gr_mpoly.h – sparse multivariate polynomials over generic rings¶
This module implements multivariate polynomials
with gr
coefficients.
Types, macros and constants¶
-
type gr_mpoly_struct¶
-
type gr_mpoly_t¶
Represents a multivariate polynomial \(f \in R[X_1,\ldots,X_n]\) as an array of coefficients in a generic ring R together with an array of packed exponents. The two arrays always have the same length.
A
gr_mpoly_t
is always normalised by removing zero coefficients. For rings without decidable equality (e.g. rings with inexact representation), only coefficients that are provably zero will be removed, and there can thus be spurious zeros in the internal representation. For example, with ball coefficients one can have the polynomial \(3 x y^2 + [\pm 0.01] x y\). Over rings with this issue, the represented lengths or degrees are thus upper bounds, and methods that depend on knowing the exact term structure of a polynomial will returnGR_UNABLE
when encountering such input.A
gr_mpoly_t
is defined as an array of length one of typegr_mpoly_struct
, permitting agr_mpoly_t
to be passed by reference.
-
type gr_mpoly_ctx_struct¶
-
type gr_mpoly_ctx_t¶
Context object representing a multivariate polynomial ring \(R[X_1,\ldots,X_n]\). This subtypes
gr_ctx_t
, allowing genericgr
andgr_ctx
methods to be used interchangeably withgr_mpoly
andgr_mpoly_ctx
methods. For example,gr_add()
withgr_mpoly_t
andgr_mpoly_ctx_t
arguments is equivalent togr_mpoly_add()
. A context object contains the following data:A pointer mctx to a
gr_ctx_t
representing the coefficient type R. The coefficient context object is not considered owned by thegr_mpoly_ctx
and the user must ensure that it stays alive as long as thegr_mpoly_ctx
is alive.A pointer cctx to a
mpoly_ctx_t
defining the number of variables and term ordering. This object is considered owned by and will automatically be initialized and cleared along with thegr_mpoly_ctx
.An optional pointer vars to an array of strings specifying names of the generators \(X_1, \ldots, X_n\). This can be set with
gr_mpoly_ctx_set_gen_names()
. By default, vars will be initialized toNULL
in which case some default names are used. Names are used for printing and parsing from strings withgr_set_str()
and in some cases for coercions between different rings.
-
GR_MPOLY_MCTX(ctx)¶
Access the mpoly context object mctx.
-
GR_MPOLY_CCTX(ctx)¶
Access the coefficient context object cctx.
-
GR_MPOLY_VARS(ctx)¶
Access the array of variable names vars.
-
GR_MPOLY_NVARS(ctx)¶
Access the number of variables of this context object.
Context object methods¶
-
void gr_mpoly_ctx_init(gr_mpoly_ctx_t ctx, gr_ctx_t base_ring, slong nvars, const ordering_t ord)¶
Initializes
ctx
to represent a polynomial ring with coefficients inbase_ring
, withnvars
variables and term orderingord
.
-
void gr_mpoly_ctx_clear(gr_mpoly_ctx_t ctx)¶
Clears the context object
ctx
.
-
void gr_mpoly_ctx_init_rand(gr_mpoly_ctx_t ctx, flint_rand_t state, gr_ctx_t base_ring, slong max_nvars)¶
Initializes
ctx
with a random number of variables up tomax_nvars
inclusive and with a random term ordering.
The following methods implement parts of the standard interface
for gr
context objects.
-
int gr_mpoly_ctx_set_gen_names(gr_mpoly_ctx_t ctx, const char **s)¶
Sets the names of the generators to the strings in
s
.
-
int gr_mpoly_ctx_write(gr_stream_t out, gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_ring(gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_zero_ring(gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_commutative_ring(gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_integral_domain(gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_field(gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_ctx_is_threadsafe(gr_mpoly_ctx_t ctx)¶
Memory management¶
-
void gr_mpoly_init(gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
Initializes and sets A to the zero polynomial.
-
void gr_mpoly_init3(gr_mpoly_t A, slong alloc, flint_bitcnt_t bits, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_init2(gr_mpoly_t A, slong alloc, gr_mpoly_ctx_t ctx)¶
Initializes A with space allocated for the given number of coefficients and exponents with the given number of bits.
-
void gr_mpoly_clear(gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
Clears A, freeing all allocated data.
Basic manipulation¶
-
void gr_mpoly_swap(gr_mpoly_t A, gr_mpoly_t B, gr_mpoly_ctx_t ctx)¶
Swaps A and B efficiently.
-
void gr_mpoly_set_shallow(gr_mpoly_t A, const gr_mpoly_t B, gr_mpoly_ctx_t ctx)¶
Sets A to a shallow copy of B (unsafe).
-
int gr_mpoly_set(gr_mpoly_t A, const gr_mpoly_t B, gr_mpoly_ctx_t ctx)¶
Sets A to B.
-
int gr_mpoly_zero(gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
Sets A to the zero polynomial.
-
truth_t gr_mpoly_is_zero(const gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
Returns whether A is the zero polynomial.
-
slong gr_mpoly_length(const gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
Returns the number of terms in A.
Generators¶
-
int gr_mpoly_gen(gr_mpoly_t A, slong var, gr_mpoly_ctx_t ctx)¶
Sets A to the generator with index var (indexed from zero).
-
truth_t gr_mpoly_is_gen(const gr_mpoly_t A, slong var, gr_mpoly_ctx_t ctx)¶
Returns whether A is the generator with index var (indexed from zero).
-
int gr_mpoly_gens(gr_vec_t res, gr_mpoly_ctx_t ctx)¶
Sets the vector res to a list of the generators \(X_1, \ldots, X_n\).
-
int gr_mpoly_gens_recursive(gr_vec_t vec, gr_mpoly_ctx_t ctx)¶
Sets the vector res to a list of the recursive generators of \(R\) (as constant elements of \(R[X_1, \ldots, X_n]\)) followed by the generators \(X_1, \ldots, X_n\).
Conversions¶
-
int gr_mpoly_set_scalar(gr_mpoly_t A, gr_srcptr c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_ui(gr_mpoly_t A, ulong c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_si(gr_mpoly_t A, slong c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_fmpz(gr_mpoly_t A, const fmpz_t c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_fmpq(gr_mpoly_t A, const fmpq_t c, gr_mpoly_ctx_t ctx)¶
Sets A to the given scalar c.
-
int gr_mpoly_set_other(gr_mpoly_t res, gr_srcptr A, gr_ctx_t A_ctx, gr_mpoly_ctx_t ctx)¶
Sets res to A (an element of A_ctx) converted to the multivariate polynomial ring ctx.
If A_ctx is a multivariate polynomial ring, this attempts to coerce the coefficients and translate the generators. If both rings have named generators, we find all used generators in A and match them to generators with the same names in ctx. If both rings have the same number of unnamed generators and the same term ordering, we perform a direct conversion. Other cases are not currently supported.
Otherwise, we attempt to interpret A as a scalar.
Currently, absorbing generators from nested rings is not supported, e.g. converting between \(R[x,y][s,t]\) and \(R[x,y,s,t]\) is likely to fail.
Comparisons¶
-
truth_t gr_mpoly_equal(const gr_mpoly_t A, const gr_mpoly_t B, gr_mpoly_ctx_t ctx)¶
Returns whether A and B are equal.
Random generation¶
-
int gr_mpoly_randtest_bits(gr_mpoly_t A, flint_rand_t state, slong length, flint_bitcnt_t exp_bits, gr_mpoly_ctx_t ctx)¶
Sets A to a random polynomial with up to length terms and up to exp_bits bits in the exponents.
Input and output¶
Note: gr_set_str()
can be used for parsing.
-
int gr_mpoly_write_pretty(gr_stream_t out, const gr_mpoly_t A, const char **x, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_print_pretty(const gr_mpoly_t A, const char **x, gr_mpoly_ctx_t ctx)¶
Prints A using the strings in x for the variables. If x is NULL, defaults are used.
Coefficient and exponent access¶
-
int gr_mpoly_get_coeff_scalar_fmpz(gr_ptr c, const gr_mpoly_t A, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_get_coeff_scalar_ui(gr_ptr c, const gr_mpoly_t A, const ulong *exp, gr_mpoly_ctx_t ctx)¶
Sets c to the coefficient in A with exponents exp.
-
int gr_mpoly_set_coeff_scalar_fmpz(gr_mpoly_t A, gr_srcptr c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_ui_fmpz(gr_mpoly_t A, ulong c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_si_fmpz(gr_mpoly_t A, slong c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_fmpz_fmpz(gr_mpoly_t A, const fmpz_t c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_fmpq_fmpz(gr_mpoly_t A, const fmpq_t c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_scalar_ui(gr_mpoly_t poly, gr_srcptr c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_ui_ui(gr_mpoly_t A, ulong c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_si_ui(gr_mpoly_t A, slong c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_fmpz_ui(gr_mpoly_t A, const fmpz_t c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_set_coeff_fmpq_ui(gr_mpoly_t A, const fmpq_t c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
Sets the coefficient with exponents exp in A to the scalar c which must be an element of or coercible to the coefficient ring.
Arithmetic¶
-
int gr_mpoly_neg(gr_mpoly_t A, const gr_mpoly_t B, gr_mpoly_ctx_t ctx)¶
Sets A to the negation of B.
-
int gr_mpoly_add(gr_mpoly_t A, const gr_mpoly_t B, const gr_mpoly_t C, gr_mpoly_ctx_t ctx)¶
Sets A to the difference of B and C.
-
int gr_mpoly_sub(gr_mpoly_t A, const gr_mpoly_t B, const gr_mpoly_t C, gr_mpoly_ctx_t ctx)¶
Sets A to the difference of B and C.
-
int gr_mpoly_mul(gr_mpoly_t A, const gr_mpoly_t B, const gr_mpoly_t C, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_johnson(gr_mpoly_t A, const gr_mpoly_t B, const gr_mpoly_t C, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_monomial(gr_mpoly_t A, const gr_mpoly_t B, const gr_mpoly_t C, gr_mpoly_ctx_t ctx)¶
Sets A to the product of B and C. The monomial version assumes that C is a monomial.
-
int gr_mpoly_mul_scalar(gr_mpoly_t A, const gr_mpoly_t B, gr_srcptr c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_si(gr_mpoly_t A, const gr_mpoly_t B, slong c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_ui(gr_mpoly_t A, const gr_mpoly_t B, ulong c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_fmpz(gr_mpoly_t A, const gr_mpoly_t B, const fmpz_t c, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_mul_fmpq(gr_mpoly_t A, const gr_mpoly_t B, const fmpq_t c, gr_mpoly_ctx_t ctx)¶
Sets A to B multiplied by the scalar c which must be an element of or coercible to the coefficient ring.
Container operations¶
Mostly intended for internal use.
-
void _gr_mpoly_fit_length(gr_ptr *coeffs, slong *coeffs_alloc, ulong **exps, slong *exps_alloc, slong N, slong length, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_fit_length(gr_mpoly_t A, slong len, gr_mpoly_ctx_t ctx)¶
Ensures that A has space for len coefficients and exponents.
-
void gr_mpoly_fit_bits(gr_mpoly_t A, flint_bitcnt_t bits, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_fit_length_fit_bits(gr_mpoly_t A, slong len, flint_bitcnt_t bits, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_fit_length_reset_bits(gr_mpoly_t A, slong len, flint_bitcnt_t bits, gr_mpoly_ctx_t ctx)¶
-
void _gr_mpoly_set_length(gr_mpoly_t A, slong newlen, gr_mpoly_ctx_t ctx)¶
-
void _gr_mpoly_push_exp_ui(gr_mpoly_t A, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_push_term_scalar_ui(gr_mpoly_t A, gr_srcptr c, const ulong *exp, gr_mpoly_ctx_t ctx)¶
-
void _gr_mpoly_push_exp_fmpz(gr_mpoly_t A, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_push_term_scalar_fmpz(gr_mpoly_t A, gr_srcptr c, const fmpz *exp, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_sort_terms(gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
-
int gr_mpoly_combine_like_terms(gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
-
truth_t gr_mpoly_is_canonical(const gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶
-
void gr_mpoly_assert_canonical(const gr_mpoly_t A, gr_mpoly_ctx_t ctx)¶