fq_zech.h – finite fields (Zech logarithm representation)¶
We represent an element of the finite field as a power of a generator for the
multiplicative group of the finite field. In particular, we use a root of
\(f(x)\), where \(f(X) \in \mathbf{F}_p[X]\) is a monic, irreducible polynomial of
degree \(n\), as a polynomial in \(\mathbf{F}_p[X]\) of degree less than \(n\). The
underlying data structure is just an ulong
.
The default choice for \(f(X)\) is the Conway polynomial for the pair \((p,n)\),
enabled by Frank Lübeck’s data base of Conway polynomials using the
_nmod_poly_conway()
function. If a Conway polynomial is not available,
then a random irreducible polynomial will be chosen for \(f(X)\). Additionally,
the user is able to supply their own \(f(X)\).
We required that the order of the field fits inside of an ulong
;
however, it is recommended that \(p^n < 2^{20}\) due to the time and memory needed
to compute the Zech logarithm table.
Types, macros and constants¶
-
type fq_zech_ctx_struct¶
-
type fq_zech_ctx_t¶
-
type fq_zech_struct¶
-
type fq_zech_t¶
Context Management¶
-
void fq_zech_ctx_init_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char *var)¶
Initialises the context for prime \(p\) and extension degree \(d\), with name
var
for the generator. By default, it will try use a Conway polynomial; if one is not available, a random primitive polynomial will be used.Assumes that \(p\) is a prime and \(p^d < 2^{\mathtt{FLINT\_BITS}}\).
Assumes that the string
var
is a null-terminated string of length at least one.
-
int _fq_zech_ctx_init_conway_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char *var)¶
Attempts to initialise the context for prime \(p\) and extension degree \(d\), with name
var
for the generator using a Conway polynomial for the modulus.Returns \(1\) if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns \(0\).
Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_zech_ctx_init_conway_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char *var)¶
Initialises the context for prime \(p\) and extension degree \(d\), with name
var
for the generator using a Conway polynomial for the modulus.Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_zech_ctx_init_random_ui(fq_zech_ctx_t ctx, ulong p, slong d, const char *var)¶
Initialises the context for prime \(p\) and extension degree \(d\), with name
var
for the generator using a random primitive polynomial.Assumes that \(p\) is a prime and \(p^d < 2^\mathtt{FLINT\_BITS}\).
Assumes that the string
var
is a null-terminated string of length at least one.
-
void fq_zech_ctx_init_modulus(fq_zech_ctx_t ctx, const nmod_poly_t modulus, const char *var)¶
Initialises the context for given
modulus
with namevar
for the generator.Assumes that
modulus
is an primitive polynomial over \(\mathbf{F}_{p}\). An exception is raised if a non-primitive modulus is detected.Assumes that the string
var
is a null-terminated string of length at least one.
-
int fq_zech_ctx_init_modulus_check(fq_zech_ctx_t ctx, const nmod_poly_t modulus, const char *var)¶
As per the previous function, but returns \(0\) if the modulus was not primitive and \(1\) if the context was successfully initialised with the given modulus. No exception is raised.
-
void fq_zech_ctx_init_fq_nmod_ctx(fq_zech_ctx_t ctx, fq_nmod_ctx_t ctxn)¶
Initializes the context
ctx
to be the Zech representation for the finite field given byctxn
.
-
int fq_zech_ctx_init_fq_nmod_ctx_check(fq_zech_ctx_t ctx, fq_nmod_ctx_t ctxn)¶
As per the previous function but returns \(0\) if a non-primitive modulus is detected. Returns \(0\) if the Zech representation was successfully initialised.
-
void fq_zech_ctx_init_randtest(fq_zech_ctx_t ctx, flint_rand_t state, int type)¶
Initialises
ctx
to a random finite field, where the prime and degree is set according totype
. Iftype
is \(0\) the prime and degree may be large, else iftype
is \(1\) the degree is small but the prime may be large, else iftype
is \(2\) the prime is small but the degree may be large, else iftype
is \(3\) both prime and degree are small.
-
void fq_zech_ctx_init_randtest_reducible(fq_zech_ctx_t ctx, flint_rand_t state, int type)¶
Since the Zech logarithm representation does not work with a non-irreducible modulus, this function does the same as
fq_zech_ctx_init_randtest()
.
-
void fq_zech_ctx_clear(fq_zech_ctx_t ctx)¶
Clears all memory that has been allocated as part of the context.
-
const nmod_poly_struct *fq_zech_ctx_modulus(const fq_zech_ctx_t ctx)¶
Returns a pointer to the modulus in the context.
-
slong fq_zech_ctx_degree(const fq_zech_ctx_t ctx)¶
Returns the degree of the field extension \([\mathbf{F}_{q} : \mathbf{F}_{p}]\), which is equal to \(\log_{p} q\).
-
ulong fq_zech_ctx_prime(const fq_zech_ctx_t ctx)¶
Returns the prime \(p\) of the context.
-
void fq_zech_ctx_order(fmpz_t f, const fq_zech_ctx_t ctx)¶
Sets \(f\) to be the size of the finite field.
-
ulong fq_zech_ctx_order_ui(const fq_zech_ctx_t ctx)¶
Returns the size of the finite field.
-
int fq_zech_ctx_fprint(FILE *file, const fq_zech_ctx_t ctx)¶
Prints the context information to {tt{file}}. Returns 1 for a success and a negative number for an error.
-
void fq_zech_ctx_print(const fq_zech_ctx_t ctx)¶
Prints the context information to {tt{stdout}}.
Memory management¶
-
void fq_zech_init(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Initialises the element
rop
, setting its value to \(0\).
-
void fq_zech_init2(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Initialises
poly
with at least enough space for it to be an element ofctx
and sets it to \(0\).
-
void fq_zech_clear(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Clears the element
rop
.
-
void _fq_zech_sparse_reduce(nn_ptr R, slong lenR, const fq_zech_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
.
-
void _fq_zech_dense_reduce(nn_ptr R, slong lenR, const fq_zech_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
using Newton division.
-
void _fq_zech_reduce(nn_ptr r, slong lenR, const fq_zech_ctx_t ctx)¶
Reduces
(R, lenR)
modulo the polynomial \(f\) given by the modulus ofctx
. Does either sparse or dense reduction based onctx->sparse_modulus
.
-
void fq_zech_reduce(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Reduces the polynomial
rop
as an element of \(\mathbf{F}_p[X] / (f(X))\).
Basic arithmetic¶
-
void fq_zech_add(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Sets
rop
to the sum ofop1
andop2
.
-
void fq_zech_sub(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Sets
rop
to the difference ofop1
andop2
.
-
void fq_zech_sub_one(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx)¶
Sets
rop
to the difference ofop1
and \(1\).
-
void fq_zech_neg(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to the negative ofop
.
-
void fq_zech_mul(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Sets
rop
to the product ofop1
andop2
, reducing the output in the given context.
-
void fq_zech_mul_fmpz(fq_zech_t rop, const fq_zech_t op, const fmpz_t x, const fq_zech_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_zech_mul_si(fq_zech_t rop, const fq_zech_t op, slong x, const fq_zech_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_zech_mul_ui(fq_zech_t rop, const fq_zech_t op, ulong x, const fq_zech_ctx_t ctx)¶
Sets
rop
to the product ofop
and \(x\), reducing the output in the given context.
-
void fq_zech_sqr(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to the square ofop
, reducing the output in the given context.
-
void fq_zech_div(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Sets
rop
to the quotient ofop1
andop2
, reducing the output in the given context.
-
void _fq_zech_inv(nn_ptr *rop, nn_srcptr *op, slong len, const fq_zech_ctx_t ctx)¶
Sets
(rop, d)
to the inverse of the non-zero element(op, len)
.
-
void fq_zech_inv(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to the inverse of the non-zero elementop
.
-
void fq_zech_gcdinv(fq_zech_t f, fq_zech_t inv, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
inv
to be the inverse ofop
modulo the modulus ofctx
and setsf
to one. Since the modulus forctx
is always irreducible,op
is always invertible.
-
void _fq_zech_pow(fmpz *rop, const fmpz *op, slong len, const fmpz_t e, const fmpz *a, const slong *j, slong lena, const fmpz_t p)¶
Sets
(rop, 2*d-1)
to(op,len)
raised to the power \(e\), reduced modulo \(f(X)\), the modulus ofctx
.Assumes that \(e \geq 0\) and that
len
is positive and at most \(d\).Although we require that
rop
provides space for \(2d - 1\) coefficients, the output will be reduced modulo \(f(X)\), which is a polynomial of degree \(d\).Does not support aliasing.
-
void fq_zech_pow(fq_zech_t rop, const fq_zech_t op, const fmpz_t e, const fq_zech_ctx_t ctx)¶
Sets
rop
theop
raised to the power \(e\).Currently assumes that \(e \geq 0\).
Note that for any input
op
,rop
is set to \(1\) whenever \(e = 0\).
-
void fq_zech_pow_ui(fq_zech_t rop, const fq_zech_t op, const ulong e, const fq_zech_ctx_t ctx)¶
Sets
rop
theop
raised to the power \(e\).Currently assumes that \(e \geq 0\).
Note that for any input
op
,rop
is set to \(1\) whenever \(e = 0\).
Roots¶
-
int fq_zech_sqrt(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx)¶
Sets
rop
to the square root ofop1
if it is a square, and return \(1\), otherwise return \(0\).
-
void fq_zech_pth_root(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx)¶
Sets
rop
to a \(p^{th}\) root root ofop1
. Currently, this computes the root by raisingop1
to \(p^{d-1}\) where \(d\) is the degree of the extension.
-
int fq_zech_is_square(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Return
1
ifop
is a square.
Output¶
-
int fq_zech_fprint_pretty(FILE *file, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Prints a pretty representation of
op
tofile
.In the current implementation, always returns \(1\). The return code is part of the function’s signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
-
void fq_zech_print_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Prints a pretty representation of
op
tostdout
.In the current implementation, always returns \(1\). The return code is part of the function’s signature to allow for a later implementation to return the number of characters printed or a non-positive error code.
-
int fq_zech_fprint(FILE *file, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Prints a representation of
op
tofile
.
-
void fq_zech_print(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Prints a representation of
op
tostdout
.
-
char *fq_zech_get_str(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns the plain FLINT string representation of the element
op
.
-
char *fq_zech_get_str_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns a pretty representation of the element
op
using the null-terminated stringx
as the variable name.
Randomisation¶
-
void fq_zech_randtest(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx)¶
Generates a random element of \(\mathbf{F}_q\).
-
void fq_zech_randtest_not_zero(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx)¶
Generates a random non-zero element of \(\mathbf{F}_q\).
-
void fq_zech_randtest_dense(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx)¶
Generates a random element of \(\mathbf{F}_q\) which has an underlying polynomial with dense coefficients.
-
void fq_zech_rand(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx)¶
Generates a high quality random element of \(\mathbf{F}_q\).
-
void fq_zech_rand_not_zero(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx)¶
Generates a high quality non-zero random element of \(\mathbf{F}_q\).
Assignments and conversions¶
-
void fq_zech_set(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
toop
.
-
void fq_zech_set_si(fq_zech_t rop, const slong x, const fq_zech_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_zech_set_ui(fq_zech_t rop, const ulong x, const fq_zech_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_zech_set_fmpz(fq_zech_t rop, const fmpz_t x, const fq_zech_ctx_t ctx)¶
Sets
rop
tox
, considered as an element of \(\mathbf{F}_p\).
-
void fq_zech_swap(fq_zech_t op1, fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Swaps the two elements
op1
andop2
.
-
void fq_zech_zero(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Sets
rop
to zero.
-
void fq_zech_one(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Sets
rop
to one, reduced in the given context.
-
void fq_zech_gen(fq_zech_t rop, const fq_zech_ctx_t ctx)¶
Sets
rop
to a generator for the finite field. There is no guarantee this is a multiplicative generator of the finite field.
-
int fq_zech_get_fmpz(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
If
op
has a lift to the integers, return \(1\) and setrop
to the lift in \([0,p)\). Otherwise, return \(0\) and leave \(rop\) undefined.
-
void fq_zech_get_fq_nmod(fq_nmod_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to thefq_nmod_t
element corresponding toop
.
-
void fq_zech_set_fq_nmod(fq_zech_t rop, const fq_nmod_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to thefq_zech_t
element corresponding toop
.
-
void fq_zech_get_nmod_poly(nmod_poly_t a, const fq_zech_t b, const fq_zech_ctx_t ctx)¶
Set
a
to a representative ofb
inctx
. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial inctx
.
-
void fq_zech_set_nmod_poly(fq_zech_t a, const nmod_poly_t b, const fq_zech_ctx_t ctx)¶
Set
a
to the element inctx
with representativeb
. The representatives are taken in \((\mathbb{Z}/p\mathbb{Z})[x]/h(x)\) where \(h(x)\) is the defining polynomial inctx
.
-
void fq_zech_get_nmod_mat(nmod_mat_t col, const fq_zech_t a, const fq_zech_ctx_t ctx)¶
Convert
a
to a column vector of lengthdegree(ctx)
.
-
void fq_zech_set_nmod_mat(fq_zech_t a, const nmod_mat_t col, const fq_zech_ctx_t ctx)¶
Convert a column vector
col
of lengthdegree(ctx)
to an element ofctx
.
Comparison¶
-
int fq_zech_is_zero(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns whether
op
is equal to zero.
-
int fq_zech_is_one(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns whether
op
is equal to one.
-
int fq_zech_equal(const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx)¶
Returns whether
op1
andop2
are equal.
-
int fq_zech_is_invertible(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns whether
op
is an invertible element.
-
int fq_zech_is_invertible_f(fq_zech_t f, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns whether
op
is an invertible element. If it is not, thenf
is set of a factor of the modulus. Since the modulus for anfq_zech_ctx_t
is always irreducible, then any non-zeroop
will be invertible.
Special functions¶
-
void fq_zech_trace(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Sets
rop
to the trace ofop
.For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the trace of \(a\) as the trace of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\sum_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \log_{p} q\).
-
void fq_zech_norm(fmpz_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Computes the norm of
op
.For an element \(a \in \mathbf{F}_q\), multiplication by \(a\) defines a \(\mathbf{F}_p\)-linear map on \(\mathbf{F}_q\). We define the norm of \(a\) as the determinant of this map. Equivalently, if \(\Sigma\) generates \(\operatorname{Gal}(\mathbf{F}_q / \mathbf{F}_p)\) then the trace of \(a\) is equal to \(\prod_{i=0}^{d-1} \Sigma^i (a)\), where \(d = \text{dim}_{\mathbf{F}_p}(\mathbf{F}_q)\).
Algorithm selection is automatic depending on the input.
-
void fq_zech_frobenius(fq_zech_t rop, const fq_zech_t op, slong e, const fq_zech_ctx_t ctx)¶
Evaluates the homomorphism \(\Sigma^e\) at
op
.Recall that \(\mathbf{F}_q / \mathbf{F}_p\) is Galois with Galois group \(\langle \sigma \rangle\), which is also isomorphic to \(\mathbf{Z}/d\mathbf{Z}\), where \(\sigma \in \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)\) is the Frobenius element \(\sigma \colon x \mapsto x^p\).
-
int fq_zech_multiplicative_order(fmpz *ord, const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Computes the order of
op
as an element of the multiplicative group ofctx
.Returns 0 if
op
is 0, otherwise it returns 1 ifop
is a generator of the multiplicative group, and -1 if it is not.Note that
ctx
must already correspond to a finite field defined by a primitive polynomial and so this function cannot be used to check primitivity of the generator, but can be used to check that other elements are primitive.
-
int fq_zech_is_primitive(const fq_zech_t op, const fq_zech_ctx_t ctx)¶
Returns whether
op
is primitive, i.e., whether it is a generator of the multiplicative group ofctx
.
Bit packing¶
-
void fq_zech_bit_pack(fmpz_t f, const fq_zech_t op, flint_bitcnt_t bit_size, const fq_zech_ctx_t ctx)¶
Packs
op
into bitfields of sizebit_size
, writing the result tof
.
-
void fq_zech_bit_unpack(fq_zech_t rop, const fmpz_t f, flint_bitcnt_t bit_size, const fq_zech_ctx_t ctx)¶
Unpacks into
rop
the element with coefficients packed into fields of sizebit_size
as represented by the integerf
.