fq_nmod_mpoly.h – multivariate polynomials over finite fields of word-sized characteristic

The exponents follow the mpoly interface. No references to the coefficients are available.

Types, macros and constants

type fq_nmod_mpoly_struct

A structure holding a multivariate polynomial over a finite field of word-sized characteristic.

type fq_nmod_mpoly_t

An array of length \(1\) of fq_nmod_mpoly_struct.

type fq_nmod_mpoly_ctx_struct

Context structure representing the parent ring of an fq_nmod_mpoly.

type fq_nmod_mpoly_ctx_t

An array of length \(1\) of fq_nmod_mpoly_ctx_struct.

Context object

void fq_nmod_mpoly_ctx_init(fq_nmod_mpoly_ctx_t ctx, slong nvars, const ordering_t ord, const fq_nmod_ctx_t fqctx)

Initialise a context object for a polynomial ring with the given number of variables and the given ordering. It will have coefficients in the finite field fqctx. The possibilities for the ordering are ORD_LEX, ORD_DEGLEX and ORD_DEGREVLEX.

slong fq_nmod_mpoly_ctx_nvars(const fq_nmod_mpoly_ctx_t ctx)

Return the number of variables used to initialize the context.

ordering_t fq_nmod_mpoly_ctx_ord(const fq_nmod_mpoly_ctx_t ctx)

Return the ordering used to initialize the context.

void fq_nmod_mpoly_ctx_clear(fq_nmod_mpoly_ctx_t ctx)

Release any space allocated by an ctx.

Memory management

void fq_nmod_mpoly_init(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero.

void fq_nmod_mpoly_init2(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero. It is allocated with space for alloc terms and at least MPOLY_MIN_BITS bits for the exponents.

void fq_nmod_mpoly_init3(fq_nmod_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fq_nmod_mpoly_ctx_t ctx)

Initialise A for use with the given an initialised context object. Its value is set to zero. It is allocated with space for alloc terms and bits bits for the exponents.

void fq_nmod_mpoly_fit_length(fq_nmod_mpoly_t A, slong len, const fq_nmod_mpoly_ctx_t ctx)

Ensure that A has space for at least len terms.

void fq_nmod_mpoly_realloc(fq_nmod_mpoly_t A, slong alloc, const fq_nmod_mpoly_ctx_t ctx)

Reallocate A to have space for alloc terms. Assumes the current length of the polynomial is not greater than alloc.

void fq_nmod_mpoly_clear(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Release any space allocated for A.

Input/Output

The variable strings in x start with the variable of most significance at index \(0\). If x is NULL, the variables are named x1, x2, etc.

char *fq_nmod_mpoly_get_str_pretty(const fq_nmod_mpoly_t A, const char **x, const fq_nmod_mpoly_ctx_t ctx)

Return a string, which the user is responsible for cleaning up, representing A, given an array of variable strings x.

int fq_nmod_mpoly_fprint_pretty(FILE *file, const fq_nmod_mpoly_t A, const char **x, const fq_nmod_mpoly_ctx_t ctx)

Print a string representing A to file.

int fq_nmod_mpoly_print_pretty(const fq_nmod_mpoly_t A, const char **x, const fq_nmod_mpoly_ctx_t ctx)

Print a string representing A to stdout.

int fq_nmod_mpoly_set_str_pretty(fq_nmod_mpoly_t A, const char *str, const char **x, const fq_nmod_mpoly_ctx_t ctx)

Set A to the polynomial in the null-terminates string str given an array x of variable strings. If parsing str fails, A is set to zero, and \(-1\) is returned. Otherwise, \(0\) is returned. The operations +, -, *, and / are permitted along with integers and the variables in x. The character ^ must be immediately followed by the (integer) exponent. If any division is not exact, parsing fails.

Basic manipulation

void fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

Set A to the variable of index var, where \(var = 0\) corresponds to the variable with the most significance with respect to the ordering.

int fq_nmod_mpoly_is_gen(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

If \(var \ge 0\), return \(1\) if A is equal to the \(var\)-th generator, otherwise return \(0\). If \(var < 0\), return \(1\) if the polynomial is equal to any generator, otherwise return \(0\).

void fq_nmod_mpoly_set(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set A to B.

int fq_nmod_mpoly_equal(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is equal to B, else return \(0\).

void fq_nmod_mpoly_swap(fq_nmod_mpoly_t A, fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Efficiently swap A and B.

Constants

int fq_nmod_mpoly_is_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is a constant, else return \(0\).

void fq_nmod_mpoly_get_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Assuming that A is a constant, set c to this constant. This function throws if A is not a constant.

void fq_nmod_mpoly_set_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_ui(fq_nmod_mpoly_t A, ulong c, const fq_nmod_mpoly_ctx_t ctx)

Set A to the constant c.

void fq_nmod_mpoly_set_fq_nmod_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Set A to the constant given by fq_nmod_gen().

void fq_nmod_mpoly_zero(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Set A to the constant \(0\).

void fq_nmod_mpoly_one(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Set A to the constant \(1\).

int fq_nmod_mpoly_equal_fq_nmod(const fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is equal to the constant c, else return \(0\).

int fq_nmod_mpoly_is_zero(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is the constant \(0\), else return \(0\).

int fq_nmod_mpoly_is_one(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is the constant \(1\), else return \(0\).

Degrees

int fq_nmod_mpoly_degrees_fit_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if the degrees of A with respect to each variable fit into an slong, otherwise return \(0\).

void fq_nmod_mpoly_degrees_fmpz(fmpz **degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_degrees_si(slong *degs, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Set degs to the degrees of A with respect to each variable. If A is zero, all degrees are set to \(-1\).

void fq_nmod_mpoly_degree_fmpz(fmpz_t deg, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_degree_si(const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

Either return or set deg to the degree of A with respect to the variable of index var. If A is zero, the degree is defined to be \(-1\).

int fq_nmod_mpoly_total_degree_fits_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if the total degree of A fits into an slong, otherwise return \(0\).

void fq_nmod_mpoly_total_degree_fmpz(fmpz_t tdeg, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_total_degree_si(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Either return or set tdeg to the total degree of A. If A is zero, the total degree is defined to be \(-1\).

void fq_nmod_mpoly_used_vars(int *used, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

For each variable index \(i\), set used[i] to nonzero if the variable of index \(i\) appears in A and to zero otherwise.

Coefficients

void fq_nmod_mpoly_get_coeff_fq_nmod_monomial(fq_nmod_t c, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)

Assuming that M is a monomial, set c to the coefficient of the corresponding monomial in A. This function throws if M is not a monomial.

void fq_nmod_mpoly_set_coeff_fq_nmod_monomial(fq_nmod_mpoly_t A, const fq_nmod_t c, const fq_nmod_mpoly_t M, const fq_nmod_mpoly_ctx_t ctx)

Assuming that M is a monomial, set the coefficient of the corresponding monomial in A to c. This function throws if M is not a monomial.

void fq_nmod_mpoly_get_coeff_fq_nmod_fmpz(fq_nmod_t c, const fq_nmod_mpoly_t A, fmpz *const *exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_coeff_fq_nmod_ui(fq_nmod_t c, const fq_nmod_mpoly_t A, const ulong *exp, const fq_nmod_mpoly_ctx_t ctx)

Set c to the coefficient of the monomial with exponent vector exp.

void fq_nmod_mpoly_set_coeff_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz *const *exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_coeff_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong *exp, const fq_nmod_mpoly_ctx_t ctx)

Set the coefficient of the monomial with exponent exp to c.

void fq_nmod_mpoly_get_coeff_vars_ui(fq_nmod_mpoly_t C, const fq_nmod_mpoly_t A, const slong *vars, const ulong *exps, slong length, const fq_nmod_mpoly_ctx_t ctx)

Set C to the coefficient of A with respect to the variables in vars with powers in the corresponding array exps. Both vars and exps point to array of length length. It is assumed that \(0 < length \le nvars(A)\) and that the variables in vars are distinct.

Comparison

int fq_nmod_mpoly_cmp(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) (resp. \(-1\), or \(0\)) if A is after (resp. before, same as) B in some arbitrary but fixed total ordering of the polynomials. This ordering agrees with the usual ordering of monomials when A and B are both monomials.

Container operations

These functions deal with violations of the internal canonical representation. If a term index is negative or not strictly less than the length of the polynomial, the function will throw.

int fq_nmod_mpoly_is_canonical(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is in canonical form. Otherwise, return \(0\). To be in canonical form, all of the terms must have nonzero coefficients, and the terms must be sorted from greatest to least.

slong fq_nmod_mpoly_length(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return the number of terms in A. If the polynomial is in canonical form, this will be the number of nonzero coefficients.

void fq_nmod_mpoly_resize(fq_nmod_mpoly_t A, slong new_length, const fq_nmod_mpoly_ctx_t ctx)

Set the length of A to new_length. Terms are either deleted from the end, or new zero terms are appended.

void fq_nmod_mpoly_get_term_coeff_fq_nmod(fq_nmod_t c, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Set c to the coefficient of the term of index i.

void fq_nmod_mpoly_set_term_coeff_ui(fq_nmod_mpoly_t A, slong i, ulong c, const fq_nmod_mpoly_ctx_t ctx)

Set the coefficient of the term of index i to c.

int fq_nmod_mpoly_term_exp_fits_si(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_term_exp_fits_ui(const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if all entries of the exponent vector of the term of index \(i\) fit into an slong (resp. a ulong). Otherwise, return \(0\).

void fq_nmod_mpoly_get_term_exp_fmpz(fmpz **exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_term_exp_ui(ulong *exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_get_term_exp_si(slong *exp, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Set exp to the exponent vector of the term of index i. The _ui (resp. _si) version throws if any entry does not fit into a ulong (resp. slong).

ulong fq_nmod_mpoly_get_term_var_exp_ui(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)
slong fq_nmod_mpoly_get_term_var_exp_si(const fq_nmod_mpoly_t A, slong i, slong var, const fq_nmod_mpoly_ctx_t ctx)

Return the exponent of the variable var of the term of index i. This function throws if the exponent does not fit into a ulong (resp. slong).

void fq_nmod_mpoly_set_term_exp_fmpz(fq_nmod_mpoly_t A, slong i, fmpz *const *exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_set_term_exp_ui(fq_nmod_mpoly_t A, slong i, const ulong *exp, const fq_nmod_mpoly_ctx_t ctx)

Set the exponent of the term of index i to exp.

void fq_nmod_mpoly_get_term(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Set M to the term of index i in A.

void fq_nmod_mpoly_get_term_monomial(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Set M to the monomial of the term of index i in A. The coefficient of M will be one.

void fq_nmod_mpoly_push_term_fq_nmod_fmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, fmpz *const *exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_push_term_fq_nmod_ffmpz(fq_nmod_mpoly_t A, const fq_nmod_t c, const fmpz *exp, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_push_term_fq_nmod_ui(fq_nmod_mpoly_t A, const fq_nmod_t c, const ulong *exp, const fq_nmod_mpoly_ctx_t ctx)

Append a term to A with coefficient c and exponent vector exp. This function runs in constant average time.

void fq_nmod_mpoly_sort_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Sort the terms of A into the canonical ordering dictated by the ordering in ctx. This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero. This function runs in linear time in the bit size of A.

void fq_nmod_mpoly_combine_like_terms(fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Combine adjacent like terms in A and delete terms with coefficient zero. If the terms of A were sorted to begin with, the result will be in canonical form. This function runs in linear time in the bit size of A.

void fq_nmod_mpoly_reverse(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set A to the reversal of B.

Random generation

void fq_nmod_mpoly_randtest_bound(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bound, const fq_nmod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents in the range [0, exp_bound - 1]. The exponents of each variable are generated by calls to n_randint(state, exp_bound).

void fq_nmod_mpoly_randtest_bounds(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong *exp_bounds, const fq_nmod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents in the range [0, exp_bounds[i] - 1]. The exponents of the variable of index i are generated by calls to n_randint(state, exp_bounds[i]).

void fq_nmod_mpoly_randtest_bits(fq_nmod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bits, const fq_nmod_mpoly_ctx_t ctx)

Generate a random polynomial with length up to length and exponents whose packed form does not exceed the given bit count.

Addition/Subtraction

void fq_nmod_mpoly_add_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B + c\).

void fq_nmod_mpoly_sub_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t C, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B - c\).

void fq_nmod_mpoly_add(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B + C\).

void fq_nmod_mpoly_sub(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B - C\).

Scalar operations

void fq_nmod_mpoly_neg(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(-B\).

void fq_nmod_mpoly_scalar_mul_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_t c, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B \times c\).

void fq_nmod_mpoly_make_monic(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set A to B divided by the leading coefficient of B. This throws if B is zero.

Differentiation

void fq_nmod_mpoly_derivative(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

Set A to the derivative of B with respect to the variable of index var.

Evaluation

These functions return \(0\) when the operation would imply unreasonable arithmetic.

void fq_nmod_mpoly_evaluate_all_fq_nmod(fq_nmod_t ev, const fq_nmod_mpoly_t A, fq_nmod_struct *const *vals, const fq_nmod_mpoly_ctx_t ctx)

Set ev the evaluation of A where the variables are replaced by the corresponding elements of the array vals.

void fq_nmod_mpoly_evaluate_one_fq_nmod(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_t val, const fq_nmod_mpoly_ctx_t ctx)

Set A to the evaluation of B where the variable of index var is replaced by val.

int fq_nmod_mpoly_compose_fq_nmod_poly(fq_nmod_poly_t A, const fq_nmod_mpoly_t B, fq_nmod_poly_struct *const *C, const fq_nmod_mpoly_ctx_t ctx)

Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. The context object of B is ctxB. Return \(1\) for success and \(0\) for failure.

int fq_nmod_mpoly_compose_fq_nmod_mpoly(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, fq_nmod_mpoly_struct *const *C, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)

Set A to the evaluation of B where the variables are replaced by the corresponding elements of the array C. Both A and the elements of C have context object ctxAC, while B has context object ctxB. Neither A nor B is allowed to alias any other polynomial. Return \(1\) for success and \(0\) for failure.

void fq_nmod_mpoly_compose_fq_nmod_mpoly_gen(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const slong *c, const fq_nmod_mpoly_ctx_t ctxB, const fq_nmod_mpoly_ctx_t ctxAC)

Set A to the evaluation of B where the variable of index i in ctxB is replaced by the variable of index c[i] in ctxAC. The length of the array C is the number of variables in ctxB. If any c[i] is negative, the corresponding variable of B is replaced by zero. Otherwise, it is expected that c[i] is less than the number of variables in ctxAC.

Multiplication

void fq_nmod_mpoly_mul(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_t C, const fq_nmod_mpoly_ctx_t ctx)

Set A to B times C.

Powering

These functions return \(0\) when the operation would imply unreasonable arithmetic.

int fq_nmod_mpoly_pow_fmpz(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fmpz_t k, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B\) raised to the k-th power. Return \(1\) for success and \(0\) for failure.

int fq_nmod_mpoly_pow_ui(fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, ulong k, const fq_nmod_mpoly_ctx_t ctx)

Set A to \(B\) raised to the k-th power. Return \(1\) for success and \(0\) for failure.

Division

int fq_nmod_mpoly_divides(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

If A is divisible by B, set Q to the exact quotient and return \(1\). Otherwise, set Q to zero and return \(0\).

void fq_nmod_mpoly_div(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set Q to the quotient of A by B, discarding the remainder.

void fq_nmod_mpoly_divrem(fq_nmod_mpoly_t Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Set Q and R to the quotient and remainder of A divided by B.

void fq_nmod_mpoly_divrem_ideal(fq_nmod_mpoly_struct **Q, fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, fq_nmod_mpoly_struct *const *B, slong len, const fq_nmod_mpoly_ctx_t ctx)

This function is as per fq_nmod_mpoly_divrem() except that it takes an array of divisor polynomials B and it returns an array of quotient polynomials Q. The number of divisor (and hence quotient) polynomials, is given by len.

Greatest Common Divisor

void fq_nmod_mpoly_term_content(fq_nmod_mpoly_t M, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Set M to the GCD of the terms of A. If A is zero, M will be zero. Otherwise, M will be a monomial with coefficient one.

int fq_nmod_mpoly_content_vars(fq_nmod_mpoly_t g, const fq_nmod_mpoly_t A, slong *vars, slong vars_length, const fq_nmod_mpoly_ctx_t ctx)

Set g to the GCD of the coefficients of A when viewed as a polynomial in the variables vars. Return \(1\) for success and \(0\) for failure. Upon success, g will be independent of the variables vars.

int fq_nmod_mpoly_gcd(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Try to set G to the monic GCD of A and B. The GCD of zero and zero is defined to be zero. If the return is \(1\) the function was successful. Otherwise the return is \(0\) and G is left untouched.

int fq_nmod_mpoly_gcd_cofactors(fq_nmod_mpoly_t G, fq_nmod_mpoly_t Abar, fq_nmod_mpoly_t Bbar, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Do the operation of fq_nmod_mpoly_gcd() and also compute \(Abar = A/G\) and \(Bbar = B/G\) if successful.

int fq_nmod_mpoly_gcd_brown(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_gcd_hensel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)
int fq_nmod_mpoly_gcd_zippel(fq_nmod_mpoly_t G, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

Try to set G to the GCD of A and B using various algorithms.

int fq_nmod_mpoly_resultant(fq_nmod_mpoly_t R, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

Try to set R to the resultant of A and B with respect to the variable of index var.

int fq_nmod_mpoly_discriminant(fq_nmod_mpoly_t D, const fq_nmod_mpoly_t A, slong var, const fq_nmod_mpoly_ctx_t ctx)

Try to set D to the discriminant of A with respect to the variable of index var.

Square Root

int fq_nmod_mpoly_sqrt(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

If \(Q^2=A\) has a solution, set \(Q\) to a solution and return \(1\), otherwise return \(0\) and set \(Q\) to zero.

int fq_nmod_mpoly_is_square(const fq_nmod_mpoly_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if A is a perfect square, otherwise return \(0\).

int fq_nmod_mpoly_quadratic_root(fq_nmod_mpoly_t Q, const fq_nmod_mpoly_t A, const fq_nmod_mpoly_t B, const fq_nmod_mpoly_ctx_t ctx)

If \(Q^2+AQ=B\) has a solution, set \(Q\) to a solution and return \(1\), otherwise return \(0\).

Univariate Functions

An fq_nmod_mpoly_univar_t holds a univariate polynomial in some main variable with fq_nmod_mpoly_t coefficients in the remaining variables. These functions are useful when one wants to rewrite an element of \(\mathbb{F}_q[x_1, \dots, x_m]\) as an element of \((\mathbb{F}_q[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]\) and vice versa.

void fq_nmod_mpoly_univar_init(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

Initialize A.

void fq_nmod_mpoly_univar_clear(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

Clear A.

void fq_nmod_mpoly_univar_swap(fq_nmod_mpoly_univar_t A, fq_nmod_mpoly_univar_t B, const fq_nmod_mpoly_ctx_t ctx)

Swap A and \(B\).

void fq_nmod_mpoly_to_univar(fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

Set A to a univariate form of B by pulling out the variable of index var. The coefficients of A will still belong to the content ctx but will not depend on the variable of index var.

void fq_nmod_mpoly_from_univar(fq_nmod_mpoly_t A, const fq_nmod_mpoly_univar_t B, slong var, const fq_nmod_mpoly_ctx_t ctx)

Set A to the normal form of B by putting in the variable of index var. This function is undefined if the coefficients of B depend on the variable of index var.

int fq_nmod_mpoly_univar_degree_fits_si(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

Return \(1\) if the degree of A with respect to the main variable fits an slong. Otherwise, return \(0\).

slong fq_nmod_mpoly_univar_length(const fq_nmod_mpoly_univar_t A, const fq_nmod_mpoly_ctx_t ctx)

Return the number of terms in A with respect to the main variable.

slong fq_nmod_mpoly_univar_get_term_exp_si(fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Return the exponent of the term of index i of A.

void fq_nmod_mpoly_univar_get_term_coeff(fq_nmod_mpoly_t c, const fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)
void fq_nmod_mpoly_univar_swap_term_coeff(fq_nmod_mpoly_t c, fq_nmod_mpoly_univar_t A, slong i, const fq_nmod_mpoly_ctx_t ctx)

Set (resp. swap) c to (resp. with) the coefficient of the term of index i of A.