gr_poly.h – dense univariate polynomials over generic rings

A gr_poly_t represents a univariate polynomial \(f \in R[X]\) implemented as a dense array of coefficients in a generic ring R.

In this module, the context object ctx always represents the coefficient ring R unless otherwise stated. Creating a context object representing the polynomial ring \(R[X]\) only becomes necessary when one wants to manipulate polynomials using generic ring methods like gr_add instead of the designated polynomial methods like gr_poly_add.

Most functions are provided in two versions: an underscore method which operates directly on pre-allocated arrays of coefficients and generally has some restrictions (often requiring the lengths to be nonzero and not supporting aliasing of the input and output arrays), and a non-underscore method which performs automatic memory management and handles degenerate cases.

Supported coefficient domains

Some methods in this module implicitly assume that R is a commutative ring or an approximate (e.g. floating-point) commutative ring. When used with a more general R, they may output nonsense without returning the appropriate GR_DOMAIN or GR_UNABLE flags. Better support for noncommutative coefficients is planned for the future.

Some methods make stronger implicit assumptions, for example that R is an integral domain or a field. Such assumptions are documented on a case by case basis.

Type compatibility

The gr_poly type has the same data layout as the following polynomial types: fmpz_poly, fq_poly, fq_nmod_poly, fq_zech_poly, arb_poly, acb_poly, ca_poly. Methods in this module can therefore be mixed freely with methods in the corresponding FLINT modules when the underlying coefficient type is the same. It is not directly compatible with the following types: fmpq_poly (coefficients are stored with a common denominator), nmod_poly (modulus data is stored as part of the polynomial object).

Weak normalization

A gr_poly_t is always normalised by removing leading zeros. For rings without decidable equality (e.g. rings with inexact representation), only coefficients that are provably zero will be removed, and there can thus be spurious leading zeros in the internal representation. Methods that depend on knowing the exact degree of a polynomial will act appropriately, typically by returning GR_UNABLE when it is unknown whether the leading stored coefficient is nonzero.

Types, macros and constants

type gr_poly_struct
type gr_poly_t

Contains a pointer to an array of coefficients (coeffs), the used length (length), and the allocated size of the array (alloc).

A gr_poly_t is defined as an array of length one of type gr_poly_struct, permitting a gr_poly_t to be passed by reference.

Memory management

void gr_poly_init(gr_poly_t poly, gr_ctx_t ctx)
void gr_poly_init2(gr_poly_t poly, slong len, gr_ctx_t ctx)
void gr_poly_clear(gr_poly_t poly, gr_ctx_t ctx)
gr_ptr gr_poly_entry_ptr(gr_poly_t poly, slong i, gr_ctx_t ctx)
gr_srcptr gr_poly_entry_srcptr(const gr_poly_t poly, slong i, gr_ctx_t ctx)
slong gr_poly_length(const gr_poly_t poly, gr_ctx_t ctx)
void gr_poly_swap(gr_poly_t poly1, gr_poly_t poly2, gr_ctx_t ctx)
void gr_poly_fit_length(gr_poly_t poly, slong len, gr_ctx_t ctx)
void _gr_poly_set_length(gr_poly_t poly, slong len, gr_ctx_t ctx)

Basic manipulation

void _gr_poly_normalise(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_set(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
int gr_poly_get_fmpz_poly(gr_poly_t res, const fmpz_poly_t src, gr_ctx_t ctx)
int gr_poly_set_fmpq_poly(gr_poly_t res, const fmpq_poly_t src, gr_ctx_t ctx)
int gr_poly_set_gr_poly_other(gr_poly_t res, const gr_poly_t x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int _gr_poly_reverse(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_reverse(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
int gr_poly_truncate(gr_poly_t res, const gr_poly_t poly, slong newlen, gr_ctx_t ctx)
int gr_poly_zero(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_one(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_neg_one(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_gen(gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_write(gr_stream_t out, const gr_poly_t poly, const char *x, gr_ctx_t ctx)
int gr_poly_print(const gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_randtest(gr_poly_t poly, flint_rand_t state, slong len, gr_ctx_t ctx)
truth_t _gr_poly_equal(gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
truth_t gr_poly_equal(const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
truth_t gr_poly_is_zero(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_one(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_gen(const gr_poly_t poly, gr_ctx_t ctx)
truth_t gr_poly_is_scalar(const gr_poly_t poly, gr_ctx_t ctx)
int gr_poly_set_scalar(gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_set_si(gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_set_ui(gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_set_fmpz(gr_poly_t poly, const fmpz_t c, gr_ctx_t ctx)
int gr_poly_set_fmpq(gr_poly_t poly, const fmpq_t c, gr_ctx_t ctx)
int gr_poly_set_coeff_scalar(gr_poly_t poly, slong n, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_set_coeff_si(gr_poly_t poly, slong n, slong c, gr_ctx_t ctx)
int gr_poly_set_coeff_ui(gr_poly_t poly, slong n, ulong c, gr_ctx_t ctx)
int gr_poly_set_coeff_fmpz(gr_poly_t poly, slong n, const fmpz_t c, gr_ctx_t ctx)
int gr_poly_set_coeff_fmpq(gr_poly_t poly, slong n, const fmpq_t c, gr_ctx_t ctx)
int gr_poly_get_coeff_scalar(gr_ptr res, const gr_poly_t poly, slong n, gr_ctx_t ctx)

Arithmetic

int gr_poly_neg(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
int _gr_poly_add(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_add(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_sub(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_sub(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_mul(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_mul(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_mullow_generic(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong len, gr_ctx_t ctx)
int _gr_poly_mullow(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong len, gr_ctx_t ctx)
int gr_poly_mullow(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong len, gr_ctx_t ctx)
int gr_poly_mul_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_mul_ui(gr_poly_t res, const gr_poly_t poly, ulong c, gr_ctx_t ctx)
int gr_poly_mul_si(gr_poly_t res, const gr_poly_t poly, slong c, gr_ctx_t ctx)
int gr_poly_mul_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz c, gr_ctx_t ctx)
int gr_poly_mul_fmpq(gr_poly_t res, const gr_poly_t poly, const fmpq c, gr_ctx_t ctx)

Sets res to poly multiplied by the scalar c which must be an element of or coercible to the coefficient ring.

int _gr_poly_mul_karatsuba(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_mul_karatsuba(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)

Karatsuba multiplication. Not optimized for unbalanced operands, and not memory-optimized for recursive calls. The underscore method requires positive lengths and does not support aliasing. This function calls _gr_poly_mul() recursively rather than itself, so to get a recursive algorithm with \(O(n^{1.6})\) complexity, the ring must overload _gr_poly_mul() to dispatch to _gr_poly_mul_karatsuba() above some cutoff.

int _gr_poly_mul_toom33(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx);
int gr_poly_mul_toom33(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx);

Balanced Toom-3 multiplication with interpolation in five points, using the Bodrato evaluation scheme. Assumes commutativity and that the ring supports exact division by 2 and 3. Not optimized for squaring. The underscore method requires positive lengths and does not support aliasing. This function calls _gr_poly_mul() recursively rather than itself, so to get a recursive algorithm with \(O(n^{1.5})\) complexity, the ring must overload _gr_poly_mul() to dispatch to _gr_poly_mul_toom33() above some cutoff.

Powering

int _gr_poly_pow_series_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)
int gr_poly_pow_series_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)
int _gr_poly_pow_series_ui(gr_ptr res, gr_srcptr f, slong flen, ulong exp, slong len, gr_ctx_t ctx)
int gr_poly_pow_series_ui(gr_poly_t res, const gr_poly_t poly, ulong exp, slong len, gr_ctx_t ctx)
int _gr_poly_pow_ui_binexp(gr_ptr res, gr_srcptr f, slong flen, ulong exp, gr_ctx_t ctx)
int gr_poly_pow_ui_binexp(gr_poly_t res, const gr_poly_t poly, ulong exp, gr_ctx_t ctx)
int _gr_poly_pow_ui(gr_ptr res, gr_srcptr f, slong flen, ulong exp, gr_ctx_t ctx)
int gr_poly_pow_ui(gr_poly_t res, const gr_poly_t poly, ulong exp, gr_ctx_t ctx)
int gr_poly_pow_fmpz(gr_poly_t res, const gr_poly_t poly, const fmpz_t exp, gr_ctx_t ctx)
int _gr_poly_pow_series_fmpq_recurrence(gr_ptr h, gr_srcptr f, slong flen, const fmpq_t exp, slong len, int precomp, gr_ctx_t ctx)
int gr_poly_pow_series_fmpq_recurrence(gr_poly_t res, const gr_poly_t poly, const fmpq_t exp, slong len, gr_ctx_t ctx)

Shifting

int _gr_poly_shift_left(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_shift_left(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)
int _gr_poly_shift_right(gr_ptr res, gr_srcptr poly, slong len, slong n, gr_ctx_t ctx)
int gr_poly_shift_right(gr_poly_t res, const gr_poly_t poly, slong n, gr_ctx_t ctx)

Scalar division

int gr_poly_div_scalar(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)

Division with remainder

int _gr_poly_divrem_divconquer_preinv1(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_divconquer_noinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_divconquer(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int gr_poly_divrem_divconquer(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, slong cutoff, gr_ctx_t ctx)
int _gr_poly_divrem_basecase_preinv1(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, gr_ctx_t ctx)
int _gr_poly_divrem_basecase_noinv(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_divrem_basecase(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem_basecase(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divrem_newton(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem_newton(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divrem(gr_ptr Q, gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_divrem(gr_poly_t Q, gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)

These functions implement Euclidean division with remainder: given polynomials \(A, B \in K[x]\) where \(K\) is a field, with \(B \ne 0\), there is a unique quotient \(Q\) and remainder \(R\) such that \(A = BQ + R\) and either \(R = 0\) or \(\deg(R) < \deg(B)\). If B is provably zero, GR_DOMAIN is returned.

When \(K\) is a commutative ring and \(\operatorname{lc}(B)\) is a unit in \(K\), the situation is the same as over fields. In particular, Euclidean division with remainder always makes sense over commutative rings when \(B\) is monic. If \(\operatorname{lc}(B)\) is not a unit, the division still makes sense if the coefficient quotient \(\operatorname{lc}(r)\) / \(\operatorname{lc}(B)\) exists for each partial remainder \(r\). Indeed, the basecase and divconquer algorithms return GR_DOMAIN precisely when encountering a leading quotient \(\operatorname{lc}(r)\) / \(\operatorname{lc}(B) \not \in K\). However, the newton algorithm as currently implemented returns GR_DOMAIN when \(\operatorname{lc}(B)^{-1} \not \in K\).

The underscore methods make the following assumptions:

  • Q has room for lenA - lenB + 1 coefficients.

  • R has room for lenB - 1 coefficients.

  • lenA >= lenB >= 1.

  • Q is not aliased with either A or B.

  • R is not aliased with B.

  • R may be aliased with A, in which case all lenA entries may be used as scratch space. Note that in this case, only the low lenB - 1 coefficients of R actually represent valid coefficients on output: the higher scratch coefficients will not necessarily be zeroed.

  • The divisor B is normalized to have nonzero leading coefficient. (The non-underscore methods check for leading coefficients that are not provably nonzero and return GR_UNABLE.)

The preinv1 functions take a precomputed inverse of the leading coefficient as input. The noinv versions perform repeated checked divisions by the leading coefficient.

int _gr_poly_div_divconquer_preinv1(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_divconquer_noinv(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_divconquer(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_divconquer(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_basecase_preinv1(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_srcptr invB, gr_ctx_t ctx)
int _gr_poly_div_basecase_noinv(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_div_basecase(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_div_newton(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div_newton(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_div(gr_ptr Q, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_div(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)

Versions of the divrem functions which output only the quotient. These are generally faster.

int _gr_poly_rem(gr_ptr R, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_rem(gr_poly_t R, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)

Versions of the divrem functions which output only the remainder.

Power series division

For divide-and-conquer (including Newton-like) algorithms, cutoff has the following meaning: we use the basecase algorithm for lengths \(n < \operatorname{cutoff}\) and the divide-and-conquer algorithm for \(n \ge \operatorname{cutoff}\). Using \(\operatorname{cutoff} = n\) thus results in exactly one divide-and-conquer step with a basecase length of \(\lceil n / 2 \rceil\). One should avoid calling the Newton methods with \(n < \operatorname{cutoff}\) as this may result in much worse performance if those methods do not have a specific escape check for that case.

The newton versions uses Newton iteration, switching to a basecase algorithm when the length is smaller than the specified cutoff. Division uses the Karp-Markstein algorithm.

int _gr_poly_inv_series_newton(gr_ptr res, gr_srcptr A, slong Alen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_inv_series_newton(gr_poly_t res, const gr_poly_t A, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_inv_series_basecase_preinv1(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr Ainv, slong len, gr_ctx_t ctx)
int _gr_poly_inv_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_inv_series_basecase(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)
int _gr_poly_inv_series(gr_ptr res, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_inv_series(gr_poly_t res, const gr_poly_t A, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_newton(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_series_newton(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_series_divconquer(gr_ptr res, gr_srcptr B, slong Blen, gr_srcptr A, slong Alen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_div_series_divconquer(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_div_series_invmul(gr_ptr res, gr_srcptr B, slong Blen, gr_srcptr A, slong Alen, slong len, gr_ctx_t ctx)
int gr_poly_div_series_invmul(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase_preinv1(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_srcptr Binv, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int _gr_poly_div_series_basecase(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_div_series_basecase(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)
int _gr_poly_div_series(gr_ptr res, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_div_series(gr_poly_t res, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)

Exact division

These functions compute a quotient \(Q = A / B\) which is known to be exact (without remainder) in \(R[x]\) (or in \(R[[x]] / x^n\) in the case of series division). Given a nonexact division, they are allowed to set \(Q\) to an arbitrary polynomial and return GR_SUCCESS instead of returning an error flag.

\(R\) is assumed to be an integral domain (this is not checked).

For exact division, we have the choice of starting the division from the most significant terms (classical division) or the least significant (power series division). Which direction is more efficient depends in part on whether the leading or trailing coefficient of \(B\) is cheaper to use for divisions. In a generic setting, this is hard to predict.

The bidirectional algorithms combine two half-divisions from both ends. This halves the number of operations in the basecase regime, though an extra coefficient inversion may be needed.

The noinv versions perform repeated divexact operations in the scalar domain without attempting to invert the leading (or trailing) coefficient, while other versions check invertibility first. There are no divexact_preinv1 versions because those are identical to the div_preinv1 counterparts.

int _gr_poly_divexact_basecase_bidirectional(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_basecase_bidirectional(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divexact_bidirectional(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_bidirectional(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divexact_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int _gr_poly_divexact_basecase(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, gr_ctx_t ctx)
int gr_poly_divexact_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_divexact_series_basecase_noinv(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int _gr_poly_divexact_series_basecase(gr_ptr Q, gr_srcptr A, slong Alen, gr_srcptr B, slong Blen, slong len, gr_ctx_t ctx)
int gr_poly_divexact_series_basecase(gr_poly_t Q, const gr_poly_t A, const gr_poly_t B, slong len, gr_ctx_t ctx)

Square roots

int _gr_poly_sqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_sqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_sqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_sqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_sqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_sqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_rsqrt_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong len, slong cutoff, gr_ctx_t ctx)
int gr_poly_rsqrt_series_newton(gr_poly_t res, const gr_poly_t f, slong len, slong cutoff, gr_ctx_t ctx)
int _gr_poly_rsqrt_series_basecase(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series_basecase(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_rsqrt_series_miller(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series_miller(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_rsqrt_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_rsqrt_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)

Evaluation

int _gr_poly_evaluate_rectangular(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_rectangular(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
int _gr_poly_evaluate_modular(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_modular(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
int _gr_poly_evaluate_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate_horner(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)
int _gr_poly_evaluate(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr x, gr_ctx_t ctx)
int gr_poly_evaluate(gr_ptr res, const gr_poly_t poly, gr_srcptr x, gr_ctx_t ctx)

Set res to poly evaluated at x.

int _gr_poly_evaluate_other_horner(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other_horner(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int _gr_poly_evaluate_other_rectangular(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other_rectangular(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int _gr_poly_evaluate_other(gr_ptr res, gr_srcptr f, slong len, const gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)
int gr_poly_evaluate_other(gr_ptr res, const gr_poly_t f, gr_srcptr x, gr_ctx_t x_ctx, gr_ctx_t ctx)

Set res to poly evaluated at x, where the coefficients of f belong to ctx while both x and res belong to x_ctx.

Multipoint evaluation and interpolation

gr_ptr *_gr_poly_tree_alloc(slong len, gr_ctx_t ctx)
void _gr_poly_tree_free(gr_ptr *tree, slong len, gr_ctx_t ctx)
int _gr_poly_tree_build(gr_ptr *tree, gr_srcptr roots, slong len, gr_ctx_t ctx)
int _gr_poly_evaluate_vec_fast_precomp(gr_ptr vs, gr_srcptr poly, slong plen, gr_ptr *tree, slong len, gr_ctx_t ctx)
int _gr_poly_evaluate_vec_fast(gr_ptr ys, gr_srcptr poly, slong plen, gr_srcptr xs, slong n, gr_ctx_t ctx)
int gr_poly_evaluate_vec_fast(gr_vec_t ys, const gr_poly_t poly, const gr_vec_t xs, gr_ctx_t ctx)
int _gr_poly_evaluate_vec_iter(gr_ptr ys, gr_srcptr poly, slong plen, gr_srcptr xs, slong n, gr_ctx_t ctx)
int gr_poly_evaluate_vec_iter(gr_vec_t ys, const gr_poly_t poly, const gr_vec_t xs, gr_ctx_t ctx)

Composition

int _gr_poly_taylor_shift_horner(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_horner(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift_divconquer(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_divconquer(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift_convolution(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift_convolution(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)
int _gr_poly_taylor_shift(gr_ptr res, gr_srcptr poly, slong len, gr_srcptr c, gr_ctx_t ctx)
int gr_poly_taylor_shift(gr_poly_t res, const gr_poly_t poly, gr_srcptr c, gr_ctx_t ctx)

Sets res to the Taylor shift \(f(x+c)\), where f is given by poly, computed respectively using an optimized form of Horner’s rule, divide-and-conquer, a single convolution, and an automatic choice between the three algorithms. The underscore methods support aliasing.

int _gr_poly_compose_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_compose_divconquer(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose_divconquer(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)
int _gr_poly_compose(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_compose(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx)

Sets res to the composition \(f(g(x))\) where f is given by poly1 and g is given by poly2, respectively using Horner’s rule, divide-and-conquer, and an automatic choice between the two algorithms. The default algorithm also handles special-form input \(g = ax^n + c\) efficiently by performing a Taylor shift followed by a rescaling. The underscore methods do not support aliasing of the output with either input polynomial.

Power series composition and reversion

int _gr_poly_compose_series_horner(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_horner(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series_brent_kung(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_brent_kung(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series_divconquer(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series_divconquer(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)
int _gr_poly_compose_series(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, slong n, gr_ctx_t ctx)
int gr_poly_compose_series(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, slong n, gr_ctx_t ctx)

Sets res to the power series composition \(h(x) = f(g(x))\) truncated to order \(O(x^n)\) where \(f\) is given by poly1 and \(g\) is given by poly2, respectively using Horner’s rule, the Brent-Kung baby step-giant step algorithm [BrentKung1978], divide-and-conquer, and an automatic choice between the algorithms.

The default algorithm also handles short input and special-form input \(g = ax^n\) efficiently.

We require that the constant term in \(g(x)\) is exactly zero. The underscore methods do not support aliasing of the output with either input polynomial, and do not zero-pad the result.

int _gr_poly_revert_series_lagrange(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_lagrange(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series_lagrange_fast(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_lagrange_fast(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series_newton(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series_newton(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)
int _gr_poly_revert_series(gr_ptr res, gr_srcptr f, slong flen, slong n, gr_ctx_t ctx)
int gr_poly_revert_series(gr_poly_t res, const gr_poly_t f, slong n, gr_ctx_t ctx)

Sets res to the power series reversion \(f^{-1}(x)\) which satisfies \(f^{-1}(f(x)) = f(f^{-1}(x)) = x\) mod \(x^n\). For the series reversion to exist, we require that the constant term in \(f\) is zero and that the linear coefficient is invertible. The flag GR_DOMAIN is returned otherwise.

The lagrange and lagrange_fast algorithms require the ability to divide by \(2, 3, \ldots, n-1\) and will return the GR_UNABLE flag in too small characteristic.

The underscore methods do not support aliasing of the output with the input.

The Newton method is described in [BrentKung1978]; the lagrange algorithm implements the Lagrange inversion formula, while the lagrange_fast algorithm implements the baby-step giant-step algorithm described in [Joh2015b].

Derivative and integral

int _gr_poly_derivative(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_derivative(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)
int _gr_poly_nth_derivative(gr_ptr res, gr_srcptr poly, ulong n, slong len, gr_ctx_t ctx)
int gr_poly_nth_derivative(gr_poly_t res, const gr_poly_t poly, ulong n, gr_ctx_t ctx)
int _gr_poly_integral(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_integral(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)

Monic polynomials

int _gr_poly_make_monic(gr_ptr res, gr_srcptr poly, slong len, gr_ctx_t ctx)
int gr_poly_make_monic(gr_poly_t res, const gr_poly_t src, gr_ctx_t ctx)
truth_t _gr_poly_is_monic(gr_srcptr poly, slong len, gr_ctx_t ctx)
truth_t gr_poly_is_monic(const gr_poly_t res, gr_ctx_t ctx)

GCD

int _gr_poly_hgcd(gr_ptr r, slong *sgn, gr_ptr *M, slong *lenM, gr_ptr A, slong *lenA, gr_ptr B, slong *lenB, gr_srcptr a, slong lena, gr_srcptr b, slong lenb, slong cutoff, gr_ctx_t ctx)

Computes the HGCD of \(a\) and \(b\), that is, a matrix \(M\), a sign \(\sigma\) and two polynomials \(A\) and \(B\) such that

\[(A,B)^t = \sigma M^{-1} (a,b)^t.\]

Assumes that \(\operatorname{len}(a) > \operatorname{len}(b) > 0\).

Assumes that \(A\) and \(B\) have space of size at least \(\operatorname{len}(a)\) and \(\operatorname{len}(b)\), respectively. On exit, *lenA and *lenB will contain the correct lengths of \(A\) and \(B\).

Assumes that M[0], M[1], M[2], and M[3] each point to a vector of size at least \(\operatorname{len}(a)\).

If \(r\) is not NULL, writes to that variable the corresponding value for computing resultants using the HGCD algorithm.

int _gr_poly_gcd_hgcd(gr_ptr G, slong *_lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_gcd_hgcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int _gr_poly_gcd_euclidean(gr_ptr G, slong *lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_gcd_euclidean(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_gcd_generic(gr_ptr G, slong *lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_gcd(gr_ptr G, slong *lenG, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_gcd(gr_poly_t G, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)

Polynomial GCD. Currently only useful over fields.

The underscore methods assume lenA >= lenB >= 1 and that both A and B have nonzero leading coefficient. The underscore methods do not attempt to make the result monic.

The time complexity of the half-GCD algorithm is \(\mathcal{O}(n \log^2 n)\) ring operations. For further details, see [ThullYap1990].

int _gr_poly_xgcd_euclidean(slong *lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_xgcd_euclidean(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)
int _gr_poly_xgcd_hgcd(slong *Glen, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong hgcd_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_xgcd_hgcd(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, slong hgcd_cutoff, slong cutoff, gr_ctx_t ctx)
int _gr_poly_xgcd_generic(slong *lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int _gr_poly_xgcd(slong *lenG, gr_ptr G, gr_ptr S, gr_ptr T, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, gr_ctx_t ctx)
int gr_poly_xgcd(gr_poly_t G, gr_poly_t S, gr_poly_t T, const gr_poly_t A, const gr_poly_t B, gr_ctx_t ctx)

Resultant

For two non-zero polynomials \(f(x) = a_m x^m + \dotsb + a_0\) and \(g(x) = b_n x^n + \dotsb + b_0\) of degrees \(m\) and \(n\), the resultant is defined to be

\[a_m^n b_n^m \prod_{(x, y) : f(x) = g(y) = 0} (x - y).\]

For convenience, we define the resultant to be equal to zero if either of the two polynomials is zero.

int _gr_poly_resultant_euclidean(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_euclidean(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant_hgcd(gr_ptr res, gr_srcptr A, slong lenA, gr_srcptr B, slong lenB, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int gr_poly_resultant_hgcd(gr_ptr res, const gr_poly_t f, const gr_poly_t g, slong inner_cutoff, slong cutoff, gr_ctx_t ctx)
int _gr_poly_resultant_sylvester(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_sylvester(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant_small(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant_small(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)
int _gr_poly_resultant(gr_ptr res, gr_srcptr poly1, slong len1, gr_srcptr poly2, slong len2, gr_ctx_t ctx)
int gr_poly_resultant(gr_ptr res, const gr_poly_t f, const gr_poly_t g, gr_ctx_t ctx)

Sets res to the resultant of poly1 and poly2. The underscore methods assume that \(len1 \ge len2 \ge 1\) and that the leading coefficients are nonzero.

The euclidean algorithm is the ordinary Euclidean algorithm. The hgcd version uses the quasilinear half-GCD algorithm. It requires two extra tuning parameters inner_cutoff (recursion threshold passed forward to the HGCD algorithm) and cutoff. Both algorithms can fail when run over non-fields; they will return GR_DOMAIN when encountering an impossible inverse.

The small version uses division-free straight-line programs optimized for short polynomials. It returns GR_UNABLE if the polynomials are too large. Currently this function handles the cases where \(len1 \le 2\) or \(len2 \le 3\).

The sylvester version constructs the Sylvester matrix and computes its determinant. This is useful over inexact rings and as a fallback for rings without division.

The default version attempts to choose an appropriate algorithm automatically.

Currently no algorithm has been implemented that is appropriate for integral domains.

Squarefree factorization

TODO: currently only fields of characteristic 0 are supported.

int gr_poly_factor_squarefree(gr_ptr c, gr_vec_t fac, gr_vec_t exp, const gr_poly_t poly, gr_ctx_t ctx)

Computes a squarefree factorization of poly.

The constant c is set to an element of the scalar ring. The factors in fac are set to polynomials; the user must thus initialize it to a vector of polynomials of the same type as poly (and not to the parent ctx). The exponent vector exp must be initialized to the fmpz type.

int gr_poly_squarefree_part(gr_poly_t res, const gr_poly_t poly, gr_ctx_t ctx)

Sets res to the squarefreepart of poly.

Roots

int gr_poly_roots(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, int flags, gr_ctx_t ctx)
int gr_poly_roots_other(gr_vec_t roots, gr_vec_t mult, const gr_poly_t poly, gr_ctx_t poly_ctx, int flags, gr_ctx_t ctx)

Finds all roots of the given polynomial in the ring defined by ctx, storing the roots without duplication in roots (a vector with elements of type ctx) and the corresponding multiplicities in mult (a vector with elements of type fmpz).

If the target ring is not an algebraically closed field, then the sum of multiplicities can be smaller than the degree of the polynomial. For example, with fmpz coefficients, we only find integer roots. The other version of this function takes as input a polynomial with entries in a different ring poly_ctx. For example, we can compute qqbar or arb roots for a polynomial with fmpz coefficients.

Whether the roots are sorted in any particular order is ring-dependent.

We consider roots of the zero polynomial to be ill-defined and return GR_DOMAIN in that case.

int _gr_poly_refine_roots_aberth(gr_ptr w, gr_srcptr f, gr_srcptr f_prime, slong deg, gr_srcptr z, int progressive, gr_ctx_t ctx)
int _gr_poly_refine_roots_wdk(gr_ptr w, gr_srcptr f, slong deg, gr_srcptr z, int progressive, gr_ctx_t ctx)

Given a vector of approximate complex roots \(z_1, \ldots, z_{deg}\) of \(f = \sum_{i=0}^{deg} f_i x^i\), computes a vector of corrections \(w_1, \ldots, w_{deg}\) such that \(z_k - w_k\) is a closer approximation of the respective root provided that the initial approximations are close enough and that the polynomial evaluation is numerically accurate. The user will typically call these methods in a loop.

The wdk version performs the Weierstrass-Durand-Kerner update

\[w_k = \frac{f(z_k)}{\prod_{j \ne k} (z_k - z_j)}, \quad k = 1, \ldots, deg.\]

The aberth version performs the Aberth-Ehrlich update

\[w_k = \frac{g(z_k)}{1 - g(z_k) \sum_{j \ne k} (z_k - z_j)^{-1}}, \quad g(z_k) = \frac{f(z_k)}{f'(z_k)} \quad k = 1, \ldots, deg.\]

requiring the coefficients of \(f'\) as an extra input f_prime.

If progressive flag is set, corrected roots \(z_j - w_j\) that have already been computed are used in place of \(z_j\) in the update loop, which can improve the rate of convergence.

Power series special functions

int _gr_poly_asin_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_asin_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_asinh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_asinh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_acos_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_acos_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_acosh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_acosh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_atan_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_atan_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_atanh_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_atanh_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_log_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_log_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_log1p_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_log1p_series(gr_poly_t res, const gr_poly_t f, slong len, gr_ctx_t ctx)
int _gr_poly_exp_series_basecase(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_exp_series_basecase(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series_basecase_mul(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_exp_series_basecase_mul(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series_newton(gr_ptr f, gr_ptr g, gr_srcptr h, slong hlen, slong n, slong cutoff, gr_ctx_t ctx)
int gr_poly_exp_series_newton(gr_poly_t f, const gr_poly_t h, slong n, slong cutoff, gr_ctx_t ctx)
int _gr_poly_exp_series_generic(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int _gr_poly_exp_series(gr_ptr res, gr_srcptr f, slong flen, slong len, gr_ctx_t ctx)
int gr_poly_exp_series(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_sin_cos_series_basecase(gr_ptr s, gr_ptr c, gr_srcptr h, slong hlen, slong n, int times_pi, gr_ctx_t ctx)
int gr_poly_sin_cos_series_basecase(gr_poly_t s, gr_poly_t c, const gr_poly_t h, slong n, int times_pi, gr_ctx_t ctx)
int _gr_poly_sin_cos_series_tangent(gr_ptr s, gr_ptr c, gr_srcptr h, slong hlen, slong n, int times_pi, gr_ctx_t ctx)
int gr_poly_sin_cos_series_tangent(gr_poly_t s, gr_poly_t c, const gr_poly_t h, slong n, int times_pi, gr_ctx_t ctx)

The basecase version uses a simple recurrence for the coefficients, requiring \(O(nm)\) operations where \(m\) is the length of \(h\).

The tangent version uses the tangent half-angle formulas to compute the sine and cosine via _acb_poly_tan_series(). This requires \(O(M(n))\) operations. When \(h = h_0 + h_1\) where the constant term \(h_0\) is nonzero, the evaluation is done as \(\sin(h_0 + h_1) = \cos(h_0) \sin(h_1) + \sin(h_0) \cos(h_1)\), \(\cos(h_0 + h_1) = \cos(h_0) \cos(h_1) - \sin(h_0) \sin(h_1)\).

The basecase and tangent versions take a flag times_pi specifying that the input is to be multiplied by \(\pi\).

int _gr_poly_tan_series_basecase(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_tan_series_basecase(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)
int _gr_poly_tan_series_newton(gr_ptr f, gr_srcptr h, slong hlen, slong n, slong cutoff, gr_ctx_t ctx)
int gr_poly_tan_series_newton(gr_poly_t f, const gr_poly_t h, slong n, slong cutoff, gr_ctx_t ctx)
int _gr_poly_tan_series(gr_ptr f, gr_srcptr h, slong hlen, slong n, gr_ctx_t ctx)
int gr_poly_tan_series(gr_poly_t f, const gr_poly_t h, slong n, gr_ctx_t ctx)

Test functions

The following functions run iters test iterations, generating polynomials up to length maxn. If ctx is set to NULL, a random ring is generated on each test iteration, otherwise the given ring is used.

void _gr_poly_test_mullow(gr_method_poly_binary_trunc_op mullow_impl, gr_method_poly_binary_trunc_op mullow_ref, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function mullow_impl for correctness as an implementation of _gr_poly_mullow(). A reference implementation to compare against can be provided as mullow_ref; if NULL, classical multiplication is used.

void _gr_poly_test_divrem(gr_method_poly_binary_binary_op divrem_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function divrem_impl for correctness as an implementation of _gr_poly_divrem().

void _gr_poly_test_div(gr_method_poly_binary_op div_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function div_impl for correctness as an implementation of _gr_poly_div().

void _gr_poly_test_inv_series(gr_method_poly_unary_trunc_op inv_series_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function inv_series_impl for correctness as an implementation of _gr_poly_inv_series().

void _gr_poly_test_div_series(gr_method_poly_binary_trunc_op div_series_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function div_series_impl for correctness as an implementation of _gr_poly_div_series().

void _gr_poly_test_gcd(gr_method_poly_gcd_op gcd_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function gcd_impl for correctness as an implementation of _gr_poly_gcd().

void _gr_poly_test_xgcd(gr_method_poly_xgcd_op xgcd_impl, flint_rand_t state, slong iters, slong maxn, gr_ctx_t ctx)

Tests the given function xgcd_impl for correctness as an implementation of _gr_poly_xgcd().