fmpz_mpoly_q.h – multivariate rational functions over Q
An fmpz_mpoly_q_t
represents an element of
\(\mathbb{Q}(x_1,\ldots,x_n)\) for fixed n as a pair of FLINT
multivariate polynomials (fmpz_mpoly_t
).
Instances are always kept in canonical form by ensuring that the GCD
of numerator and denominator is 1 and that the coefficient
of the leading term of the denominator is positive.
The user must create a multivariate polynomial context
(fmpz_mpoly_ctx_t
) specifying the number of variables n and
the monomial ordering.
Types and macros
-
type fmpz_mpoly_q_struct
-
type fmpz_mpoly_q_t
An fmpz_mpoly_q_struct consists of a pair of fmpz_mpoly_struct:s.
An fmpz_mpoly_q_t is defined as an array of length one of type
fmpz_mpoly_q_struct, permitting an fmpz_mpoly_q_t to be passed by
reference.
-
fmpz_mpoly_q_numref(x)
Macro returning a pointer to the numerator of x which can be used as an fmpz_mpoly_t.
-
fmpz_mpoly_q_denref(x)
Macro returning a pointer to the denominator of x which can be used as an fmpz_mpoly_t.
Assignment
-
void fmpz_mpoly_q_swap(fmpz_mpoly_q_t x, fmpz_mpoly_q_t y, const fmpz_mpoly_ctx_t ctx)
Swaps the values of x and y efficiently.
-
void fmpz_mpoly_q_set(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_set_fmpq(fmpz_mpoly_q_t res, const fmpq_t x, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_set_fmpz(fmpz_mpoly_q_t res, const fmpz_t x, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_set_si(fmpz_mpoly_q_t res, slong x, const fmpz_mpoly_ctx_t ctx)
Sets res to the value x.
Canonicalisation
-
void fmpz_mpoly_q_canonicalise(fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
Puts the numerator and denominator of x in canonical form by removing
common content and making the leading term of the denominator positive.
-
int fmpz_mpoly_q_is_canonical(const fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
Returns whether x is in canonical form.
In addition to verifying that the numerator and denominator
have no common content and that the leading term of the denominator
is positive, this function checks that the denominator is nonzero and that
the numerator and denominator have correctly sorted terms
(these properties should normally hold; verifying them
provides an extra consistency check for test code).
Random generation
-
void fmpz_mpoly_q_randtest(fmpz_mpoly_q_t res, flint_rand_t state, slong length, ulong coeff_bits, slong exp_bound, const fmpz_mpoly_ctx_t ctx)
Sets res to a random rational function where both numerator and denominator
have up to length terms, coefficients up to size coeff_bits, and
exponents strictly smaller than exp_bound.
Arithmetic
-
void fmpz_mpoly_q_neg(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
Sets res to the negation of x.
-
void fmpz_mpoly_q_add(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_q_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_add_fmpq(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpq_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_add_fmpz(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_add_si(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, slong y, const fmpz_mpoly_ctx_t ctx)
Sets res to the sum of x and y.
-
void fmpz_mpoly_q_sub(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_q_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_sub_fmpq(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpq_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_sub_fmpz(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_sub_si(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, slong y, const fmpz_mpoly_ctx_t ctx)
Sets res to the difference of x and y.
-
void fmpz_mpoly_q_mul(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_q_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_mul_fmpq(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpq_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_mul_fmpz(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_mul_si(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, slong y, const fmpz_mpoly_ctx_t ctx)
Sets res to the product of x and y.
-
void fmpz_mpoly_q_div(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_q_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_div_fmpq(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpq_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_div_fmpz(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_t y, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_div_si(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, slong y, const fmpz_mpoly_ctx_t ctx)
Sets res to the quotient of x and y.
Division by zero calls flint_abort.
-
void fmpz_mpoly_q_inv(fmpz_mpoly_q_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
Sets res to the inverse of x. Division by zero
calls flint_abort.
Content
-
void _fmpz_mpoly_q_content(fmpz_t num, fmpz_t den, const fmpz_mpoly_t xnum, const fmpz_mpoly_t xden, const fmpz_mpoly_ctx_t ctx)
-
void fmpz_mpoly_q_content(fmpq_t res, const fmpz_mpoly_q_t x, const fmpz_mpoly_ctx_t ctx)
Sets res to the content of the coefficients of x.