmpz_mod_mpoly_get_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Assuming that A is a constant, set c to this constant. This function throws if A is not a constant.

void fmpz_mod_mpoly_set_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_ui(fmpz_mod_mpoly_t A, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_si(fmpz_mod_mpoly_t A, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the constant c.

void fmpz_mod_mpoly_zero(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the constant \(0\).

void fmpz_mod_mpoly_one(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the constant \(1\).

int fmpz_mod_mpoly_equal_fmpz(const fmpz_mod_mpoly_t A, fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_equal_ui(const fmpz_mod_mpoly_t A, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_equal_si(const fmpz_mod_mpoly_t A, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is equal to the constant c, else return \(0\).

int fmpz_mod_mpoly_is_zero(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is the constant \(0\), else return \(0\).

int fmpz_mod_mpoly_is_one(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is the constant \(1\), else return \(0\).

Degrees

int fmpz_mod_mpoly_degrees_fit_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if the degrees of A with respect to each variable fit into an slong, otherwise return \(0\).

void fmpz_mod_mpoly_degrees_fmpz(fmpz ** degs, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_degrees_si(slong * degs, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Set degs to the degrees of A with respect to each variable. If A is zero, all degrees are set to \(-1\).

void fmpz_mod_mpoly_degree_fmpz(fmpz_t deg, const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_degree_si(const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Either return or set deg to the degree of A with respect to the variable of index var. If A is zero, the degree is defined to be \(-1\).

int fmpz_mod_mpoly_total_degree_fits_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if the total degree of A fits into an slong, otherwise return \(0\).

void fmpz_mod_mpoly_total_degree_fmpz(fmpz_t tdeg, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_total_degree_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Either return or set tdeg to the total degree of A. If A is zero, the total degree is defined to be \(-1\).

void fmpz_mod_mpoly_used_vars(int * used, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

For each variable index i, set used[i] to nonzero if the variable of index i appears in A and to zero otherwise.

Coefficients

void fmpz_mod_mpoly_get_coeff_fmpz_monomial(fmpz_t c, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_ctx_t ctx)

Assuming that M is a monomial, set c to the coefficient of the corresponding monomial in A. This function thows if M is not a monomial.

void fmpz_mod_mpoly_set_coeff_fmpz_monomial(fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_ctx_t ctx)

Assuming that M is a monomial, set the coefficient of the corresponding monomial in A to c. This function thows if M is not a monomial.

void fmpz_mod_mpoly_get_coeff_fmpz_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_coeff_fmpz_ui(fmpz_t c, const fmpz_mod_mpoly_t A, ulong const * exp, const fmpz_mod_mpoly_ctx_t ctx)

Set c to the coefficient of the monomial with exponent vector exp.

void fmpz_mod_mpoly_set_coeff_fmpz_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, fmpz * const * exp, fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_ui_fmpz(fmpz_mod_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_si_fmpz(fmpz_mod_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_fmpz_ui(fmpz_mod_mpoly_t A, const fmpz_t c, ulong const * exp, fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_ui_ui(fmpz_mod_mpoly_t A, ulong c, ulong const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_si_ui(fmpz_mod_mpoly_t A, slong c, ulong const * exp, const fmpz_mod_mpoly_ctx_t ctx)

Set the coefficient of the monomial with exponent vector exp to c.

void fmpz_mod_mpoly_get_coeff_vars_ui(fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_t A, const slong * vars, const ulong * exps, slong length, const fmpz_mod_mpoly_ctx_t ctx)

Set C to the coefficient of A with respect to the variables in vars with powers in the corresponding array exps. Both vars and exps point to array of length length. It is assumed that \(0 < length \le nvars(A)\) and that the variables in vars are distinct.

Comparison

int fmpz_mod_mpoly_cmp(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) (resp. \(-1\), or \(0\)) if A is after (resp. before, same as) B in some arbitrary but fixed total ordering of the polynomials. This ordering agrees with the usual ordering of monomials when A and B are both monomials.

Container operations

These functions deal with violations of the internal canonical representation. If a term index is negative or not strictly less than the length of the polynomial, the function will throw.
int fmpz_mod_mpoly_is_canonical(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is in canonical form. Otherwise, return \(0\). To be in canonical form, all of the terms must have nonzero coefficient, and the terms must be sorted from greatest to least.

slong fmpz_mod_mpoly_length(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return the number of terms in A. If the polynomial is in canonical form, this will be the number of nonzero coefficients.

void fmpz_mod_mpoly_resize(fmpz_mod_mpoly_t A, slong new_length, const fmpz_mod_mpoly_ctx_t ctx)

Set the length of A to new_length. Terms are either deleted from the end, or new zero terms are appended.

void fmpz_mod_mpoly_get_term_coeff_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Set c to the coefficient of the term of index i.

void fmpz_mod_mpoly_set_term_coeff_fmpz(fmpz_mod_mpoly_t A, slong i, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_coeff_ui(fmpz_mod_mpoly_t A, slong i, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_coeff_si(fmpz_mod_mpoly_t A, slong i, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Set the coefficient of the term of index i to c.

int fmpz_mod_mpoly_term_exp_fits_si(const fmpz_mod_mpoly_t poly, slong i, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_term_exp_fits_ui(const fmpz_mod_mpoly_t poly, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if all entries of the exponent vector of the term of index i fit into an slong (resp. a ulong). Otherwise, return \(0\).

void fmpz_mod_mpoly_get_term_exp_fmpz(fmpz ** exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_term_exp_ui(ulong * exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_term_exp_si(slong * exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Set exp to the exponent vector of the term of index i. The _ui (resp. _si) version throws if any entry does not fit into a ulong (resp. slong).

ulong fmpz_mod_mpoly_get_term_var_exp_ui(const fmpz_mod_mpoly_t A, slong i, slong var, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_get_term_var_exp_si(const fmpz_mod_mpoly_t A, slong i, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Return the exponent of the variable var of the term of index i. This function throws if the exponent does not fit into a ulong (resp. slong).

void fmpz_mod_mpoly_set_term_exp_fmpz(fmpz_mod_mpoly_t A, slong i, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_exp_ui(fmpz_mod_mpoly_t A, slong i, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)

Set the exponent vector of the term of index i to exp.

void fmpz_mod_mpoly_get_term(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Set M to the term of index i in A.

void fmpz_mod_mpoly_get_term_monomial(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Set M to the monomial of the term of index i in A. The coefficient of M will be one.

void fmpz_mod_mpoly_push_term_fmpz_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_ui_fmpz(fmpz_mod_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_si_fmpz(fmpz_mod_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_fmpz_ui(fmpz_mod_mpoly_t A, const fmpz_t c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_ui_ui(fmpz_mod_mpoly_t A, ulong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_si_ui(fmpz_mod_mpoly_t A, slong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)

Append a term to A with coefficient c and exponent vector exp. This function runs in constant average time.

void fmpz_mod_mpoly_sort_terms(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Sort the terms of A into the canonical ordering dictated by the ordering in ctx. This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero. This function runs in linear time in the size of A.

void fmpz_mod_mpoly_combine_like_terms(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Combine adjacent like terms in A and delete terms with coefficient zero. If the terms of A were sorted to begin with, the result will be in canonical form. This function runs in linear time in the size of A.

void fmpz_mod_mpoly_reverse(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the reversal of B.

Random generation

void fmpz_mod_mpoly_randtest_bound(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bound, const fmpz_mod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents in the range [0, exp_bound - 1]. The exponents of each variable are generated by calls to n_randint(state, exp_bound).

void fmpz_mod_mpoly_randtest_bounds(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, ulong * exp_bounds, const fmpz_mod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents in the range [0, exp_bounds[i] - 1]. The exponents of the variable of index i are generated by calls to n_randint(state, exp_bounds[i]).

void fmpz_mod_mpoly_randtest_bits(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, mp_limb_t exp_bits, const fmpz_mod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents whose packed form does not exceed the given bit count.

Addition/Subtraction

void fmpz_mod_mpoly_add_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_add_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_add_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B + c\).

void fmpz_mod_mpoly_sub_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_sub_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_sub_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B - c\).

void fmpz_mod_mpoly_add(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B + C\).

void fmpz_mod_mpoly_sub(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B - C\).

Scalar operations

void fmpz_mod_mpoly_neg(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(-B\).

void fmpz_mod_mpoly_scalar_mul_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_scalar_mul_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_scalar_mul_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B \times c\).

void fmpz_mod_mpoly_scalar_addmul_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_t d, const fmpz_mod_mpoly_ctx_t ctx)

Sets A to \(B + C \times d\).

void fmpz_mod_mpoly_make_monic(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set A to B divided by the leading coefficient of B. This throws if B is zero or the leading coefficient is not invertible.

Differentiation

void fmpz_mod_mpoly_derivative(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the derivative of B with respect to the variable of index var.

Evaluation

These functions return \(0\) when the operation would imply unreasonable arithmetic.
void fmpz_mod_mpoly_evaluate_all_fmpz(fmpz_t eval, const fmpz_mod_mpoly_t A, fmpz * const * vals, const fmpz_mod_mpoly_ctx_t ctx)

Set ev to the evaluation of A where the variables are replaced by the corresponding elements of the array vals.

void fmpz_mod_mpoly_evaluate_one_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_t val, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the evaluation of B where the variable of index var is replaced by val. Return \(1\) for success and \(0\) for failure.

int fmpz_mod_mpoly_compose_fmpz_poly(fmpz_poly_t A, const fmpz_mod_mpoly_t B, fmpz_poly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB)

Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. The context object of B is ctxB. Return \(1\) for success and \(0\) for failure.

int fmpz_mod_mpoly_compose_fmpz_mod_mpoly_geobucket(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_mod_mpoly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)
int fmpz_mod_mpoly_compose_fmpz_mod_mpoly(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_mod_mpoly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)

Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. Both A and the elements of C have context object ctxAC, while B has context object ctxB. The length of the array C is the number of variables in ctxB. Neither A nor B is allowed to alias any other polynomial. Return \(1\) for success and \(0\) for failure. The main method attempts to perform the calculation using matrices and chooses heuristically between the geobucket and horner methods if needed.

void fmpz_mod_mpoly_compose_fmpz_mod_mpoly_gen(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const slong * c, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)

Set A to the evaluation of B where the variable of index i in ctxB is replaced by the variable of index c[i] in ctxAC. The length of the array C is the number of variables in ctxB. If any c[i] is negative, the corresponding variable of B is replaced by zero. Otherwise, it is expected that c[i] is less than the number of variables in ctxAC.

Multiplication

void fmpz_mod_mpoly_mul(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B \times C\).

void fmpz_mod_mpoly_mul_johnson(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)

Set A to \(B \times C\) using Johnson’s heap-based method.

int fmpz_mod_mpoly_mul_dense(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)

Try to set A to \(B \times C\) using dense arithmetic. If the return is \(0\), the operation was unsuccessful. Otherwise, it was successful and the return is \(1\).

Powering

These functions return \(0\) when the operation would imply unreasonable arithmetic.
int fmpz_mod_mpoly_pow_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t k, const fmpz_mod_mpoly_ctx_t ctx)

Set A to B raised to the \(k\)-th power. Return \(1\) for success and \(0\) for failure.

int fmpz_mod_mpoly_pow_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong k, const fmpz_mod_mpoly_ctx_t ctx)

Set A to B raised to the \(k\)-th power. Return \(1\) for success and \(0\) for failure.

Division

The division functions assume that the modulus is prime.

int fmpz_mod_mpoly_divides(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

If A is divisible by B, set Q to the exact quotient and return \(1\). Otherwise, set Q to zero and return \(0\).

void fmpz_mod_mpoly_div(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set Q to the quotient of A by B, discarding the remainder.

void fmpz_mod_mpoly_divrem(fmpz_mod_mpoly_t Q, fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Set Q and R to the quotient and remainder of A divided by B.

void fmpz_mod_mpoly_divrem_ideal(fmpz_mod_mpoly_struct ** Q, fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, fmpz_mod_mpoly_struct * const * B, slong len, const fmpz_mod_mpoly_ctx_t ctx)

This function is as per fmpz_mod_mpoly_divrem() except that it takes an array of divisor polynomials B and it returns an array of quotient polynomials Q. The number of divisor (and hence quotient) polynomials, is given by len.

Greatest Common Divisor

void fmpz_mod_mpoly_term_content(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Set M to the GCD of the terms of A. If A is zero, M will be zero. Otherwise, M will be a monomial with coefficient one.

int fmpz_mod_mpoly_content_vars(fmpz_mod_mpoly_t g, const fmpz_mod_mpoly_t A, slong * vars, slong vars_length, const fmpz_mod_mpoly_ctx_t ctx)

Set g to the GCD of the cofficients of A when viewed as a polynomial in the variables vars. Return \(1\) for success and \(0\) for failure. Upon succcess, g will be independent of the variables vars.

int fmpz_mod_mpoly_gcd(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Try to set G to the monic GCD of A and B. The GCD of zero and zero is defined to be zero. If the return is \(1\) the function was successful. Otherwise the return is \(0\) and G is left untouched.

int fmpz_mod_mpoly_gcd_cofactors(fmpz_mod_mpoly_t G, fmpz_mod_mpoly_t Abar, fmpz_mod_mpoly_t Bbar, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Do the operation of fmpz_mod_mpoly_gcd() and also compute \(Abar = A/G\) and \(Bbar = B/G\) if successful.

int fmpz_mod_mpoly_gcd_brown(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_hensel(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_subresultant(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_zippel(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_zippel2(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

Try to set G to the GCD of A and B using various algorithms.

int fmpz_mod_mpoly_resultant(fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Try to set R to the resultant of A and B with respect to the variable of index var.

int fmpz_mod_mpoly_discriminant(fmpz_mod_mpoly_t D, const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Try to set D to the discriminant of A with respect to the variable of index var.

Square Root

The square root functions assume that the modulus is prime for correct operation.

int fmpz_mod_mpoly_sqrt(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

If \(Q^2=A\) has a solution, set Q to a solution and return \(1\), otherwise return \(0\) and set Q to zero.

int fmpz_mod_mpoly_is_square(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if A is a perfect square, otherwise return \(0\).

int fmpz_mod_mpoly_quadratic_root(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)

If \(Q^2+AQ=B\) has a solution, set Q to a solution and return \(1\), otherwise return \(0\).

Univariate Functions

An fmpz_mod_mpoly_univar_t holds a univariate polynomial in some main variable with fmpz_mod_mpoly_t coefficients in the remaining variables. These functions are useful when one wants to rewrite an element of \(\mathbb{Z}/n\mathbb{Z}[x_1, \dots, x_m]\) as an element of \((\mathbb{Z}/n\mathbb{Z}[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]\) and vise versa.
void fmpz_mod_mpoly_univar_init(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)

Initialize A.

void fmpz_mod_mpoly_univar_clear(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)

Clear A.

void fmpz_mod_mpoly_univar_swap(fmpz_mod_mpoly_univar_t A, fmpz_mod_mpoly_univar_t B, const fmpz_mod_mpoly_ctx_t ctx)

Swap A and B.

void fmpz_mod_mpoly_to_univar(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Set A to a univariate form of B by pulling out the variable of index var. The coefficients of A will still belong to the content ctx but will not depend on the variable of index var.

void fmpz_mod_mpoly_from_univar(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_univar_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)

Set A to the normal form of B by putting in the variable of index var. This function is undefined if the coefficients of B depend on the variable of index var.

int fmpz_mod_mpoly_univar_degree_fits_si(const fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return \(1\) if the degree of A with respect to the main variable fits an slong. Otherwise, return \(0\).

slong fmpz_mod_mpoly_univar_length(const fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)

Return the number of terms in A with respect to the main variable.

slong fmpz_mod_mpoly_univar_get_term_exp_si(fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Return the exponent of the term of index i of A.

void fmpz_mod_mpoly_univar_get_term_coeff(fmpz_mod_mpoly_t c, const fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_univar_swap_term_coeff(fmpz_mod_mpoly_t c, fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)

Set (resp. swap) c to (resp. with) the coefficient of the term of index i of A.

void fmpz_mod_mpoly_univar_set_coeff_ui(fmpz_mod_mpoly_univar_t Ax, ulong e, const fmpz_mod_mpoly_t c, const fmpz_mod_mpoly_ctx_t ctx)

Set the coefficient of \(X^e\) in Ax to c.

int fmpz_mod_mpoly_univar_resultant(fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_univar_t Ax, const fmpz_mod_mpoly_univar_t Bx, const fmpz_mod_mpoly_ctx_t ctx)

Try to set R to the resultant of Ax and Bx.

int fmpz_mod_mpoly_univar_discriminant(fmpz_mod_mpoly_t D, const fmpz_mod_mpoly_univar_t Ax, const fmpz_mod_mpoly_ctx_t ctx)

Try to set D to the discriminant of Ax.

Internal Functions

void fmpz_mod_mpoly_inflate(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mod_mpoly_ctx_t ctx)

Apply the function e -> shift[v] + stride[v]*e to each exponent e corresponding to the variable v. It is assumed that each shift and stride is not negative.

void fmpz_mod_mpoly_deflate(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mod_mpoly_ctx_t ctx)

Apply the function e -> (e - shift[v])/stride[v] to each exponent e corresponding to the variable v. If any stride[v] is zero, the corresponding numerator e - shift[v] is assumed to be zero, and the quotient is defined as zero. This allows the function to undo the operation performed by fmpz_mod_mpoly_inflate() when possible.

void fmpz_mod_mpoly_deflation(fmpz * shift, fmpz * stride, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)

For each variable \(v\) let \(S_v\) be the set of exponents appearing on \(v\). Set shift[v] to \(\operatorname{min}(S_v)\) and set stride[v] to \(\operatorname{gcd}(S-\operatorname{min}(S_v))\). If A is zero, all shifts and strides are set to zero.