fmpz_poly_q.h – rational functions over the rational numbers¶
The module fmpz_poly_q
provides functions for performing
arithmetic on rational functions in \(\mathbf{Q}(t)\), represented as
quotients of integer polynomials of type fmpz_poly_t
. These
functions start with the prefix fmpz_poly_q_
.
Rational functions are stored in objects of type
fmpz_poly_q_t
, which is an array of
fmpz_poly_q_struct
’s of length one. This permits passing
parameters of type fmpz_poly_q_t
by reference.
The representation of a rational function as the quotient of two
integer polynomials can be made canonical by demanding the numerator
and denominator to be coprime (as integer polynomials) and the
denominator to have positive leading coefficient. As the only special
case, we represent the zero function as \(0/1\). All arithmetic
functions assume that the operands are in this canonical form, and
canonicalize their result. If the numerator or denominator is modified
individually, for example using the macros fmpz_poly_q_numref()
and fmpz_poly_q_denref()
, it is the user’s responsibility to
canonicalise the rational function using the function
fmpz_poly_q_canonicalise()
if necessary.
All methods support aliasing of their inputs and outputs unless explicitly stated otherwise, subject to the following caveat. If different rational functions (as objects in memory, not necessarily in the mathematical sense) share some of the underlying integer polynomial objects, the behaviour is undefined.
The basic arithmetic operations, addition, subtraction and multiplication, are all implemented using adapted versions of Henrici’s algorithms, see [Hen1956]. Differentiation is implemented in a way slightly improving on the algorithm described in [Hor1972].
Simple example¶
The following example computes the product of two rational functions and prints the result:
#include "fmpz_poly_q.h"
int main()
{
char * str, * strf, * strg;
fmpz_poly_q_t f, g;
fmpz_poly_q_init(f);
fmpz_poly_q_init(g);
fmpz_poly_q_set_str(f, "2 1 3/1 2");
fmpz_poly_q_set_str(g, "1 3/2 2 7");
strf = fmpz_poly_q_get_str_pretty(f, "t");
strg = fmpz_poly_q_get_str_pretty(g, "t");
fmpz_poly_q_mul(f, f, g);
str = fmpz_poly_q_get_str_pretty(f, "t");
flint_printf("%s * %s = %s\n", strf, strg, str);
free(str);
free(strf);
free(strg);
fmpz_poly_q_clear(f);
fmpz_poly_q_clear(g);
}
The output is:
(3*t+1)/2 * 3/(7*t+2) = (9*t+3)/(14*t+4)
Types, macros and constants¶
-
type fmpz_poly_q_struct¶
-
type fmpz_poly_q_t¶
Memory management¶
-
void fmpz_poly_q_init(fmpz_poly_q_t rop)¶
Initialises
rop
.
-
void fmpz_poly_q_clear(fmpz_poly_q_t rop)¶
Clears the object
rop
.
-
fmpz_poly_struct *fmpz_poly_q_numref(const fmpz_poly_q_t op)¶
Returns a reference to the numerator of
op
.
-
fmpz_poly_struct *fmpz_poly_q_denref(const fmpz_poly_q_t op)¶
Returns a reference to the denominator of
op
.
-
void fmpz_poly_q_canonicalise(fmpz_poly_q_t rop)¶
Brings
rop
into canonical form, only assuming that the denominator is non-zero.
-
int fmpz_poly_q_is_canonical(const fmpz_poly_q_t op)¶
Checks whether the rational function
op
is in canonical form.
Randomisation¶
-
void fmpz_poly_q_randtest(fmpz_poly_q_t poly, flint_rand_t state, slong len1, flint_bitcnt_t bits1, slong len2, flint_bitcnt_t bits2)¶
Sets
poly
to a random rational function.
-
void fmpz_poly_q_randtest_not_zero(fmpz_poly_q_t poly, flint_rand_t state, slong len1, flint_bitcnt_t bits1, slong len2, flint_bitcnt_t bits2)¶
Sets
poly
to a random non-zero rational function.
Assignment¶
-
void fmpz_poly_q_set(fmpz_poly_q_t rop, const fmpz_poly_q_t op)¶
Sets the element
rop
to the same value as the elementop
.
-
void fmpz_poly_q_set_si(fmpz_poly_q_t rop, slong op)¶
Sets the element
rop
to the value given by theslong
op
.
-
void fmpz_poly_q_swap(fmpz_poly_q_t op1, fmpz_poly_q_t op2)¶
Swaps the elements
op1
andop2
.This is done efficiently by swapping pointers.
-
void fmpz_poly_q_zero(fmpz_poly_q_t rop)¶
Sets
rop
to zero.
-
void fmpz_poly_q_one(fmpz_poly_q_t rop)¶
Sets
rop
to one.
-
void fmpz_poly_q_neg(fmpz_poly_q_t rop, const fmpz_poly_q_t op)¶
Sets the element
rop
to the additive inverse ofop
.
-
void fmpz_poly_q_inv(fmpz_poly_q_t rop, const fmpz_poly_q_t op)¶
Sets the element
rop
to the multiplicative inverse ofop
.Assumes that the element
op
is non-zero.
Comparison¶
-
int fmpz_poly_q_is_zero(const fmpz_poly_q_t op)¶
Returns whether the element
op
is zero.
-
int fmpz_poly_q_is_one(const fmpz_poly_q_t op)¶
Returns whether the element
rop
is equal to the constant polynomial \(1\).
-
int fmpz_poly_q_equal(const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Returns whether the two elements
op1
andop2
are equal.
Addition and subtraction¶
-
void fmpz_poly_q_add(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Sets
rop
to the sum ofop1
andop2
.
-
void fmpz_poly_q_sub(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Sets
rop
to the difference ofop1
andop2
.
-
void fmpz_poly_q_addmul(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Adds the product of
op1
andop2
torop
.
-
void fmpz_poly_q_submul(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Subtracts the product of
op1
andop2
fromrop
.
Scalar multiplication and division¶
-
void fmpz_poly_q_scalar_mul_si(fmpz_poly_q_t rop, const fmpz_poly_q_t op, slong x)¶
Sets
rop
to the product of the rational functionop
and theslong
integer \(x\).
-
void fmpz_poly_q_scalar_mul_fmpz(fmpz_poly_q_t rop, const fmpz_poly_q_t op, const fmpz_t x)¶
Sets
rop
to the product of the rational functionop
and thefmpz_t
integer \(x\).
-
void fmpz_poly_q_scalar_mul_fmpq(fmpz_poly_q_t rop, const fmpz_poly_q_t op, const fmpq_t x)¶
Sets
rop
to the product of the rational functionop
and thefmpq_t
rational \(x\).
-
void fmpz_poly_q_scalar_div_si(fmpz_poly_q_t rop, const fmpz_poly_q_t op, slong x)¶
Sets
rop
to the quotient of the rational functionop
and theslong
integer \(x\).
-
void fmpz_poly_q_scalar_div_fmpz(fmpz_poly_q_t rop, const fmpz_poly_q_t op, const fmpz_t x)¶
Sets
rop
to the quotient of the rational functionop
and thefmpz_t
integer \(x\).
-
void fmpz_poly_q_scalar_div_fmpq(fmpz_poly_q_t rop, const fmpz_poly_q_t op, const fmpq_t x)¶
Sets
rop
to the quotient of the rational functionop
and thefmpq_t
rational \(x\).
Multiplication and division¶
-
void fmpz_poly_q_mul(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Sets
rop
to the product ofop1
andop2
.
-
void fmpz_poly_q_div(fmpz_poly_q_t rop, const fmpz_poly_q_t op1, const fmpz_poly_q_t op2)¶
Sets
rop
to the quotient ofop1
andop2
.
Powering¶
-
void fmpz_poly_q_pow(fmpz_poly_q_t rop, const fmpz_poly_q_t op, ulong exp)¶
Sets
rop
to theexp
-th power ofop
.The corner case of
exp == 0
is handled by settingrop
to the constant function \(1\). Note that this includes the case \(0^0 = 1\).
Derivative¶
-
void fmpz_poly_q_derivative(fmpz_poly_q_t rop, const fmpz_poly_q_t op)¶
Sets
rop
to the derivative ofop
.
Evaluation¶
-
int fmpz_poly_q_evaluate_fmpq(fmpq_t rop, const fmpz_poly_q_t f, const fmpq_t a)¶
Sets
rop
to \(f\) evaluated at the rational \(a\).If the denominator evaluates to zero at \(a\), returns non-zero and does not modify any of the variables. Otherwise, returns \(0\) and sets
rop
to the rational \(f(a)\).
Input and output¶
The following three methods enable users to construct elements of type
fmpz_poly_q_t
from strings or to obtain string representations of
such elements.
The format used is based on the FLINT format for integer polynomials of
type fmpz_poly_t
, which we recall first:
A non-zero polynomial \(a_0 + a_1 X + \dotsb + a_n X^n\) of length
\(n + 1\) is represented by the string "n+1 a_0 a_1 ... a_n"
,
where there are two space characters following the length and single
space characters separating the individual coefficients. There is no
leading or trailing white-space. The zero polynomial is simply
represented by "0"
.
We adapt this notation for rational functions as follows. We denote the
zero function by "0"
. Given a non-zero function with numerator
and denominator string representations num
and den
,
respectively, we use the string num/den
to represent the rational
function, unless the denominator is equal to one, in which case we simply
use num
.
There is also a _pretty
variant available, which bases the string
parts for the numerator and denominator on the output of the function
fmpz_poly_get_str_pretty
and introduces parentheses where
necessary.
Note that currently these functions are not optimised for performance and
are intended to be used only for debugging purposes or one-off input and
output, rather than as a low-level parser.
-
int fmpz_poly_q_set_str(fmpz_poly_q_t rop, const char *s)¶
Sets
rop
to the rational function given by the strings
.
-
char *fmpz_poly_q_get_str(const fmpz_poly_q_t op)¶
Returns the string representation of the rational function
op
.
-
char *fmpz_poly_q_get_str_pretty(const fmpz_poly_q_t op, const char *x)¶
Returns the pretty string representation of the rational function
op
.
-
int fmpz_poly_q_print(const fmpz_poly_q_t op)¶
Prints the representation of the rational function
op
tostdout
.
-
int fmpz_poly_q_print_pretty(const fmpz_poly_q_t op, const char *x)¶
Prints the pretty representation of the rational function
op
tostdout
.