gr.h (continued) – builtin domains and types¶
Coercions¶
Domain properties¶
-
truth_t gr_ctx_is_finite(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_multiplicative_group(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_ring(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_commutative_ring(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_integral_domain(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_unique_factorization_domain(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_field(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_algebraically_closed(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_finite_characteristic(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_ordered_ring(gr_ctx_t ctx)¶
-
truth_t gr_ctx_is_zero_ring(gr_ctx_t ctx)¶
Returns whether the structure satisfies the respective mathematical property. The result can be
T_UNKNOWN
.
-
truth_t gr_ctx_is_exact(gr_ctx_t ctx)¶
Returns whether the representation of elements is always exact.
-
truth_t gr_ctx_is_canonical(gr_ctx_t ctx)¶
Returns whether the representation of elements is always canonical.
Groups¶
-
void gr_ctx_init_perm(gr_ctx_t ctx, ulong n)¶
Initializes ctx to the symmetric group \(S_n\) representing permutations of \([0, 1, \ldots, n - 1]\). Elements are currently represented as pointers (the representation may change in the future).
-
void gr_ctx_init_psl2z(gr_ctx_t ctx)¶
Initializes ctx to the modular group \(\text{PSL}(2, \mathbb{Z})\) with elements of type
psl2z_t
.
-
int gr_ctx_init_dirichlet_group(gr_ctx_t ctx, ulong q)¶
Initializes ctx to the Dirichlet group \(G_q\) with elements of type
dirichlet_char_t
. Fails and returnsGR_DOMAIN
if q is zero. Fails and returnsGR_UNABLE
if q has a prime factor larger than \(10^{16}\), which is currently unsupported by the implementation.
Basic rings and fields¶
-
void gr_ctx_init_random(gr_ctx_t ctx, flint_rand_t state)¶
Initializes ctx to a random ring. This will currently only generate base rings and composite rings over certain simple base rings.
-
void gr_ctx_init_fmpz(gr_ctx_t ctx)¶
Initializes ctx to the ring of integers \(\mathbb{Z}\) with elements of type
fmpz
.
Residue rings and finite fields¶
-
int gr_ctx_set_is_field(gr_ctx_t ctx, truth_t is_field)¶
Set whether the given ring is actually a field. For example, in the case of \(\mathbb{Z}/n\mathbb{Z}\), this sets whether the modulus is prime. This can speed up some computations and enable some functions to complete that otherwise would return
GR_UNABLE
.
-
void gr_ctx_init_nmod(gr_ctx_t ctx, ulong n)¶
Initializes ctx to the ring \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo n where elements have type
ulong
. We require \(n \ne 0\).
-
void gr_ctx_init_nmod8(gr_ctx_t ctx, unsigned char n)¶
-
void gr_ctx_init_nmod32(gr_ctx_t ctx, unsigned int n)¶
Initializes ctx to the ring \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo n where elements have type
uint8
oruint32
. The modulus must be nonzero.Note
Presently, many operations for these types are not as optimized as those for full-word
nmods
. It is currently recommended to usegr_ctx_init_nmod()
for best performance unless one specifically wants to minimize memory usage.
-
void gr_ctx_init_fmpz_mod(gr_ctx_t ctx, const fmpz_t n)¶
Initializes ctx to the ring \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo n where elements have type
fmpz
. The modulus must be positive.
-
Initializes ctx to the ring \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo n where elements are flat limb arrays with the same number of limbs as n.
-
void gr_ctx_init_fq(gr_ctx_t ctx, const fmpz_t p, slong d, const char *var)¶
-
void gr_ctx_init_fq_nmod(gr_ctx_t ctx, ulong p, slong d, const char *var)¶
-
void gr_ctx_init_fq_zech(gr_ctx_t ctx, ulong p, slong d, const char *var)¶
Initializes ctx to the finite field \(\mathbb{F}_q\) where \(q = p^d\). It is assumed (not checked) that p is prime. The variable name var can be
NULL
to use a default.The corresponding element types are
fq_t
,fq_nmod_t
,fq_zech_t
. Thefq_zech
context requires \(q < 2^{64}\) (and in practice a much smaller value than this).
Number fields and algebraic numbers¶
-
void gr_ctx_init_nf(gr_ctx_t ctx, const fmpq_poly_t poly)¶
-
void gr_ctx_init_nf_fmpz_poly(gr_ctx_t ctx, const fmpz_poly_t poly)¶
Initializes ctx to the number field with defining polynomial
poly
which must be irreducible (this is not checked). The elements have typenf_elem_t
.
-
void gr_ctx_init_real_qqbar(gr_ctx_t ctx)¶
-
void gr_ctx_init_complex_qqbar(gr_ctx_t ctx)¶
Initializes ctx to the field of real or complex algebraic numbers with elements of type
qqbar_t
.
-
void _gr_ctx_qqbar_set_limits(gr_ctx_t ctx, slong deg_limit, slong bits_limit)¶
Limit degrees of intermediate operands of a qqbar context to deg_limit and their bit sizes to bits_limit (approximately). The limits refer to the sizes of resultants prior to factorization (see
qqbar_binop_within_limits()
), so for example adding two degree-100 algebraic numbers requires a degree limit of at least 10000. Warning: currently not all methods respect these limits.
Real and complex numbers¶
-
void gr_ctx_init_real_arb(gr_ctx_t ctx, slong prec)¶
-
void gr_ctx_init_complex_acb(gr_ctx_t ctx, slong prec)¶
Initializes ctx to the field of real or complex numbers represented by elements of type
arb_t
andacb_t
.
-
void gr_ctx_arb_set_prec(gr_ctx_t ctx, slong prec)¶
-
slong gr_ctx_arb_get_prec(gr_ctx_t ctx)¶
Sets or retrieves the bit precision of ctx which must be an Arb context (this is currently not checked).
-
void gr_ctx_init_real_ca(gr_ctx_t ctx)¶
-
void gr_ctx_init_complex_ca(gr_ctx_t ctx)¶
-
void gr_ctx_init_real_algebraic_ca(gr_ctx_t ctx)¶
-
void gr_ctx_init_complex_algebraic_ca(gr_ctx_t ctx)¶
Initializes ctx to the field of real, complex, real algebraic or complex algebraic numbers represented by elements of type
ca_t
.
Extended number sets¶
-
void gr_ctx_init_complex_extended_ca(gr_ctx_t ctx)¶
Like
gr_ctx_init_complex_ca()
but allows special values (infinities, undefined).
Floating-point arithmetic¶
Although domains of floating-point numbers approximate real and complex fields, they are not rings or fields. Floating-point arithmetic can be used in many places where a ring or field is normally assumed, but predicates like “is field” return false.
Equality compares equality of floating-point numbers, with the special rule that NaN is not equal to itself.
In general, the following implementations do not currently guarantee correct rounding except for atomic arithmetic operations (add, sub, mul, div, sqrt) on real floating-point numbers.
Vectors¶
-
void gr_ctx_init_vector_gr_vec(gr_ctx_t ctx, gr_ctx_t base_type)¶
Initializes ctx to the domain of all vectors (of any length) over the given base_type. Elements have type
gr_vec_struct
.
-
void gr_ctx_init_vector_space_gr_vec(gr_ctx_t ctx, gr_ctx_t base_type, slong n)¶
Initializes ctx to the space of all vectors of length n over the given base_type. Elements have type
gr_vec_struct
.
Matrices¶
-
void gr_ctx_init_matrix_domain(gr_ctx_t ctx, gr_ctx_t base_ring)¶
Initializes ctx to the domain of all matrices (of any shape) over the given base_ring. Elements have type
gr_mat_struct
.
-
void gr_ctx_init_matrix_space(gr_ctx_t ctx, gr_ctx_t base_ring, slong n, slong m)¶
Initializes ctx to the space of matrices over base_ring with n rows and m columns. Elements have type
gr_mat_struct
.
-
void gr_ctx_init_matrix_ring(gr_ctx_t ctx, gr_ctx_t base_ring, slong n)¶
Initializes ctx to the ring of matrices over base_ring with n rows columns. Elements have type
gr_mat_struct
.
Polynomial rings¶
-
void gr_ctx_init_fmpz_poly(gr_ctx_t ctx)¶
Initializes ctx to a ring of integer polynomials of type
fmpz_poly_struct
.
-
void gr_ctx_init_fmpq_poly(gr_ctx_t ctx)¶
Initializes ctx to a ring of rational polynomials of type
fmpq_poly_struct
.
-
void gr_ctx_init_gr_poly(gr_ctx_t ctx, gr_ctx_t base_ring)¶
Initializes ctx to a ring of densely represented univariate polynomials over the given base_ring. Elements have type
gr_poly_struct
.
-
void gr_ctx_init_fmpz_mpoly(gr_ctx_t ctx, slong nvars, const ordering_t ord)¶
Initializes ctx to a ring of sparsely represented multivariate polynomials in nvars variables over the integers, with monomial ordering ord. Elements have type
fmpz_mpoly_struct
.
-
void gr_ctx_init_gr_mpoly(gr_ctx_t ctx, gr_ctx_t base_ring, slong nvars, const ordering_t ord)¶
Initializes ctx to a ring of sparsely represented multivariate polynomials in nvars variables over the given base_ring, with monomial ordering ord. Elements have type
gr_mpoly_struct
.
Power series¶
-
void gr_ctx_init_series_mod_gr_poly(gr_ctx_t ctx, gr_ctx_t base_ring, slong n)¶
Initializes ctx to a ring of truncated power series \(R[[x]] / \langle x^n \rangle\) over the given base_ring. Elements have type
gr_poly_struct
. It is assumed that all inputs are already truncated to length n, and this invariant is enforced for all outputs.
-
void gr_ctx_init_gr_series(gr_ctx_t ctx, gr_ctx_t base_ring, slong prec)¶
Initializes ctx to a ring of power series \(R[[x]]\) over the given base_ring. Elements are generally inexact, having an error term \(O(x^n)\). The parameter prec defines the default precision. Elements have type
gr_series_struct
(this type is currently internal).
Fraction fields¶
-
void gr_ctx_init_fmpz_mpoly_q(gr_ctx_t ctx, slong nvars, const ordering_t ord)¶
Initializes ctx to a ring of sparsely represented multivariate fractions in nvars variables over the integers (equivalently, rationals), with monomial ordering ord. Elements have type
fmpz_mpoly_q_struct
.
Symbolic expressions¶
-
void gr_ctx_init_fexpr(gr_ctx_t ctx)¶
Initializes ctx to handle symbolic expressions. Elements have type
fexpr_struct
.